Skip to main content
Log in

Magnetocaloric and induction heating characteristics of La0.71Sr0.29Mn0.95Fe0.05O3 nanoparticles

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, we synthesized nanosized ferromagnetic La0.71Sr0.29Mn0.95Fe0.05O3 (LSMFO) manganites using a modified sol-gel method, followed by annealing at 750 °C. We investigated their magnetic properties, with a specific focus on magnetocaloric properties, as well as their potential application in hyperthermia treatments. Notably, the sample exhibited a second-order magnetic transition, demonstrating significant magnetocaloric properties and a distinct table-like feature over a temperature range of ∼30 K. This behavior was characterized by remarkable relative cooling power (RCP) and refrigerant capacity (RC). To assess the magnetic heating characteristics, we measured the response of the samples in alternating magnetic fields of 30 mT at various frequencies. Additionally, we evaluated the sample’s potential for hyperthermia by determining the Specific Absorption Rate (SAR) and Intrinsic Loss Power (ILP) parameters across different frequencies. The results highlighted the sample’s effective heat generation capabilities at various frequencies. These findings support the suitability and applicability of the synthesized nanosized LSMFO manganites for both magnetic refrigeration and hyperthermia applications.

Graphical Abstract

Highlights

  • Nanosized of La0.71Sr0.29Mn0.95Fe0.05O3 (LSMFO) manganites synthesized via modified sol-gel method.

  • LSMFO shows promising magnetocaloric properties (table-like response, high RCP & RC) for magnetic refrigeration.

  • Effective heat generation in LSMFO suggests potential for hyperthermia applications (supported by SAR & ILP).

  • LSMFO nanoparticles hold promise for both magnetic refrigeration and hyperthermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on request.

References

  1. Moreo A, Yunoki S, Dagotto E (1999) Phase separation scenario for manganese oxides and related materials. Science 283(5410):2034–2040. https://doi.org/10.1126/science.283.5410.2034

    Article  CAS  PubMed  Google Scholar 

  2. Nagaev EL (2001) Colossal-magnetoresistance materials: manganites and conventional ferromagnetic semiconductors. Phys Rep. 346(6):387–531. https://doi.org/10.1016/s0370-1573(00)00111-3

    Article  CAS  Google Scholar 

  3. Lytvynenko YM, Polek TI, Pashchenko AV, Prokopenko VK, Sycheva VY, Tovstolytkin AI (2020) Thickness- and substrate-dependent magnetotransport properties of lanthanum–strontium manganite films with over stoichiometric manganese content. J Mater Sci Mater Electron 31(19):16360–16368. https://doi.org/10.1007/s10854-020-04186-w

    Article  CAS  Google Scholar 

  4. Wei Z et al. (2020) Multifunctionality of lanthanum–strontium manganite nanopowder. Phys Chem Chem Phys 22(21):11817–11828. https://doi.org/10.1039/d0cp01426e

    Article  CAS  PubMed  Google Scholar 

  5. Pollert E et al. (2010) Core–shell La1−xSrxMnO3 nanoparticles as colloidal mediators for magnetic fluid hyperthermia. Philos Trans R Soc A Math, Phys Eng Sci 368(1927):4389–4405. https://doi.org/10.1098/rsta.2010.0123

    Article  CAS  Google Scholar 

  6. Kalita VM et al. (2017) Interplay between superparamagnetic and blocked behavior in an ensemble of lanthanum–strontium manganite nanoparticles. Phys Chem Chem Phys 19(39):27015–27024. https://doi.org/10.1039/c7cp05547a

    Article  CAS  PubMed  Google Scholar 

  7. Abramovich A et al. (2002) CMR and giant magnetostriction of Re1-xSrxMnO3 (Re = La, Sm, Nd, Tb-Nd, Eu-Nd) Manganites. Phys Status Solidi (a) 189(3):907–911. 10.1002/1521-396x(200202)189:3<907::aid-pssa907>3.0.co;2-3

    Article  CAS  Google Scholar 

  8. Phan MH, Tian SB, Hoang DQ, Yu SC, Nguyen C, Ulyanov AN (2003) Large magnetic-entropy change above 300 K in CMR materials. J Magn Magn Mater 258–259:309–311. https://doi.org/10.1016/s0304-8853(02)01151-4

    Article  Google Scholar 

  9. R. M’nassri W, Cheikhrouhou-Koubaa N, Chniba Boudjada, Cheikhrouhou A (2013) Effect of barium-deficiency on the structural, magnetic, and magnetocaloric properties of La0.6Sr0.2Ba0.2−xxMnO3 (0 ≤ x ≤ 0.15). J Appl Phys 113(7):073905. https://doi.org/10.1063/1.4792730

    Article  CAS  Google Scholar 

  10. Liedienov NA et al. (2020) Critical phenomena of magnetization, magnetocaloric effect, and superparamagnetism in nanoparticles of non-stoichiometric manganite. J Alloy Compd 836:155440. https://doi.org/10.1016/j.jallcom.2020.155440

    Article  CAS  Google Scholar 

  11. Markovich V, Wisniewski A, Szymczak H (2014) Magnetic properties of perovskite manganites and their modifications. Handbk Magn Mater 1–201. https://doi.org/10.1016/b978-0-444-63291-3.00001-5.

  12. Coey JMD, Viret M, von Molnár S (1999) Mixed-valence manganites. Adv Phys 48(2):167–293. https://doi.org/10.1080/000187399243455

    Article  CAS  Google Scholar 

  13. Pashchenko AV et al. (2020) Smart magnetic nanopowder based on the manganite perovskite for local hyperthermia. RSC Adv 10(51):30907–30916. https://doi.org/10.1039/d0ra06779b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Natividad E et al. (2012) New insights into the heating mechanisms and self-regulating abilities of manganite perovskite nanoparticles suitable for magnetic fluid hyperthermia. Nanoscale 4(13):3954. https://doi.org/10.1039/c2nr30667k

    Article  CAS  PubMed  Google Scholar 

  15. Fukumori Y, Ichikawa H (2006) Nanoparticles for cancer therapy and diagnosis. Adv Powder Technol 17(1):1–28. https://doi.org/10.1163/156855206775123494

    Article  CAS  Google Scholar 

  16. Shlyakhtin OA, Oh Y-J, Tretyakov YuD (2000) Preparation of dense La0.7Ca0.3MnO3 ceramics from freeze-dried precursors. J Eur Ceram Soc 20(12):2047–2054. https://doi.org/10.1016/s0955-2219(00)00080-7

    Article  CAS  Google Scholar 

  17. Yu A, Koksharov VN, Nikiforov VD, Kuznetsov, Khomutov GB (2005) Magnetic resonance properties of La0.8Sr0.2MnO3 small particles. Microelectron Eng 81(2–4):371–377. https://doi.org/10.1016/j.mee.2005.03.035

    Article  CAS  Google Scholar 

  18. Choura-Maatar S, Nofal MM, M’nassri R, Cheikhrouhou-Koubaa W, Chniba-Boudjada N, Cheikhrouhou A (2019) Enhancement of the magnetic and magnetocaloric properties by Na substitution for Ca of La0.8Ca0.2MnO3 manganite prepared via the Pechini-type sol–gel process. J Mater Sci Mater Electron 31(2):1634–1645. https://doi.org/10.1007/s10854-019-02680-4

    Article  CAS  Google Scholar 

  19. Phuc NX, Tuan NA, Thuan NC, Tuan VA, Hong LV (2008) Magnetic nanoparticles as smart heating mediator for hyperthermia and sorbent regeneration Adv Mater Res 55–57:27–32. https://www.scientific.net/AMR.55-57.27

  20. Ben Khlifa H, Ayadi F, M’nassri R, Cheikhrouhou-Koubaa W, Schmerber G, Cheikhrouhou A (2017) Screening of the synthesis route on the structural, magnetic and magnetocaloric properties of La0.6Ca0.2Ba0.2MnO3 manganite: a comparison between solid-solid state process and a combination polyol process and Spark Plasma Sintering. J Alloy Compd 712:451–459. https://doi.org/10.1016/j.jallcom.2017.04.101

    Article  CAS  Google Scholar 

  21. Prasad NK, Rathinasamy K, Panda D, Bahadur D (2008) TC-tuned biocompatible suspension of La0.73Sr0.27MnO3 for magnetic hyperthermia. J Biomed Mater Res B Appl Biomater 85B(2):409–416. https://doi.org/10.1002/jbm.b.30959

    Article  CAS  Google Scholar 

  22. Uskoković V, Makovec D, Drofenik M (2005) Synthesis of lanthanum-strontium manganites by a hydroxide-precursor co-precipitation method in solution and in reverse micellar microemulsion. Mater Sci Forum 494:155–160

    Article  Google Scholar 

  23. Philip J, Kutty TRN (2000) Preparation of manganite perovskites by a wet-chemical method involving a redox reaction and their characterisation. Mater Chem Phys 63(3):218–225. https://doi.org/10.1016/s0254-0584(99)00223-0

    Article  CAS  Google Scholar 

  24. Villanueva A et al. (2010) Hyperthermia hela cell treatment with silica-coated manganese oxide nanoparticles. J Phys Chem C 114(5):1976–1981. https://doi.org/10.1021/jp907046f

    Article  CAS  Google Scholar 

  25. Shlapa Y et al. (2016) Iron-doped (La,Sr)MnO3 manganites as promising mediators of self-controlled magnetic nanohyperthermia. Nanoscale Res Lett 11(1). https://doi.org/10.1186/s11671-015-1223-6.

  26. Prasad NK, Hardel L, Duguet E, Bahadur D (2009) Magnetic hyperthermia with biphasic gel of La1−xSrxMnO3 and maghemite. J Magn Magn Mater 321(10):1490–1492. https://doi.org/10.1016/j.jmmm.2009.02.063

    Article  CAS  Google Scholar 

  27. Aneja M, Tovstolytkin A, Singh Lotey G (2017) Superparamagnetic LaSrMnO3 nanoparticles for magnetic nanohyperthermia and their biocompatibility. J Magn Magn Mater 442:423–428. https://doi.org/10.1016/j.jmmm.2017.06.106

    Article  CAS  Google Scholar 

  28. Tishin AM, Spichkin YI, Zverev VI, Egolf PW (2016) A review and new perspectives for the magnetocaloric effect: New materials and local heating and cooling inside the human body. Int J Refrig 68:177–186. https://doi.org/10.1016/j.ijrefrig.2016.04.020

    Article  CAS  Google Scholar 

  29. Obaidat I, Issa B, Haik Y (2015) Magnetic properties of magnetic nanoparticles for efficient hyperthermia. Nanomaterials 5(1):63–89. https://doi.org/10.3390/nano5010063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thorat ND et al. (2014) Structured superparamagnetic nanoparticles for high performance mediator of magnetic fluid hyperthermia: Synthesis, colloidal stability and biocompatibility evaluation. Mater Sci Eng C 42:637–646. https://doi.org/10.1016/j.msec.2014.06.016

    Article  CAS  Google Scholar 

  31. Périgo EA et al. (2015) Fundamentals and advances in magnetic hyperthermia. Appl Phys Rev 2:041302. https://doi.org/10.1063/1.4935688

    Article  CAS  Google Scholar 

  32. Ge X, Li H, Zheng H, Zheng P, Zheng L, Zhang Y (2023) Electromagnetic performance of NiMgCuZn ferrite for hyperthermia application in cancer treatment. ACS Omega 8(19):16647–16655. https://doi.org/10.1021/acsomega.2c07394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sadhu A, Bhattacharyya S (2014) Enhanced low-field magnetoresistance in La0.71Sr0.29MnO3 nanoparticles synthesized by the nonaqueous sol–gel route. Chem Mater 26:1702–1710. https://doi.org/10.1021/cm4041665

    Article  CAS  Google Scholar 

  34. Brahimi A, Merad AE, Ellouze M, Kanoun MB (2022) Theoretical study of the magnetic and magnetocaloric properties of La0.7Sr0.3Mn0.95Fe0.05O3 perovskite manganites at low and high applied magnetic fields: Landau theory and phenomenological models. Bull Mater Sci 45(2):98. https://doi.org/10.1007/s12034-022-02677-6

    Article  CAS  Google Scholar 

  35. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2(2):65–71. https://doi.org/10.1107/S0021889869006558

    Article  CAS  Google Scholar 

  36. Roisnel T, Rodríguez-Carvajal J (2022) WinPLOTR: a Windows tool for powder diffraction patterns analysis, Accessed: Feb. 17, 2022. [Online]. Available: http://www-llb.cea.fr/fullweb/winplotr/winplotr.htm

  37. Soleymani M, Moheb A, Joudaki E (2009) High surface area nano-sized La0.6Ca0.4 MnO3 perovskite powder prepared by low temperature pyrolysis of a modified citrate gel. Cent Eur J Chem 7(4):809–817. https://doi.org/10.2478/s11532-009-0083-2

    Article  CAS  Google Scholar 

  38. Das S, Dey TK (2007) Structural and magnetocaloric properties of La1−yNayMnO3 compounds prepared by microwave processing. J Phys D Appl Phys 40(7):1855. https://doi.org/10.1088/0022-3727/40/7/003

    Article  CAS  Google Scholar 

  39. Mydosh JA (1996) Disordered magnetism and spin glasses. J Magn Magn Mater 157–158:606–610. https://doi.org/10.1016/0304-8853(95)01272-9

    Article  Google Scholar 

  40. Mydosh JA (1993) Spin Glasses: An Experimental Introduction. CRC, Boca Raton, FL

    Google Scholar 

  41. Śniadecki Z, Grenèche J-M, Idzikowski B (2011) Mictomagnetic behavior of structurally disordered melt-spun DyMn6−xGe6−xFexAlx (0 ≤ x ≤ 6) alloys. J Appl Phys 109(12):123921. https://doi.org/10.1063/1.3601499

    Article  CAS  Google Scholar 

  42. Bedanta S, Kleemann W (2008) Supermagnetism. J Phys D Appl Phys 42(1):013001. https://doi.org/10.1088/0022-3727/42/1/013001

    Article  CAS  Google Scholar 

  43. Ahn KH, Wu XW, Liu K, Chien CL (1996) Magnetic properties and colossal magnetoresistance of La(Ca)MnO3 materials doped with Fe. Phys Rev B 54:15299. https://doi.org/10.1103/PhysRevB.54.15299

    Article  CAS  Google Scholar 

  44. Cai JW, Wang C, Shen BG, Zhao JG, Zhan WS (1997) Colossal magnetoresistance of spin-glass perovskite La0.67Ca0.33Mn0.9Fe0.1O3. Appl Phys Lett 71:1727. https://doi.org/10.1063/1.120017

    Article  CAS  Google Scholar 

  45. Saadaoui F, M’nassri R, Omrani H, Koubaa M, Boudjada NC, Cheikhrouhou A (2016) Critical behavior and magnetocaloric study in La0.6Sr0.4CoO3 cobaltite prepared by a sol–gel process. RSC Adv 6(56):50968–50977. https://doi.org/10.1039/c6ra08132k

    Article  CAS  Google Scholar 

  46. Ho TA, Long PT, Quang NV, Cho SL, Yu SC (2019) Short and long range ordering in La1−xSrxCoO3 cobaltites. J Magn Magn Mater 477:396–403. https://doi.org/10.1016/j.jmmm.2019.01.010

    Article  CAS  Google Scholar 

  47. Mahjoub S, Baazaoui M, M’nassri R, Hlil EK, Oumezzine M (2016) Magnetocaloric study and estimation of the spontaneous magnetization by a magnetic entropy analysis in Pr0.6Ca0.1Sr0.3Mn0.975Fe0.025O3. J Alloy Compd 680:381–387. https://doi.org/10.1016/j.jallcom.2016.04.113

    Article  CAS  Google Scholar 

  48. M’nassri R, Chniba Boudjada N, Cheikhrouhou A (2015) Impact of sintering temperature on the magnetic and magnetocaloric properties in Pr0.5Eu0.1Sr0.4MnO3 manganites. J Alloy Compd 626:20–28. https://doi.org/10.1016/j.jallcom.2014.11.141

    Article  CAS  Google Scholar 

  49. Banerjee K (1964) On a generalised approach to first and second order magnetic transitions. Phys Lett 12(1):16–17. https://doi.org/10.1016/0031-9163(64)91158-8

    Article  Google Scholar 

  50. Raoufi T, Varzaneh AG, Ehsani MH, Liu E, Chernenko V (2022) Tuning magnetic and table-like magnetocaloric effect of La0.6ErSr0.4MnO3(x = 0.0125, 0.05, 0.1) manganites. Mater Res Bull 156:111997. https://doi.org/10.1016/j.materresbull.2022.111997

    Article  CAS  Google Scholar 

  51. Salazar-Jaramillo, C et al. (2018) Magnetocaloric effect in specially designed materials. Magn Nanostruct Mater 199–244. https://doi.org/10.1016/b978-0-12-813904-2.00007-3.

  52. Bao Y et al. (2018) Table-like magnetocaloric behavior and enhanced cooling efficiency of a Bi-constituent Gd alloy wire-based composite. J Alloy Compd 764:789–793. https://doi.org/10.1016/j.jallcom.2018.06.067

    Article  CAS  Google Scholar 

  53. M’nassri R (2016) Searching the conditions for a table-like shape of the magnetic entropy in the magnetocaloric LBMO2.98/LBMO2.95 composite. Eur Phys J 131:11. https://doi.org/10.1140/epjp/i2016-16392-y

    Article  CAS  Google Scholar 

  54. GschneidnerJr KA, Pecharsky VK, Tsokol AO (2005) Recent developments in magnetocaloric materials. Rep Prog Phys 68(6):1479–1539. https://doi.org/10.1088/0034-4885/68/6/r04

    Article  Google Scholar 

  55. Mleiki A, M’nassri R, Cheikhrouhou-Koubaa W, Cheikhrouhou A, Hlil EK (2017) Structural characterization, magnetic, magnetocaloric properties and critical behavior in lacunar La0.5Eu0.2Ba0.20.1MnO3 nanoparticles. J Alloy Compd 727:1203–1212. https://doi.org/10.1016/j.jallcom.2017.08.236

    Article  CAS  Google Scholar 

  56. Atanasov R et al. (2022) Magnetic and magnetocaloric properties of nano- and polycrystalline manganites La(0.7−x)EuxBa0.3MnO3. Materials 15(21):7645. https://doi.org/10.3390/ma15217645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gschneidner KA, Pecharsky VK (2000) Magnetocaloric materials. Annu Rev Mater Sci 30(1):387–429. https://doi.org/10.1146/annurev.matsci.30.1.387

    Article  CAS  Google Scholar 

  58. M’nassri R, Nofal MM, de Rango P, Chniba-Boudjada N (2019) Magnetic entropy table-like shape and enhancement of refrigerant capacity in La1.4Ca1.6Mn2O7–La1.3Eu0.1Ca1.6Mn2O7 composite. RSC Adv 9(26):14916–14927. https://doi.org/10.1039/c9ra00984a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. M’nassri R (2016) Table-like magnetocaloric effect involving the enhancement of refrigerant capacity in (AMn0.9Ti0.1O3)1−x/(AMn0.85Ti0.15O3)x composite. Phase Transit 90(7):687–694. https://doi.org/10.1080/01411594.2016.1260719

    Article  CAS  Google Scholar 

  60. Ayaş AO, Seçilmiş E, Ekicibil A (2021) New application area for magnetocaloric materials: hyperthermia method. J Mol Struct 1231:130010. https://doi.org/10.1016/j.molstruc.2021.130010

    Article  CAS  Google Scholar 

  61. Griffith LD, Mudryk Y, Slaughter J, Pecharsky VK (2018) Material-based figure of merit for caloric materials. J Appl Phys 123(3):034902. https://doi.org/10.1063/1.5004173

    Article  CAS  Google Scholar 

  62. Mahjoub S, M’nassri R, Baazaoui M, Hlil EK, Oumezzine M (2019) Tuning magnetic and magnetocaloric properties around room temperature via chromium substitution in La0.65Nd0.05Ba0.3MnO3 system. J Magn Magn Mater 481:29–38. https://doi.org/10.1016/j.jmmm.2019.02.049

    Article  CAS  Google Scholar 

  63. Issa B, Obaidat I, Albiss B, Haik Y (2013) Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci 14(11):21266–21305. https://doi.org/10.3390/ijms141121266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bae S, Lee SW, Hirukawa A, Takemura Y, Jo YH, Lee SG (2009) AC magnetic-field-induced heating and physical properties of ferrite nanoparticles for a hyperthermia agent in medicine. IEEE Trans Nanotechnol 8(1):86–94. https://doi.org/10.1109/tnano.2008.2007214

    Article  Google Scholar 

  65. Frimpong RA, Dou J, Pechan M, Hilt JZ (2010) Enhancing remote controlled heating characteristics in hydrophilic magnetite nanoparticles via facile co-precipitation. J Magn Magn Mater 322(3):326–331. https://doi.org/10.1016/j.jmmm.2009.09.050

    Article  CAS  Google Scholar 

  66. Hergt R, Dutz S, Müller R, Zeisberger M (2006) Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys Condens Matter 18(38):S2919–S2934. https://doi.org/10.1088/0953-8984/18/38/s26

    Article  CAS  Google Scholar 

  67. Périgo CDA et al. (2015) Fundamentals and advances in magnetic hyperthermia. Appl Phys Rev 2(4):041302. https://doi.org/10.1063/1.4935688

    Article  CAS  Google Scholar 

  68. Wildeboer RR, Southern P, Pankhurst QA (2014) On the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia materials. J Phys D Appl Phys 47(49):495003. https://doi.org/10.1088/0022-3727/47/49/495003

    Article  CAS  Google Scholar 

  69. Kallumadil M, Tada M, Nakagawa T, Abe M, Southern P, Pankhurst QA (2009) Suitability of commercial colloids for magnetic hyperthermia. J Magn Magn Mater 321(10):1509–1513. https://doi.org/10.1016/j.jmmm.2009.02.075

    Article  CAS  Google Scholar 

  70. Makni J et al. (2018) Evaluation of La0.7Sr0.3Mn1-xBxO3 (B=Mo, Ti) nanoparticles synthesized via GNP method for self-controlled hyperthermia. J Alloy Compd 746:626–637. https://doi.org/10.1016/j.jallcom.2018.02.302

    Article  CAS  Google Scholar 

  71. ur Rashid A, Ahmed A, Ahmad SN, Shaheen SA, Manzoor S (2013) Study of specific absorption rate of strontium doped lanthanum manganite nanoparticles for self-controlled hyperthermia applications. J Magn Magn Mater 347:39–44. https://doi.org/10.1016/j.jmmm.2013.07.045

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by the Tunisian Ministry of Higher Education and Scientific Research and the Neel Institute.

Author information

Authors and Affiliations

Authors

Contributions

NR, KR, BO, and RM: sample preparation, formal analysis, data curation, writing- original draft preparation. RM, WC-K, and EKH: supervision, conceptualization, methodology, formal analysis, writing - original draft, software, validation, writing- review & editing.

Corresponding author

Correspondence to R. M’nassri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rmili, N., Riahi, K., M’nassri, R. et al. Magnetocaloric and induction heating characteristics of La0.71Sr0.29Mn0.95Fe0.05O3 nanoparticles. J Sol-Gel Sci Technol (2024). https://doi.org/10.1007/s10971-024-06361-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10971-024-06361-5

Keywords

Navigation