Skip to main content
Log in

Composite NH2-MIL-125(Ti) to modulate the microstructure of MnO2 and improve oxidation properties

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this paper, we employed a hydrothermal method to synthesize different ratios of NH2-MIL-125(Ti) modified manganese dioxide (MnO2@ NH2-MIL-125(Ti)) and explored the effect of pH and mass fraction on the degradation of Rhodamine B. The characterization (XRD, XPS, SEM) of the material proves that MnO2 successfully adheres and grows on the NH2-MIL-125(Ti) frameworks, changing the micromorphology while increasing the yield. In particular, when the NH2-MIL-125(Ti) is introduced at a ratio of 15%, the composite sample reveals optimal degradation performance, with a rate of Rhodamine B degradation as high as 95.8% in 40 min, which is about 1.6 times better than that of pure MnO2. And it can perform superior oxidation performance under acidic conditions. The increased active sites due to the introduction of the framework structure and the higher redox potential under acidic conditions are the main reasons for the improved oxidative properties. In addition, we put forward a mechanism of growth and oxidative degradation for the composite sample for this phenomenon.

Graphical Abstract

Highlights

  • A simple hydrothermal method is used to obtain the oxidant MnO2@ NH2-MIL-125(Ti).

  • The sample MnO2@ NH2-MIL-125(Ti)-15% exhibits the optimum oxidation performance of 95.8% for RhB.

  • The oxidation of the sample to RhB is augmented under acidic conditions (pH = 3).

  • Propose growth mechanism of oxidant MnO2@ NH2-MIL-125(Ti) and degradation mechanism of RhB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Zhai SM, Li M, Peng HY, Wang D, Fu SH (2021) Cost-effective resource utilization for waste biomass: A simple preparation method of photo-thermal biochar cakes (BCs) toward dye wastewater treatment with solar energy. Environ Res 194:110720. https://doi.org/10.1016/j.envres.2021.110720

    Article  CAS  PubMed  Google Scholar 

  2. Sharma A, Mittal R, Sharma P, Pal K, Mona S (2023) Sustainable approach for adsorptive removal of cationic and anionic dyes by titanium oxide nanoparticles synthesized biogenically using algal extract of Spirulina. Nanotechnology 34(48):485301. https://doi.org/10.1088/1361-6528/acf37e

    Article  Google Scholar 

  3. Nouioua A, Ben Salem D, Ouakouak A, Rouahna N, Baigenzhenov O, Hosseini-Bandegharaei A (2023) Production of biochar from seeds for the crystal violet dye removal from water: combining of hydrothermal carbonization and pyrolysis. Bioengineered 14(1):290–306. https://doi.org/10.1080/21655979.2023.2236843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Anandita, Raees K, Shahadat M, Ali SW (2023) Mechanistic interaction of microbe in dye degradation and the role of inherently modified organisms: a review. Water Conserv Sci En 8(1):43. https://doi.org/10.1007/s41101-023-00219-7

    Article  Google Scholar 

  5. Pavithra KG, Kumar PS, Jaikumar V, Rajan PS (2019) Removal of colorants from wastewater: a review on sources and treatment strategies. J Ind Eng Chem 75:1–19. https://doi.org/10.1016/j.jiec.2019.02.011

    Article  CAS  Google Scholar 

  6. Yang X, Wang S, He Q, Wang Z, Zhang Z, Jiang C, Ma L, Liu X, Hu B, Li Y, Deng Y (2021) Microorganisms in the typical anaerobic digestion system of organic solid wastes: a review. Chin J Biotechnol 37(10):3425–3438. https://doi.org/10.13345/j.cjb.210408

    Article  CAS  Google Scholar 

  7. Bai YA, Wang XN, Zhang F, Zeng RJ (2022) Acid orange 7 degradation using methane as the sole carbon source and electron donor. Front Env Sci Eng 16(3):34. https://doi.org/10.1007/s11783-021-1468-5

    Article  CAS  Google Scholar 

  8. Liu XY, Jiang Z, Xu LJ, Liu CL (2023) Enhanced photocatalytic hydrogen evolution over 0D/3D NiTiO3 nanoparticles/CdIn2S4 microspheres heterostructure photocatalyst. Int J Hydrog Energ 48(58):22079–22090. https://doi.org/10.1016/j.ijhydene.2023.03.119

    Article  CAS  Google Scholar 

  9. Feng Q, Zhang Q, Meng L, Liu C, Gong S, Zhang R, Ma J, Xu L (2023) A novel magnetic photocatalyst BiOBr/BiOCl/MnxZn1−xFe2O4: highly photocatalytic activity and excellent stability. J Sol-Gel Sci Technol 108(2):490–501. https://doi.org/10.1007/s10971-023-06205-8

    Article  CAS  Google Scholar 

  10. Liu XY, Shu JH, Wang HY, Jiang Z, Xu LJ, Liu CL (2023) One-pot preparation of a novel CoWO4/ZnWO4 p-n heterojunction photocatalyst for enhanced photocatalytic activity under visible light irradiation. J Phys Chem Solids 172:111061. https://doi.org/10.1016/j.jpcs.2022.111061

    Article  CAS  Google Scholar 

  11. Hardie AG, Dynes JJ, Kozak LM, Huang PM (2009) Biomolecule-induced carbonate genesis in abiotic formation of humic substances in nature. Can J Soil Sci 89(4):445–453. https://doi.org/10.4141/cjss08074

    Article  CAS  Google Scholar 

  12. Yan G, Wang P, Li YQ, Qin ZJ, Lan S, Yan YP, Zhang Q, Cheng XD (2021) Adsorption-oxidation mechanism of δ-MnO2 to remove methylene blue. Adsorpt Sci Technol 2021:3069392. https://doi.org/10.1155/2021/3069392

    Article  CAS  Google Scholar 

  13. Sun H, Xu KL, Huang MJ, Shang YX, She P, Yin SY, Liu ZN (2015) One-pot synthesis of ultrathin manganese dioxide nanosheets and their efficient oxidative degradation of rhodamine B. Appl Surf Sci 357:69–73. https://doi.org/10.1016/j.apsusc.2015.08.258

    Article  CAS  Google Scholar 

  14. Miao L, Wang JL, Zhang PY (2019) Review on manganese dioxide for catalytic oxidation of airborne formaldehyde. Appl Surf Sci 466:441–453. https://doi.org/10.1016/j.apsusc.2018.10.031

    Article  CAS  Google Scholar 

  15. Zhang JH, Li YB, Wang L, Zhang CB, He H (2015) Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures. Catal Sci Technol 5(4):2305–2313. https://doi.org/10.1039/c4cy01461h

    Article  CAS  Google Scholar 

  16. Gong PJ, He F, Xie JL, Fang D (2023) Catalytic removal of toluene using MnO2-based catalysts: a review. Chemosphere 318:137938. https://doi.org/10.1016/j.chemosphere.2023.137938

    Article  CAS  PubMed  Google Scholar 

  17. Li Q, Odoom-Wubah T, Zhou YP, Mulka R, Zheng YM, Huang JL, Sun DH, Li QB (2019) Coral-like CoMnOx as a highly active catalyst for benzene catalytic oxidation. Ind Eng Chem Res 58(8):2882–2890. https://doi.org/10.1021/acs.iecr.8b06258

    Article  CAS  Google Scholar 

  18. Zeng J, Xie HM, Zhang HY, Huang M, Liu XC, Zhou GL, Jiang Y (2022) Insight into the effects of oxygen vacancy on the toluene oxidation over α-MnO2 catalyst. Chemosphere 291:132890. https://doi.org/10.1016/j.chemosphere.2021.132890

    Article  CAS  PubMed  Google Scholar 

  19. Yang WH, Su ZA, Xu ZH, Yang WN, Peng Y, Li JH (2020) Comparative study of α-, β-, γ- and δ-MnO2 on toluene oxidation: oxygen vacancies and reaction intermediates. Appl Catal B-Environ 260:118150. https://doi.org/10.1016/j.apcatb.2019.118150

    Article  CAS  Google Scholar 

  20. Kim SN, Kim J, Kim HY, Cho HY, Ahn WS (2013) Adsorption/catalytic properties of MIL-125 and NH2-MIL-125. Catal Today 204:85–93. https://doi.org/10.1016/j.cattod.2012.08.014

    Article  CAS  Google Scholar 

  21. Kim M, Cohen SM (2012) Discovery, development, and functionalization of Zr(IV)-based metal-organic frameworks. Crystengcomm 14(12):4096–4104. https://doi.org/10.1039/c2ce06491j

    Article  CAS  Google Scholar 

  22. Nasalevich MA, Becker R, Ramos-Fernandez EV, Castellanos S, Veber SL, Fedin MV, Kapteijn F, Reek JNH, van der Vlugt JI, Gascon J (2015) Co@NH2-MIL-125(Ti): cobaloxime-derived metal-organic framework-based composite for light-driven H2 production. Energy Environ Sci 8(1):364–375. https://doi.org/10.1039/c4ee02853h

    Article  CAS  Google Scholar 

  23. Li Y, Xu ZY, Wang DW, Zhao J, Zhang HH (2017) Snowflake-like core-shell α-MnO2@δ-MnO2 for high performance asymmetric supercapacitor. Electrochim Acta 251:344–354. https://doi.org/10.1016/j.electacta.2017.08.146

    Article  CAS  Google Scholar 

  24. Wang YX, Sun HQ, Ang HM, Tade MO, Wang SB (2015) 3D-hierarchically structured MnO2 for catalytic oxidation of phenol solutions by activation of peroxymonosulfate: structure dependence and mechanism. Appl Catal B-Environ 164:159–167. https://doi.org/10.1016/j.apcatb.2014.09.004

    Article  CAS  Google Scholar 

  25. Ren XY, Wang CC, Li Y, Wang CY, Wang P, Gao SJ (2022) Ag(I) removal and recovery from wastewater adopting NH2-MIL-125 as efficient adsorbent: A 3Rs (reduce, recycle and reuse) approach and practice. Chem Eng J 442:136306. https://doi.org/10.1016/j.cej.2022.136306

    Article  CAS  Google Scholar 

  26. Shah J, Wu T, Lucero J, Carreon MA, Carreon ML (2019) Nonthermal Plasma Synthesis of Ammonia over Ni-MOF-74. ACS Sustain Chem Eng 7(1):377–383. https://doi.org/10.1021/acssuschemeng.8b03705

    Article  CAS  Google Scholar 

  27. Kim N, Choi Y, Jung S, Kim S (2000) Effect of initial carbon sources on the performance of microbial fuel cells containing proteus vulgaris. Biotechnol Bioeng 70(1):109–114. 10.1002/1097-0290(20001005)70:1<109::Aid-Bit11>3.0.Co;2-M

    Article  CAS  PubMed  Google Scholar 

  28. Zhang YX, Cui XS, Liu YP, Cheng ST, Cui P, Wu Y, Sun ZH, Shao ZP, Fu JC, Xie EQ (2022) Aqueous Zn-MnO2 battery: approaching the energy storage limit with deep Zn2+ pre-intercalation and revealing the ions insertion/extraction mechanisms. J Energy Chem 67:225–232. https://doi.org/10.1016/j.jechem.2021.09.038

    Article  CAS  Google Scholar 

  29. Zhang HP, Gu LQ, Zhang L, Zheng SR, Wan HQ, Sun JY, Zhu DQ, Xu ZY (2017) Removal of aqueous Pb(II) by adsorption on Al2O3-pillared layered MnO2. Appl Surf Sci 406:330–338. https://doi.org/10.1016/j.apsusc.2017.02.011

    Article  CAS  Google Scholar 

  30. Suib SL (2017) A review of recent developments of mesoporous materials. Chem Rec 17(12):1169–1183. https://doi.org/10.1002/tcr.201700025

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Y, Cao W, Zhu B, Cai JF, Li XL, Liu JS, Chen ZG, Li MQ, Zhang LS (2022) Fabrication of NH2-MIL-125(Ti) nanodots on carbon fiber/MoS2-based weavable photocatalysts for boosting the adsorption and photocatalytic performance. J Colloid Inter Sci 611:706–717. https://doi.org/10.1016/j.jcis.2021.12.073

    Article  CAS  Google Scholar 

  32. Liu YX, Deng H, Lu ZP, Zhong X, Zhu YL (2021) The study of MnO2 with different crystalline structures for U(VI) elimination from aqueous solution. J Mol Liq 335:116296. https://doi.org/10.1016/j.molliq.2021.116296

    Article  CAS  Google Scholar 

  33. Zhong X, Lu ZP, Liang W, Guo XJ, Hu BW (2020) The fabrication of 3D hierarchical flower-like δ-MnO2@COF nanocomposites for the efficient and ultra-fast removal of UO ions from aqueous solution. Environ Sci-Nano 7(11):3303–3317. https://doi.org/10.1039/d0en00793e

    Article  CAS  Google Scholar 

  34. Nath BC, Mohan KJ, Boruah R, Ahmed GA, Dolui SK (2017) Dimensionally integrated α-MnO2/carbon black binary complex as platinum free counter electrode for dye sensitized solar cell. J Photoch Photobio A 349:244–244. https://doi.org/10.1016/j.jphotochem.2017.09.064

    Article  CAS  Google Scholar 

  35. Hu S, Liu M, Li KY, Zuo Y, Zhang AF, Song CS, Zhang GL, Guo XW (2014) Solvothermal synthesis of NH2-MIL-125(Ti) from circular plate to octahedron. Crystengcomm 16(41):9645–9650. https://doi.org/10.1039/c4ce01545b

    Article  CAS  Google Scholar 

  36. Zhao GX, Li JX, Ren XM, Hu J, Hu WP, Wang XK (2013) Highly active MnO2 nanosheet synthesis from graphene oxide templates and their application in efficient oxidative degradation of methylene blue. Rsc Adv 3(31):12909–12914. https://doi.org/10.1039/c3ra40942b

    Article  CAS  Google Scholar 

  37. Liu S, Su ZL, Liu Y, Yi LY, Chen ZL, Liu ZZ (2021) Mechanism and purification effect of photocatalytic wastewater treatment using graphene oxide-doped titanium dioxide composite nanomaterials. Water-Sui 13(14):1915. https://doi.org/10.3390/w13141915

    Article  CAS  Google Scholar 

  38. Khan U, Benabderrazik N, Bourdelais AJ, Baden DG, Rein K, Gardinali PR, Arroyo L, O’Shea KE (2010) UV and solar TiO2 photocatalysis of brevetoxins (PbTxs). Toxicon 55(5):1008–1016. https://doi.org/10.1016/j.toxicon.2009.11.014

    Article  CAS  PubMed  Google Scholar 

  39. Wei YS, Zhang M, Zou RQ, Xu Q (2020) Metal-organic framework-based catalysts with single metal sites. Chem Rev 120(21):12089–12174. https://doi.org/10.1021/acs.chemrev.9b00757

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC, 52174157).

Author information

Authors and Affiliations

Authors

Contributions

W: Investigation, Writing-Original, Draft Validation, Visualization. Y: Resources, Writing-Review & Editing, Data Curation. L: Funding acquisition and Supervision. Q: Data Curation, Formal analysis. All authors reviewed the manuscript

Corresponding author

Correspondence to Longjun Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, W., Liu, Y., Jiang, Z. et al. Composite NH2-MIL-125(Ti) to modulate the microstructure of MnO2 and improve oxidation properties. J Sol-Gel Sci Technol (2024). https://doi.org/10.1007/s10971-024-06386-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10971-024-06386-w

Keywords

Navigation