Advertisement

The Progression of Prospective Teachers’ Conceptions of School Science Content

  • Rosa Martín del PozoEmail author
  • Rafael Porlán
  • Ana Rivero
Article

Abstract

The purpose of the present work is to describe the progression in the conceptions of prospective primary teachers about school science content while they were participating in three teacher education courses following the same constructivist oriented strategy. The participants’ written output was analyzed in various categories—selection of content, types of content and their relationships, levels of complexity, and presentation of content to pupils. There was evidence for some progress in their conceptions of the content from a traditional view to another that we termed intermediate since it did not reach the vision that we consider to be the most complex. Finally, we present a General Itinerary of Progression on school content that could serve as a referent for initial teacher education.

Keywords

Teachers’ conceptions Professional knowledge School science content 

References

  1. Azcárate, P., & Cuesta, J. (2005). El profesorado novel de secundaria y su práctica. Estudio de un caso en las áreas de ciencias. [The junior high school teachers and their practice. A case study in the areas of science]. Enseñanza de las Ciencias, 23, 393–402.Google Scholar
  2. Bryan, L. A., & Abell, S. K. (1999). Development of professional knowledge in learning to teach elementary science. Journal of Research in Science Teaching, 36, 121–139.CrossRefGoogle Scholar
  3. Crawford, B. A. (1999). Is it realistic to expect a preservice teacher to create an inquiry-based classroom? Journal of Science Teacher Education, 10, 175–194.CrossRefGoogle Scholar
  4. Davis, E., & Petish, D. (2005). Real-world applications and instructional representations among prospective elementary science teachers. Journal of Science Teacher Education, 16, 263–286.CrossRefGoogle Scholar
  5. Driver, R. (1989). Students’ conceptions and the learning of science. International Journal of Science Education, 11, 481–490.CrossRefGoogle Scholar
  6. Duit, R., & Treagust, D. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25, 671–688.CrossRefGoogle Scholar
  7. Flores, F., López, A., Gallegos, L., & Barojas, J. (2000). Transforming science and learning concepts of physics teachers. International Journal of Science Education, 22, 197–208.CrossRefGoogle Scholar
  8. Gustafson, B. J., & Rowell, P. M. (1995). Elementary preservice teachers: Constructing conceptions about learning science, teaching science and the nature of science. International Journal of Science Education, 17, 589–605.CrossRefGoogle Scholar
  9. Haefner, L. A., & Zembal-Saul, C. (2004). Learning by doing? Prospective elementary teachers’ developing understandings of scientific inquiry and science teaching and learning. International Journal of Science Education, 26, 1653–1674.CrossRefGoogle Scholar
  10. Hewson, P. W., & Hewson, M. G. (1987). Science teachers’ conceptions of teaching: Implications for teacher education. International Journal of Science Education, 9, 425–440.CrossRefGoogle Scholar
  11. Hewson, P. W., Tabachnick, B. R., Zeichner, K. M., & Lemberger, J. (1999). Educating prospective teachers of biology: Findings, limitations, and recommendations. Science Education, 83, 373–384.CrossRefGoogle Scholar
  12. Hodson, D. (1994). Hacia un enfoque más crítico del trabajo de laboratorio. [Towards a more critical laboratory work]. Enseñanza de las Ciencias, 12, 299–313.Google Scholar
  13. Jones, M., Carter, G., & Rua, M. (1999). Children’s concepts: Tools for transforming science teachers’ knowledge. Science Education, 83, 545–557.CrossRefGoogle Scholar
  14. Joram, E., & Gabriele, A. (1998). Preservice teachers’ prior beliefs: Transforming obstacles into opportunities. Teaching and Teacher Education, 14, 175–191.CrossRefGoogle Scholar
  15. Liang, L. L., & Gabel, D. L. (2005). Effectiveness of a constructivist approach to science instruction for prospective elementary teachers. International Journal of Science Education, 27, 1143–1162.CrossRefGoogle Scholar
  16. Manassero, M. A., & Vazquez, A. (2001). Actitudes de estudiantes y profesorado sobre las características de los científicos. [Attitudes of students and teachers about the characteristics of scientists]. Enseñanza de las Ciencias, 19, 255–268.Google Scholar
  17. Martín del Pozo, R. (2001a). Prospective teachers’ ideas about the relationships between concepts describing the composition of matter. International Journal of Science Education, 23, 353–371.CrossRefGoogle Scholar
  18. Martín del Pozo, R. (2001b). Lo que saben y lo que pretenden enseñar los futuros profesores sobre el cambio químico. [What we know and what they purport to teach future teachers in the chemical change]. Enseñanza de las Ciencias, 19, 199–215.Google Scholar
  19. Martín del Pozo, R., & Porlán, R. (2001). Spanish prospective teachers’ initial ideas about teaching chemical change. Chemistry Education Research and Practice in Europe, 3, 265–283.Google Scholar
  20. Martín del Pozo, R., Martínez, M., Rodrigo, M., & Varela, P. (2004). A comparative study of the professional and curricular conceptions of the secondary education science teacher in Spain: Possible implications for ongoing teacher education. European Journal of Teacher Education, 27, 193–215.CrossRefGoogle Scholar
  21. Martínez, M., Martín del Pozo, R., Rodrigo, M., Varela, P., Fernández, P., & Guerrero, A. (2004). ¿Qué pensamiento profesional y curricular tienen los futuros profesores de ciencias de secundaria? [What professional thinking and curriculum is the future of secondary science teachers]. Enseñanza de las Ciencias, 19, 67–87.Google Scholar
  22. Meyer, H., Tabachnick, R., Hewson, P., Lemberger, J., & Park, H. (1999). Relationships between prospective elementary teachers’ classroom practice and their conceptions of Biology and of Teaching Science. Science Education, 83, 323–346.CrossRefGoogle Scholar
  23. Morrison, J. A., & Lederman, N. G. (2003). Science teachers’ diagnosis and understanding of students’ preconceptions. Science Education, 87, 849–867.CrossRefGoogle Scholar
  24. Novak, J. D., & Gowin, D. B. (1984). Learning how to learn. Cambridge, UK: Cambridge University Press.Google Scholar
  25. Osborne, J., & Collins, S. (2001). Pupils’ views of the role and value of the science curriculum: A focus-group study. International Journal of Science Education, 23, 441–467.CrossRefGoogle Scholar
  26. Peterson, R., & Treagust, D. (1998). Learning to teach primary science through problem-based learning. Science Education, 82, 215–237.CrossRefGoogle Scholar
  27. Pomeroy, D. (1993). Implications of the teachers’ beliefs about the nature of science: Comparison of the beliefs of scientist, secondary science teachers, and elementary teachers. Science Education, 77, 261–278.CrossRefGoogle Scholar
  28. Porlán, R., & Martín del Pozo, R. (2002). Spanish teachers’ epistemological and scientific conceptions: Implications for teacher education. European Journal of Teacher Education, 25, 151–169.CrossRefGoogle Scholar
  29. Porlán, R., & Martín del Pozo, R. (2004). The conceptions of inservice and prospective primary school teachers about the teaching and learning of science. Journal of Science Teacher Education, 15, 39–62.CrossRefGoogle Scholar
  30. Porlán, R., Rivero, A., & Martín del Pozo, R. (1997). Conocimiento profesional y epistemología de los profesores I: Teoría, métodos, e instrumentos. [Professional knowledge of teachers and epistemology I: Theory, methods, and tools]. Enseñanza de las Ciencias, 15, 155–171.Google Scholar
  31. Porlán, R., Rivero, A., & Martín del Pozo, R. (1998). Conocimiento profesional y epistemología de los profesores II: Estudios empíricos y conclusiones. [Professional knowledge of teachers and epistemology II: Empirical studies and conclusions]. Enseñanza de las Ciencias, 16, 271–288.Google Scholar
  32. Powell, R. (1996). Epistemological antecedents to culturally relevant and constructivist classroom curricula: A longitudinal study of teachers’ contrasting worldviews. Teaching and Teacher Education, 12, 365–384.CrossRefGoogle Scholar
  33. Prieto, T., Blanco, A., & Brero, V. (2002). La progresión en el aprendizaje de dominios específicos. [Domain specific learning progression]. Enseñanza de las Ciencias, 20, 3–14.Google Scholar
  34. Rivero, A., & Porlán, R. (2004). The difficult relationship between theory and practice in an inservice course for science teachers. International Journal of Science Education, 26, 1223–1245.CrossRefGoogle Scholar
  35. Sánchez, G., & Valcárcel, M. V. (1999). Science teachers’ views and practices in planning for teaching. Journal of Research in Science Teaching, 36, 493–513.CrossRefGoogle Scholar
  36. Scott, P. H. (1992). Pathways in learning science: A case study of the development of one student’s ideas relating to the structure of matter. In R. Duit, F. Goldberg, & H. Niedderer (Eds.), Research in physics learning: Theoretical issues and empirical studies (pp. 203–224). Kiel, Germany: IPN.Google Scholar
  37. Shulman, L. S. (1987). Knowledge and teaching: Foundations for the new reform. Harvard Educational Review, 57, 1–22.Google Scholar
  38. Skamp, K., & Mueller, A. (2001). Student teachers’ conceptions about effective primary science teaching: A longitudinal study. International Journal of Science Education, 23, 331–351.Google Scholar
  39. Tillema, H. H. (2000). Belief change towards self-directed learning in student teachers: Immersion in practice or reflection on action. Teaching and Teacher Education, 16(5–6), 575–591.CrossRefGoogle Scholar
  40. Tillema, H. H., & Van der Westhuizen, G. J. (2006). Knowledge construction in collaborative enquiry among teachers. Teachers and Teaching: Theory and Practice, 12, 51–67.CrossRefGoogle Scholar
  41. Van Driel, J. H., Bulte, A. M. W., & Verloop, N. (2005). The conceptions of chemistry teachers about teaching and learning in the context of a curriculum innovation. International Journal of Science Education, 27, 303–322.CrossRefGoogle Scholar
  42. Watters, J., & Ginns, I. (2000). Developing motivation to teach elementary science: Effect of collaborative and authentic learning practices in preservice education. Journal of Science Teacher Education, 11, 301–321.CrossRefGoogle Scholar
  43. Watts, M., & Jofili, Z. (1998). Towards critical constructivist teaching. International Journal of Science Education, 20, 173–185.CrossRefGoogle Scholar
  44. Weld, J., & Funk, L. (2005). “I’m not the science type:” Effect of an inquiry biology content course on preservice elementary teachers’ intentions about teaching science. Journal of Science Teacher Education, 16, 189–204.CrossRefGoogle Scholar
  45. Zellermayer, M., & Tabak, E. (2006). Knowledge construction in a teachers’ community of enquiry: A possible road map. Teachers and Teaching: Theory and Practice, 12, 33–49.CrossRefGoogle Scholar
  46. Zembal-Saul, C., Blumenfeld, P., & Krajcik, J. (2000). Influence of guided cycles of planning, teaching, and reflection on prospective elementary teachers’ science content representations. Journal of Research in Science Teaching, 37, 318–339.CrossRefGoogle Scholar
  47. Zembal-Saul, C., Haefner, L. A., Avraamidou, L., Severs, M., & Dana, T. (2002). Web-based portfolios: A vehicle for examining prospective elementary teachers’ developing understandings of teaching science. Journal of Science Teacher Education, 13, 283–302.CrossRefGoogle Scholar

Copyright information

© The Association for Science Teacher Education, USA 2011

Authors and Affiliations

  • Rosa Martín del Pozo
    • 1
    Email author
  • Rafael Porlán
    • 2
  • Ana Rivero
    • 2
  1. 1.Departament of Science Education, Faculty of EducationUniversity Complutense of MadridMadridSpain
  2. 2.Departament of Science and Social Sciences Education, Faculty of EducationUniversity of SevillaSevillaSpain

Personalised recommendations