Skip to main content
Log in

Ga2O3 deposition methods by low-cost techniques: a review

  • Brief Report
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstracts

Gallium oxide (Ga2O3) is a promising material for the development of optoelectronic devices due to its array of suitable properties tailored for such applications. This review paper focuses on low-cost fabrication methods, which include spray-pyrolysis and sol–gel (dip-coating, spin-coating). Furthermore, the operation principle of these methods for synthesizing Ga2O3 thin films are summarized. The properties and applications of Ga2O3 produced by these methods are highlighted to emphasize the benefits of such economical techniques. While disadvantages of these methods are not disregarded. Overall, the aim of this review is to offer a starting point for researchers to develop gallium oxide thin films of acceptable properties for specific applications with a low budget.

Graphical Abstract

Highlights

  • The cost-effective methods for gallium oxide (Ga2O3) thin film synthesis are reviewed.

  • Spray-pyrolysis and sol–gel (dip-coating, spin-coating) operation principle is detailed.

  • The advantages and disadvantages of Ga2O3 synthesized using these methods are discussed.

  • Applications of the produced Ga2O3 are emphasized.

  • The benefits of such cost-effective techniques are discussed.

  • This review can be a valuable resource for researchers to engage in using these low-cost techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang J, Shi J, Qi DC, Chen L, Zhang KHL (2020) Recent progress on the electronic structure, defect, and doping properties of Ga2O3. APL Mater 8, https://doi.org/10.1063/1.5142999

  2. Fleischer M, Hanrieder W, Meixner H (1990) Stability of semiconducting gallium oxide thin films. Thin Solid Films 190:93–102. https://doi.org/10.1016/0040-6090(90)90132-W

    Article  CAS  Google Scholar 

  3. Galazka Z (2018) Beta-Ga2O3 for wide-bandgap electronics and optoelectronics. Semiconductor Sci Technol 1–108. https://doi.org/10.1088/1361-6641/aadf78.

  4. Sinha G, Ganguli D, Chaudhuri S (2006) Crystallization and optical properties of finite sized β-Ga 2O3 in sol-gel derived Ga2O3: SiO2 nanocomposites. J Phys Condens Matter 18:11167–11176. https://doi.org/10.1088/0953-8984/18/49/010

    Article  CAS  Google Scholar 

  5. Roy R, Hill VG, Osborn EF (1952) Polymorphism of Ga2O3and the System Ga2O3−H2O. J Am Chem Soc 74:719–722. https://doi.org/10.1021/ja01123a039

    Article  CAS  Google Scholar 

  6. Kroll P, Dronskowski R, Martin M (2005) Formation of spinel-type gallium oxynitrides: A density-functional study of binary and ternary phases in the system Ga-O-N. J Mater Chem 15:3296–3302. https://doi.org/10.1039/b506687e

    Article  CAS  Google Scholar 

  7. Abejide FH, Ajayi AA, Akinsola SI, Alabi AB (2022) Properties of gallium oxide thin film prepared on silicon substrate by spray pyrolysis method. J Mater Sci 57:21135–21142. https://doi.org/10.1007/s10853-022-07952-9

    Article  CAS  Google Scholar 

  8. Trinchi A, Li YX, Wlodarski W, Kaciulis S, Pandolfi L, Russo SP, Duplessis J, Viticoli S (2003) Investigation of sol-gel prepared Ga-Zn oxide thin films for oxygen gas sensing. Sens Actuators A Phys 108:263–270. https://doi.org/10.1016/S0924-4247(03)00359-5

    Article  CAS  Google Scholar 

  9. Winkler N, Wibowo RA, Kautek W, Ligorio G, List-Kratochvil EJW, Dimopoulos T (2019) Nanocrystalline Ga2O3 films deposited by spray pyrolysis from water-based solutions on glass and TCO substrates. J Mater Chem C Mater 7:69–77. https://doi.org/10.1039/c8tc04157a

    Article  CAS  Google Scholar 

  10. Cheah LB, Osman RAM, Poopalan P (2020) Ga 2 O 3 thin films by sol-gel method its optical properties, AIP Conf Proc 2203, https://doi.org/10.1063/1.5142120

  11. Raphael R, Anila EI (2019) Transparent and blue emitting - Ga2O3 thin film deposited by spray pyrolysis method. AIP Conf Proc 2142:2–6. https://doi.org/10.1063/1.5122433

    Article  CAS  Google Scholar 

  12. Onuma T, Saito S, Sasaki K, Masui T, Yamaguchi T, Honda T, Higashiwaki M (2015) Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy, Jpn J Appl Phys 54, https://doi.org/10.7567/JJAP.54.112601

  13. Goyal P, Kaur H (2023) Implementation of source extended multiple field plates and asymmetric doping on β-Ga2O3 MOSFET for high power applications. Micro Nanostruct 184:207693. https://doi.org/10.1016/J.MICRNA.2023.207693

    Article  CAS  Google Scholar 

  14. Bauman DA, Borodkin AI, Petrenko AA, Panov DI, Kremleva AV, Spiridonov VA, Zakgeim DA, Silnikov MV, Odnoblyudov MA, Romanov AE, Bougrov VE (2021) On improving the radiation resistance of gallium oxide for space applications. Acta Astronaut 180:125–129. https://doi.org/10.1016/J.ACTAASTRO.2020.12.010

    Article  CAS  Google Scholar 

  15. Kaur SD, Ghosh A, Kumar M (2022) A strategic review on gallium oxide based power electronics: Recent progress and future prospects. Mater Today Commun 33:104244. https://doi.org/10.1016/J.MTCOMM.2022.104244

    Article  Google Scholar 

  16. Tadjer MJ (2022) Toward gallium oxide power electronics Ultrawide-bandgap semiconductors show promise for high-power transistors. Science 378:724–725. https://doi.org/10.1126/science.add2713

    Article  CAS  PubMed  Google Scholar 

  17. Higashiwaki M, Sasaki K, Kuramata A, Masui T, Yamakoshi S (2014) Development of gallium oxide power devices. Phys Status Solidi A Appl Mater Sci 211:21–26. https://doi.org/10.1002/pssa.201330197

    Article  CAS  Google Scholar 

  18. Galazka Z, Uecker R, Klimm D, Irmscher K, Naumann M, Pietsch M, Kwasniewski A, Bertram R, Ganschow S, Bickermann M (2017) Scaling-Up of Bulk β-Ga2O3 Single Crystals by the Czochralski Method. ECS J Solid State Sci Technol 6:Q3007–Q3011. https://doi.org/10.1149/2.0021702jss

    Article  CAS  Google Scholar 

  19. Tao X (2019) Bulk gallium oxide single crystal growth. J Semiconductors 40, https://doi.org/10.1088/1674-4926/40/1/010401

  20. Hoshikawa K, Ohba E, Kobayashi T, Yanagisawa J, Miyagawa C, Nakamura Y (2016) Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air. J Cryst Growth 447:36–41. https://doi.org/10.1016/J.JCRYSGRO.2016.04.022

    Article  CAS  Google Scholar 

  21. Li P, Han X, Chen D, Sai Q, Qi H (2023) Electrical and optical properties and defects of (100)- and (001)-oriented V-doped β-Ga2O3 crystals grown by EFG. Mater Sci Semicond Process 153:107159. https://doi.org/10.1016/J.MSSP.2022.107159

    Article  CAS  Google Scholar 

  22. Wang J, Zhuang H, Zhang X, Zhang S, Li J (2011) Synthesis and properties of β-Ga2O3 nanostructures. Vacuum 85:802–805. https://doi.org/10.1016/J.VACUUM.2010.12.001

    Article  CAS  Google Scholar 

  23. Lee SY, Kang HC (2015) Synthesis and characterization of β-Ga2O3 nanowires on amorphous substrates using radio-frequency powder sputtering. J Cryst Growth 412:25–30. https://doi.org/10.1016/J.JCRYSGRO.2014.11.030

    Article  CAS  Google Scholar 

  24. Banger KK, Yamashita Y, Mori K, Peterson RL, Leedham T, Rickard J, Sirringhaus H (2011) Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a “sol-gel on chip” process. Nat Mater 10:45–50. https://doi.org/10.1038/nmat2914

    Article  CAS  PubMed  Google Scholar 

  25. Guo D, Wu Z, Li P, An Y, Liu H, Guo X, Yan H, Wang G, Sun C, Li L, Tang W (2014) Fabrication of β-Ga_2O_3 thin films and solar-blind photodetectors by laser MBE technology. Opt Mater Express 4:1067. https://doi.org/10.1364/ome.4.001067

    Article  Google Scholar 

  26. Rafique S, Han L, Tadjer MJ, Freitas JA, Mahadik NA, Zhao H (2016) Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition. Appl Phys Lett 108, https://doi.org/10.1063/1.4948944

  27. Alema F, Hertog B, Osinsky A, Mukhopadhyay P, Toporkov M, Schoenfeld WV (2017) Fast growth rate of epitaxial β–Ga2O3 by close coupled showerhead MOCVD. J Cryst Growth 475:77–82. https://doi.org/10.1016/j.jcrysgro.2017.06.001

    Article  CAS  Google Scholar 

  28. Lee SD, Kaneko K, Fujita S (2016) Homoepitaxial growth of beta gallium oxide films by mist chemical vapor deposition, Jpn J Appl Phys 55, https://doi.org/10.7567/JJAP.55.1202B8

  29. Zhu Y, Xiu X, Cheng F, Li Y, Xie Z, Tao T, Chen P, Liu B, Zhang R, Zheng YD (2021) Growth and nitridation of β-Ga2O3 thin films by Sol-Gel spin-coating epitaxy with post-annealing process. J Solgel Sci Technol 100:183–191. https://doi.org/10.1007/s10971-021-05629-4

    Article  CAS  Google Scholar 

  30. Goto K, Nakahata H, Murakami H, Kumagai Y (2020) Temperature dependence of Ga2O3growth by halide vapor phase epitaxy on sapphire and β -Ga2O3substrates. Appl Phys Lett 117:1–6. https://doi.org/10.1063/5.0031267

    Article  CAS  Google Scholar 

  31. Butt MA (2022) Thin-Film Coating Methods: A Successful Marriage of High-Quality and Cost-Effectiveness—A Brief Exploration. Coatings 12, https://doi.org/10.3390/coatings12081115.

  32. Panov DI, Xi Z, Spiridonov VA, Azina LV, Nuryev RK, Prasolov ND, Sokura LA, Bauman DA, Bougrov VE (2021) Spray-Pyrolysis Fabrication and Quality Study of β-Ga2O3 Thin Films. Rev Adv Mater Technol 3:7–12. https://doi.org/10.17586/2687-0568-2021-3-4-7-12

    Article  Google Scholar 

  33. Sinha G, Adhikary K, Chaudhuri S (2007) Effect of annealing temperature on structural transformation of gallium based nanocrystalline oxide thin films and their optical properties. Opt Mater 29:718–722. https://doi.org/10.1016/j.optmat.2005.12.002

    Article  CAS  Google Scholar 

  34. Al-khamis KM, Mahfouz RM, Al-warthan AA, Siddiqui MRH (2009) Synthesis and characterization of gallium oxide nanoparticles. Arab J Chem 2:73–77. https://doi.org/10.1016/j.arabjc.2009.10.001

    Article  CAS  Google Scholar 

  35. Gao J, Kaya A, Chopdekar RV, Xu Z, Takamura Y, Islam MS, Chowdhury S (2018) A study of temperature dependent current–voltage (I–V–T) characteristics in Ni/sol–gel β-Ga2O3/n-GaN structure. J Mater Sci: Mater Electron 29:11265–11270. https://doi.org/10.1007/s10854-018-9213-y

    Article  CAS  Google Scholar 

  36. Gopal R, Goyal A, Saini A, Nagar M, Sharma N, Gupta DK, Dhayal V (2018) Sol- gel synthesis of Ga2O3 nanorods and effect of precursor chemistry on their structural and morphological properties. Ceram Int 44:19099–19105. https://doi.org/10.1016/j.ceramint.2018.07.173

    Article  CAS  Google Scholar 

  37. Cheng B, Samulski ET (2001) Fabrication and characterization of nanotubular semiconductor oxides In2O3 and Ga2O3. J Mater Chem 11:2901–2902. https://doi.org/10.1039/b108167e

    Article  CAS  Google Scholar 

  38. Mooney JB, Radding SB (1982) Spray Pyrolysis Processing. Annu Rev Mater Sci 12:81–101. https://doi.org/10.1146/annurev.ms.12.080182.000501

    Article  CAS  Google Scholar 

  39. Patil PS (1999) Versatility of chemical spray pyrolysis technique. Mater Chem Phys 59:185–198. https://doi.org/10.1016/S0254-0584(99)00049-8

    Article  CAS  Google Scholar 

  40. Raphael R, Anila EI (2021) Investigation of photoluminescence emission from β-Ga2O3: Ce thin films deposited by spray pyrolysis technique. J Alloy Compd 872:159590. https://doi.org/10.1016/j.jallcom.2021.159590

    Article  CAS  Google Scholar 

  41. Panov DI, Zhang X, Spiridonov VA, Azina LV, Nuryev RK, Prasolov ND, Sokura LA, Bauman DA, Bougrov VE, Romanov AE (2022) Thin films of gallium oxide obtained by spray-pyrolysis: method and properties. Mater Phys Mech 50:107–117. https://doi.org/10.18149/MPM.5012022_8

    Article  CAS  Google Scholar 

  42. Raphael R, Devasia S, Shaji S, Anila EI (2022) Effect of substrate temperature on the properties of spray deposited Ga2O3 thin films, for solar blind UV detector applications. Opt Mater 133:112915. https://doi.org/10.1016/J.OPTMAT.2022.112915

    Article  CAS  Google Scholar 

  43. Schmidt C, Fechner A, Selyshchev O, Zahn DRT (2023) The Influence of Process Parameters on the Microstructural Properties of Spray-Pyrolyzed β-Ga2O3. Nanomaterials 13, https://doi.org/10.3390/nano13091455

  44. Jeffrey Brinker JS, (1990) Film Formation, Sol-Gel Science. Elsevier, https://doi.org/10.1016/C2009-0-22386-5

  45. Danks AE, Hall SR, Schnepp Z (2016) The evolution of “sol-gel” chemistry as a technique for materials synthesis. Mater Horiz 3:91–112. https://doi.org/10.1039/c5mh00260e

    Article  CAS  Google Scholar 

  46. Chiang JL, Yadlapalli BK, Chen MI, Wuu DS (2022) A Review on Gallium Oxide Materials from Solution Processes. Nanomaterials 12, https://doi.org/10.3390/nano12203601

  47. Hench LL, West JK (1990) The Sol-Gel Process. Chem Rev 90:33–72. https://doi.org/10.1021/cr00099a003

    Article  CAS  Google Scholar 

  48. N T, M T, Minami T, Shirai T (2000) Electroluminescent Devices with Ga2O3: Mn Thin-Film Emitting Layer Prepared by Sol-Gel Process. Jpn Soc Appl Phys 39:524–526

    Article  Google Scholar 

  49. Li Y, Trinchi A, Wlodarski W, Galatsis K, Kalantar-Zadeh K (2003) Investigation of the oxygen gas sensing performance of Ga2O3 thin films with different dopants. Sens Actuators B Chem 93:431–434. https://doi.org/10.1016/S0925-4005(03)00171-0

    Article  CAS  Google Scholar 

  50. Ristić M, Popović S, Musić S (2005) Application of sol-gel method in the synthesis of gallium(III)-oxide. Mater Lett 59:1227–1233. https://doi.org/10.1016/j.matlet.2004.11.055

    Article  CAS  Google Scholar 

  51. Kaya A, Mao H, Gao J, Chopdekar RV, Takamura Y, Chowdhury S, Islam MS (2017) An Investigation of Electrical and Dielectric Parameters of Sol-Gel Process Enabled β-Ga2O3 as a Gate Dielectric Material. IEEE Trans Electron Devices 64:2047–2053. https://doi.org/10.1109/TED.2017.2675990

    Article  CAS  Google Scholar 

  52. Vronskii MK, Ivanov AY, Sokura LA, Kremleva AV, Bauman DA (2023) Structural Properties of β -Ga2O3 Thin Films Obtained on Different Substrates by Sol-Gel Method, 5, 26–32, https://doi.org/10.17586/2687-0568-2023-5-1-26-32

  53. Kokubun Y, Abe T, Nakagomi S (2010) Sol-gel prepared (Ga 1-xIn x) 2O 3 thin films for solar-blind ultraviolet photodetectors. Phys Status Solidi A Appl Mater Sci 207:1741–1745. https://doi.org/10.1002/pssa.200983712

    Article  CAS  Google Scholar 

  54. Shen H, Yin Y, Tian K, Baskaran K, Duan L, Zhao X, Tiwari A (2018) Growth and characterization of β-Ga2O3 thin films by sol-gel method for fast-response solar-blind ultraviolet photodetectors. J Alloy Compd 766:601–608. https://doi.org/10.1016/j.jallcom.2018.06.313

    Article  CAS  Google Scholar 

  55. Kokubun Y, Miura K, Endo F, Nakagomi S (2007) Sol-gel prepared Β-Ga2O3 thin films for ultraviolet photodetectors. Appl Phys Lett 90:1–4. https://doi.org/10.1063/1.2432946

    Article  CAS  Google Scholar 

  56. Yu M, Lv C, Yu J, Shen Y, Yuan L, Hu J, Zhang S, Cheng H, Zhang Y, Jia R (2020) High-performance photodetector based on sol–gel epitaxially grown α/β Ga2O3 thin films. Mater Today Commun 25:101532. https://doi.org/10.1016/j.mtcomm.2020.101532

    Article  CAS  Google Scholar 

  57. Bae MS, Kim SH, Baek JS, Koh JH (2021) Comparative study of high-temperature annealed and rta process β-ga2o3 thin film by sol–gel process. Coatings 11:1–13. https://doi.org/10.3390/coatings11101220

    Article  CAS  Google Scholar 

  58. Park T, Kim K, Hong J (2021) Effects of drying temperature and molar concentration on structural, optical, and electrical properties of β-ga2o3 thin films fabricated by sol–gel method. Coatings 11, https://doi.org/10.3390/coatings11111391

  59. Wang T, Ng SS, Lim WF, Quah HJ, Malik MFIBA, Chang WS (2023) High contrast green luminescence from spin-coated Mo-doped β-Ga2O3 thin films. Mater Chem Phys 295:3–8. https://doi.org/10.1016/j.matchemphys.2022.127191

    Article  CAS  Google Scholar 

  60. Zhang Q, Deng JX, Li RD, Meng X, Hu LN, Luo JX, Kong L, Meng LJ, Du J, Almaev AV, Gao HL, Yang QQ, Wang GS, Meng JH, Wang XL, Yang XL, Wang JY (2024) Study on the structural, optical and electrical properties of N-doped Ga2O3 films synthesized by sol-gel method. Mater Sci Semicond Process 170, https://doi.org/10.1016/j.mssp.2023.107955

  61. Elshof JE (2015) 4 - Chemical solution deposition techniques for epitaxial growth of complex oxides, Elsevier Ltd, https://doi.org/10.1016/B978-1-78242-245-7.00004-X

  62. Sinha G, Adhikary K, Chaudhuri S (2005) Sol-gel derived phase pure α-Ga2O3 nanocrystalline thin film and its optical properties. J Cryst Growth 276:204–207. https://doi.org/10.1016/j.jcrysgro.2004.11.375

    Article  CAS  Google Scholar 

  63. Sinha G, Adhikary K, Chaudhuri S (2006) Optical properties of nanocrystalline α-GaO(OH) thin films. J Phys Condens Matter 18:2409–2415. https://doi.org/10.1088/0953-8984/18/8/006

    Article  CAS  Google Scholar 

  64. Sinha G, Datta A, Panda SK, Chavan PG, More MA, Joag DS, Patra A (2009) Self-catalytic growth and field-emission properties of Ga2O 3 nanowires. J Phys D Appl Phys 42, https://doi.org/10.1088/0022-3727/42/18/185409

  65. Mohammadi MR, Fray DJ (2007) Semiconductor TiO2-Ga2O3 thin film gas sensors derived from particulate sol-gel route. Acta Mater 55:4455–4466. https://doi.org/10.1016/j.actamat.2007.04.011

    Article  CAS  Google Scholar 

  66. Amin NFM, Ng SS (2017) An investigation of GaN thin films on AlN on sapphire substrate by sol-gel spin coating method. AIP Conf Proc 1901, https://doi.org/10.1063/1.5010502

  67. Modan EM, Plăiașu AG (2020) Advantages and Disadvantages of Chemical Methods in the Elaboration of Nanomaterials, The Annals of “Dunarea de Jos” University of Galati. Fascicle IX. Metall Mater Sci 43:53–60. https://doi.org/10.35219/mms.2020.1.08

    Article  CAS  Google Scholar 

  68. Criteria (2023) “Ga2O3 sol gel” in title and abstract. 2023 Digital Science & Research Solutions, https://app.dimensions.ai/discover/publication?search_mode=content&search_text=Ga2O3sol gel &search_type=kws&search_field=text_search

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Amraoui.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amraoui, F., Sengouga, N. Ga2O3 deposition methods by low-cost techniques: a review. J Sol-Gel Sci Technol (2024). https://doi.org/10.1007/s10971-024-06398-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10971-024-06398-6

Keywords

Navigation