Skip to main content
Log in

Photocatalytic activity under visible light of Ni:TiO2-NiTiO3 synthesized through a modified sol-gel method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

One of the most challenging goals in materials science is to shift the absorption band of TiO2 toward the visible region of the electromagnetic spectrum. This is a fundamental strategy to improve its photocatalytic performance. In this paper, we present a simple methodology based on the sol-gel method, which allows the displacement of the band edge of TiO2, accompanied by the appearance of additional absorption bands in the optical spectrum. In our methodology, TiO2 was synthesized and doped with 5% and 10% w/w nickel. The resulting material was dried at 100 °C and subjected to thermal treatment at 500 °C for 1 h each. The obtained material was characterized by scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry, diffuse reflectance, X-ray diffraction, Raman spectroscopy, and XPS. Our results indicate that Ni doping of TiO2 was successfully carried out, while NiTiO3 appears from the first drying stage at 100 °C and undergoes the transition from the amorphous to the crystalline phase during the sintering process at 500 °C. Furthermore, all the materials studied showed high catalytic activity under UV irradiation. In particular, the nickel-doped thermally treated materials also exhibited good catalytic performance under visible light, even better than the amorphous phases obtained under UV irradiation.

Graphical Abstract

Highlights

  • In this study, TiO2 was synthesized and doped with 5 and 10% w/w Ni by sol-gel process.

  • The samples were characterized by XRD, SEM, XPS, UV-Vis, RAMAN, DRS, and DSC techniques.

  • The analysis showed that all the studied materials exhibited high catalytic activity under UV irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Duarte A, Ferreira BL, Nóvoa PRO, Torres Marques A (2016) Multifunctional material systems: a state-of-the-art review. Compos Struct 151:3–35. https://doi.org/10.1016/j.compstruct.2016.01.028

    Article  Google Scholar 

  2. Pawade VB, Salame, PH, & Bhanvase, BA (Eds.) (2020) Multifunctional Nanostructured Metal Oxides for Energy Harvesting and Storage Devices (1st ed.). CRC Press. https://doi.org/10.1201/9780429296871

  3. Crisan M, Jitianu A, Crisan D, Balasoiu M, Dragan N, Zaharescu M (2000) Sol-gel monocomponent nano-sized oxide powders. J Optoelectron Adv 2(4):339–344. https://old.joam.inoe.ro/arhiva/pdf2_4/Crisan.pdf

    CAS  Google Scholar 

  4. Maubert M, Soto L, León AM, Flores J (2009) Nanotubos de Carbono- La era de la nanotecnología. Revista Razón y Palabra, (68). https://www.redalyc.org/pdf/1995/199520297017.pdf

  5. Andrade Guel ML, López López LI, Sáenz Galindo A (2012) Carbon nanotubes: Functionalization and biological applications. Rev Mex Cienc Farm 43(3):9–18. https://www.scielo.org.mx/scielo.php?pid=S1870-01952012000300002&script=sci_abstract&tlng=en

    Google Scholar 

  6. Mudusu D, Nandanapalli KR, Moon GD, Lee S (2021) Multifunctional metal‐oxide integrated monolayer graphene heterostructures for planar, flexible, and skin‐mountable device applications. Nano Energy 88:106274. https://doi.org/10.1016/j.nanoen.2021.106274

    Article  CAS  Google Scholar 

  7. Chen X, Tang Z, Liu P, Gao H, Chang Y, Wang G (2020) Smart utilization of multifunctional metal oxides in phase change materials. Matter 3(3):708–741. https://doi.org/10.1016/j.matt.2020.05.016

    Article  Google Scholar 

  8. Nah YC, Paramasivam I, Schmuki P (2010) Doped TiO2 and TiO2 nanotubes: synthesis and applications. ChemPhysChem 11(13):2698–2713. https://doi.org/10.1002/cphc.201000276

    Article  CAS  PubMed  Google Scholar 

  9. Wang J, Wang Z, Wang W, Wang Y, Hu X, Liu J, Gong X, Miao W, Ding L, Li X, Tang J (2022) Synthesis, modification and application of titanium dioxide nanoparticles: a review. Nanoscale 14:6709–6734. https://doi.org/10.1039/D1NR08349J

    Article  CAS  PubMed  Google Scholar 

  10. Momin N, Manjanna J, Aruna ST et al. (2022) Structural and electrical properties of M-doped TiO2 (M = Ni, Cu, Zn) relevant to their application as electrolytes for solid oxide fuel cells. J Chem Sci 134:37. https://doi.org/10.1007/s12039-022-02026-4

    Article  CAS  Google Scholar 

  11. Piątkowska A, Janus M, Szymański K, Mozia S (2021) C-, N-and S-doped TiO2 photocatalysts: a review. Catalysts 11(1):144. https://doi.org/10.3390/catal11010144

    Article  CAS  Google Scholar 

  12. Zaleska A (2008) Doped-TiO2: a review. Recent Patents Eng 2(3):157–164. https://doi.org/10.2174/187221208786306289

    Article  CAS  Google Scholar 

  13. Chuang SH, Hsieh ML, Wang DY (2012) Structure and dielectric properties of NiTiO3 powders synthesized by the modified sol–gel method. Jnl Chin Chem Soc 59(5):628–632. https://doi.org/10.1002/jccs.201100496

    Article  CAS  Google Scholar 

  14. Ruiz-Preciado MA, Kassiba A, Gibaud A, Morales-Acevedo A (2015) Comparison of nickel titanate (NiTiO3) powders synthesized by sol–gel and solid state reaction. Mater Sci Semicond Process 37:171–178. https://doi.org/10.1016/j.mssp.2015.02.063

    Article  CAS  Google Scholar 

  15. Pal N, Saha B, Kundu SK, Bhaumik A, Banerjee S (2015) A highly efficient non-enzymatic glucose biosensor based on a nanostructured NiTiO3/NiO material. New J Chem 39(10):8035–8043. https://doi.org/10.1039/C5NJ01341K

    Article  CAS  Google Scholar 

  16. Chellasamy V, Thangadurai P (2017) Structural and electrochemical investigations of nanostructured NiTiO3 in acidic environment. Front Mater Sci 11(2):162–170. https://doi.org/10.1007/s11706-017-0380-1

    Article  Google Scholar 

  17. Moghiminia S, Farsi H, Raissi H (2014) Comparative optical and electrochemical studies of nanostructured NiTiO3 and NiTiO3 -TiO2 prepared by a low temperature modified Sol-Gel route. Electrochim Acta 132:512–523. https://doi.org/10.1016/j.electacta.2014.03.166

    Article  CAS  Google Scholar 

  18. Hwang KS, Jeong JH, Ahn JH, Kim BH (2006) Hydrophilic/hydrophobic conversion of Ni-doped TiO2 thin films on glass substrates. Ceram Int 32(8):935–937. https://doi.org/10.1016/j.ceramint.2005.06.010

    Article  CAS  Google Scholar 

  19. Li J, Wang D, Guan R, Zhang Y, Zhao Z, Zhai H, Sun Z (2020) Vacancy-enabled mesoporous TiO2 modulated by nickel doping with enhanced photocatalytic nitrogen fixation performance. ACS Sustain Chem Eng 8:18258–18265. https://doi.org/10.1021/acssuschemeng.0c06775

    Article  CAS  Google Scholar 

  20. Dorothy AA, Panigrahi P (2023) First principles study of optical properties of Ni-and Pd-doped TiO2 as visible light catalyst. Mater Renew Sustain Energy 12:47–52. https://doi.org/10.1007/s40243-023-00228-5

    Article  Google Scholar 

  21. Kurokawa Y, Nguyen DT, Taguchi K (2019) Nickel-doped TiO2 multilayer thin film for enhancement of photocatalytic activity. Int J Mater Sci Eng 7:10–19. http://www.journalsonline.org/american-journal-of-material-science-and-nanotechnology/pdfs/volume-5-issue-1/7.pdf

    Google Scholar 

  22. Wan Y, Xu Z, Chao W, Zhang J (2013) Sol–gel derived nickel-doped TiO2 films as wear protection coatings. J Exp Nanosci 8(5):782–787. https://doi.org/10.1080/17458080.2011.607192

    Article  CAS  Google Scholar 

  23. Ragesh P, Ganesh VA, Nair SV, Nair AS (2014) A review on ‘self-cleaning and multifunctional materials’. J Mater Chem A 2(36):14773–14797. https://doi.org/10.1039/C4TA02542C

    Article  CAS  Google Scholar 

  24. Huo K, Li Y, Chen R, Gao B, Peng C, Zhang W, Hu L, Zhang X, Chu KP (2015) Recyclable non‐enzymatic glucose sensor based on Ni/NiTiO3 /TiO2 nanotube arrays. ChemPlusChem 80(3):576–582. https://doi.org/10.1002/cplu.201402288

    Article  CAS  PubMed  Google Scholar 

  25. Jing D, Zhang Y, Guo L (2005) Study on the synthesis of Ni doped mesoporous TiO2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution. Chem Phys Lett 415(1-3):74–78. https://doi.org/10.1016/j.cplett.2005.08.080

    Article  CAS  Google Scholar 

  26. Lakhera SK, Hafeez HY, Veluswamy P, Ganesh V, Khan A, Ikeda H, Neppolian B (2018) Enhanced photocatalytic degradation and hydrogen production activity of in situ grown TiO2 coupled NiTiO3 nanocomposites. Appl Surf Sci 449:790–798. https://doi.org/10.1016/j.apsusc.2018.02.136

    Article  CAS  Google Scholar 

  27. Kochana J, Gala A, Parczewski A, Adamski J (2008) Titania sol–gel-derived tyrosinase-based amperometric biosensor for determination of phenolic compounds in water samples. Examination of interference effects. Anal Bioanal Chem 391:1275–1281. https://doi.org/10.1007/s00216-007-1798-6

    Article  CAS  PubMed  Google Scholar 

  28. Barakat M, Khoder R, Kassir F, Harajli Z, Mohamed M, Jamal MME, Pirbazari EA (2021) Sol-gel to prepare nickel doped TiO2 nanoparticles for photocatalytic treatment of E 131 VF food dye wastewater. J Water Environ Nanotechnol 6(2):92–108. https://doi.org/10.22090/jwent.2021.02.001

    Article  CAS  Google Scholar 

  29. Saleem A, Imran M, Shahzadi A, Junaid M, Majeed H, Rafiq A, Shahzadi I, Ikram M, Naz M, Ali S (2018) Drastic improvement in catalytic, optical and visible-light photocatalytic behavior of cobalt and nickel doped TiO2 nanopowder. Mater Res Express 6(1):015003. https://doi.org/10.1088/2053-1591/aae28e

    Article  CAS  Google Scholar 

  30. Baruah M, Ezung SL, Sharma S, Sinha UB, Sinha D (2022) Synthesis and characterization of Ni-doped TiO2 activated carbon nanocomposite for the photocatalytic degradation of anthracene. Inorg Chem Commun 144:109905. https://doi.org/10.1016/j.inoche.2022.109905

    Article  CAS  Google Scholar 

  31. Romero-Arcos M, Garnica-Romo MG, Martínez-Flores HE (2016) Electrochemical study and characterization of an amperometric biosensor based on the immobilization of laccase in a nanostructure of TiO2 synthesized by the sol-gel method. Materials 9(7):543. https://doi.org/10.3390/ma9070543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Baszczuk A, Jasiorski M, Winnicki M (2018) Low-temperature transformation of amorphous Sol–Gel TiO2 powder to anatase during cold spray deposition. J Thermal Spray Technol 27:1551–1562. https://doi.org/10.1007/s11666-018-0769-0

    Article  CAS  Google Scholar 

  33. Xie H, Zhang Q, Xi T, Wang J, Liu Y (2002) Thermal analysis on nanosized TiO2 prepared by hydrolysis. Thermochim Acta 381(1):45–48. https://doi.org/10.1016/S0040-6031(01)00642-6

    Article  CAS  Google Scholar 

  34. Hermawan P, Pranowo HD, Kartini I (2011) Physical characterization of Ni (II) doped TiO2 nanocrystal by sol-gel process. Indonesian J Chem 11(2):135–139. https://doi.org/10.22146/ijc.21400

    Article  Google Scholar 

  35. Qin Q, Wang J, Xia Y, Yang D, Zhou Q, Zhu X, Feng W (2021) Synthesis and characterization of Sn/Ni single doped and Co–Doped Anatase/Rutile mixed–crystal nanomaterials and their photocatalytic performance under UV–visible light. Catalysts 11(11):1341. https://doi.org/10.3390/catal11111341

    Article  CAS  Google Scholar 

  36. Garza-Arévalo JI, García-Montes I, Reyes MH, Guzmán-Mar JL, Rodríguez-González V, Reyes LH (2016) Fe doped TiO2 photocatalyst for the removal of As (III) under visible radiation and its potential application on the treatment of As-contaminated groundwater. Mater Res Bullet 73:145–152. https://doi.org/10.1016/j.materresbull.2015.08.034

    Article  CAS  Google Scholar 

  37. Ruzimuradov O, Musaev K, Mamatkulov S, Butanov K, Gonzalo-Juan I, Khoroshko L, Turapov N, Nurmanov S, Razzokov J, Borisenko V, Riedel R (2023) Structural and optical properties of sol-gel synthesized TiO2 nanocrystals: Effect of Ni and Cr (co)doping. Opt Mater 143:114203. https://doi.org/10.1016/j.optmat.2023.114203

    Article  CAS  Google Scholar 

  38. Kong L, Karatchevtseva I, Blackford M, Chironi I, Triani G (2012) Synthesis and characterization of rutile nanocrystals prepared in aqueous media at low temperature. J Am Ceram Soc 95(2):816–822. https://doi.org/10.1111/j.1551-2916.2011.05002.x

    Article  CAS  Google Scholar 

  39. Al-Mamun MR, Kader S, Islam MS (2021) Solar-TiO2 immobilized photocatalytic reactors performance assessment in the degradation of methyl orange dye in aqueous solution. Environ Nanotechnol Monit Manag 16:100514. https://doi.org/10.1016/j.enmm.2021.100514

    Article  CAS  Google Scholar 

  40. Inamdar AK, Hulsure NR, Kadam AS, Rajenimbalkar RS, Karpoormath R, Shelke SB, Inamdar SN (2023) Flame synthesized tetragonal TiO2 nanoparticles for Methylene Blue and Congo Red dye removal applications. Results Chem 5:100854. https://doi.org/10.1016/j.rechem.2023.100854

    Article  CAS  Google Scholar 

  41. Devi Priya D, Mohana Roopan S (2021) Effective catalytic approach of NiTiO3 photosonocatalyst for the synthesis of indazolo[3,2-b]quinazoline and its photophysical property. Appl Organomet Chem 35(2):e6109. https://doi.org/10.1002/aoc.6109

    Article  CAS  Google Scholar 

  42. Liu B, Li J, Wu Y, Han X, Liu S, Zhang J, Shi H (2021) Plasmonic Ag supported on Ni-doped TiO2 nanospheres for rapid microbial inactivation under visible light. J Alloys Compd 882:160717. https://doi.org/10.1016/j.jallcom.2021.160717

    Article  CAS  Google Scholar 

  43. Jin X, Sun W, Zhang Q, Ruan K, Cheng Y, Xu H, Xu Z, Li Q (2015) Reduced energy offset via substitutional doping for efficient organic/inorganic hybrid solar cells. Opt Express 23:A444–A455. https://doi.org/10.1364/OE.23.00A444

    Article  CAS  PubMed  Google Scholar 

  44. Dawi EA, Padervand M, Ghasemi S, Hajiahmadi S, Kakaei K, Shahsavari Z, Karima S, Baghernejad M, Signoretto M, Ibupoto ZH, Tahira A, Wang C (2023) Multi-functional fluorinated NiTiO3 perovskites for CO2 photocatalytic reduction, electrocatalytic water splitting, and biomedical waste management. J Water Process Eng 54:103979. https://doi.org/10.1016/j.jwpe.2023.103979

    Article  Google Scholar 

  45. Ahmadpour T, Aber S (2021) Power generation in a bio-photoelectrochemical cell with NiTiO3 as a cathodic photocatalyst. J Electroanal Chem 895:115539. https://doi.org/10.1016/j.jelechem.2021.115539

    Article  CAS  Google Scholar 

  46. Bezboruah J, Sanke DM, Munde AV, Das S, Karmakar HS, Zade SS (2023) Nickel-doped TiO2 and thiophene-naphthalenediimide copolymer based inorganic/organic nano-heterostructure for the enhanced photoelectrochemical urea oxidation reaction. Int J Hydrogen Energy 48(20):7361–7373. https://doi.org/10.1016/j.ijhydene.2022.11.098

    Article  CAS  Google Scholar 

  47. Yang B, Bai X, Wang J, Fang M, Wu X, Liu Y, Huang Z, Lao CY, Min X (2019) Photocatalytic performance of NiO/NiTiO3 composite nanofiber films. Catalysts 9(6):561. https://doi.org/10.3390/catal9060561

    Article  CAS  Google Scholar 

  48. Sakamoto K, Hayashi F, Sato K, Hirano M, Ohtsu N (2020) XPS spectral analysis for a multiple oxide comprising NiO, TiO2, and NiTiO3. Appl Surf Sci 526:146729. https://doi.org/10.1016/j.apsusc.2020.146729

    Article  CAS  Google Scholar 

  49. Orendorz A, Brodyanski A, Lösch J, Bai LH, Chen ZH, Le YK, Ziegler C, Gnaser H (2007) Phase transformation and particle growth in nanocrystalline anatase TiO2 films analyzed by X-ray diffraction and Raman spectroscopy. Surf Sci 601(18):4390–4394. https://doi.org/10.1016/j.susc.2007.04.127

    Article  CAS  Google Scholar 

  50. El-Deen SS, Hashem AM, Abdel Ghany AE, Indris S, Ehrenberg H, Mauger A, Julien CM (2018) Anatase TiO2 nanoparticles for lithium-ion batteries. Ionics 24:2925–2934. https://doi.org/10.1007/s11581-017-2425-y

    Article  CAS  Google Scholar 

  51. Nolan NT, Seery MK, Pillai SC (2009) Spectroscopic investigation of the anatase-to-rutile transformation of sol−gel-synthesized TiO2 photocatalysts. J Phys Chem C 113(36):16151–16157. https://doi.org/10.1021/jp904358g

    Article  CAS  Google Scholar 

  52. Blanco-Vega MP, Hinojosa-Reyes M, Hernández-Ramírez A, Mar JLG, Rodríguez-González V, Hinojosa-Reyes L (2018) Visible light photocatalytic activity of sol–gel Ni-doped TiO2 on p-arsanilic acid degradation. J Sol Gel Sci Technol 85:723–731. https://doi.org/10.1007/s10971-018-4579-0

    Article  CAS  Google Scholar 

  53. Lin YJ, Chang YH, Yang WD, Tsai BS (2006) Synthesis and characterization of ilmenite NiTiO3 and CoTiO3 prepared by a modified Pechini method. J Non Cryst Solids 352(8):789–794. https://doi.org/10.1016/j.jnoncrysol.2006.02.001

    Article  CAS  Google Scholar 

  54. Tursun R, Tan J, Yu Q, Su Y, Xiao L (2018) Effect of annealing temperature on the structural and solar heat shielding performance of NiTiO3 nanopowder. Sol Energy 159:697–703. https://doi.org/10.1016/j.solener.2017.11.016

    Article  CAS  Google Scholar 

  55. Choudhary K, Saini R, Purohit LP (2023) Controllable synthesis of Ce-doped ZnO:TiO2 nanospheres for photocatalytic degradation of MB dye and levofloxacin under sunlight light irradiation. Opt Mater 143:114167. https://doi.org/10.1016/j.optmat.2023.114167

    Article  CAS  Google Scholar 

  56. Padmini M, Balaganapathi T, Thilakan P (2022) Rutile-TiO2: post heat treatment and its influence on the photocatalytic degradation of MB dye. Ceram Int 48(12):16685–16694. https://doi.org/10.1016/j.ceramint.2022.02.217

    Article  CAS  Google Scholar 

  57. Lal M, Sharma P, Ram C (2022) Synthesis and photocatalytic potential of Nd-doped TiO2 under UV and solar light irradiation using a sol-gel ultrasonication method. Results Mater 15:100308. https://doi.org/10.1016/j.rinma.2022.100308

    Article  CAS  Google Scholar 

  58. Panda PK, Pattanaik R, Mishra S, Pradhan D (2024) Superior photocatalytic degradation of MB dye using BiVO4 nanoparticles under solar light irradiation. Mater Today Proc 1–7. https://doi.org/10.1016/j.matpr.2023.11.039

  59. Selvaraj S, Simon Patrick D, Vangari GA, Mohan MK, Ponnusamy S, Muthamizchelvan C (2022) Facile synthesis of Sm doped ZnO nanoflowers by Co-precipitation method for enhanced photocatalytic degradation of MB dye under sunlight irradiation. Ceram Int 48(19):29049–29058. https://doi.org/10.1016/j.ceramint.2022.04.299

    Article  CAS  Google Scholar 

  60. Zhang J, Xu LJ, Zhu ZQ, Liu QJ (2015) Synthesis and properties of (Yb, N)-TiO2 photocatalyst for degradation of methylene blue (MB) under visible light irradiation. Mater Res Bull 70:358–364. https://doi.org/10.1016/j.materresbull.2015.04.060

    Article  CAS  Google Scholar 

  61. Tichapondwa SM, Newman JP, Kubheka O (2020) Effect of TiO2 phase on the photocatalytic degradation of methylene blue dye. Phys Chem Earth Parts A/B/C 118:102900. https://doi.org/10.1016/j.pce.2020.102900

    Article  Google Scholar 

  62. Trejo-Tzab R, Alvarado-Gil JJ, Quintana P, Bartolo-Pérez P (2012) N-doped TiO2 P25/Cu powder obtained using nitrogen (N2) gas plasma. Catalysis Today 193(1):179–185. https://doi.org/10.1016/j.cattod.2012.01.003

    Article  CAS  Google Scholar 

  63. Li MW, Yuan JP, Gao XM, Liang EQ, Wang CY (2016) Structure and optical absorption properties of NiTiO3 nanocrystallites. Appl Phys A 122:725. https://doi.org/10.1007/s00339-016-0259-5

    Article  CAS  Google Scholar 

  64. Qin H, Li W, Xia Y, He T (2011) Photocatalytic activity of heterostructures based on ZnO and N-Doped ZnO. ACS Appl Mater Interfaces 3:3152–3156. https://doi.org/10.1021/am200655h

    Article  CAS  PubMed  Google Scholar 

  65. Lv K, Wan D, Zheng D, Qin Y, Lv Y (2021) Enhancement of visible light photocatalytic activity of BiVO4 by polypyrrole modification. J Alloys Compd 872:159597. https://doi.org/10.1016/j.jallcom.2021.159597

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DH-G has a grant from CONACYT to obtain a scholarship PhD, CVU 744829. This research was partially supported by the Scientific Research Coordination of the Universidad Michoacana de San Nicolás de Hidalgo and CINVESTAV-Unidad Mérida. The authors also thank the LANNBIO CINVESTAV -Mérida for allowing us to use their facilities.

Author information

Authors and Affiliations

Authors

Contributions

David Herrera-Garcia conducted the experiments. M.G. Garnica-Romo contributed to the analyses, the discussion of the results, and the preparation of the manuscript. A. Ramos-Corona, F. Cervantes-Alvarez, L. García -González, N. Dasgupta-Schubert, J.J. Alvarado-Gil contributed to the analyses, the discussion of the results.

Corresponding author

Correspondence to M. G. Garnica-Romo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrera Garcia, D., Garnica-Romo, M.G., Ramos-Corona, A. et al. Photocatalytic activity under visible light of Ni:TiO2-NiTiO3 synthesized through a modified sol-gel method. J Sol-Gel Sci Technol (2024). https://doi.org/10.1007/s10971-024-06411-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10971-024-06411-y

Keywords

Navigation