Skip to main content
Log in

Terahertz based optical & electrical properties of PZT

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Piezoelectric materials have been widely used for various applications like MEMS and energy harvesting. The PZT (PbZr0. 52Ti0.48O3) is one among of all piezoelectric materials, which exhibit vital role for fabrication of devices. The present manuscript is described about PZT powders, which were synthesized by solgel method and yielded powders were annealed at different temperature to get stabilized structure without any impurities phase with help of X-ray diffraction. As a part of structural investigation, Raman spectroscopy was done over the different temperature annealed powders and identify Raman active modes. The band gap energy was found for these nano powders that are increasing with respect to annealing temperature. The microstructure of nano PZT powders has found with help FESEM, which provided the particles size with order of 50–70 nm diameters. Electrical properties i.e., the P-E loop was done on nano PZT, polarization has increased and leakage current also increased for annealed temperatures. The terahertz spectra of PZT results suggested that the absorption coefficient peak are found at higher frequency, refractive index peak found lower frequency for annealed PZT samples. The 600 oC is shown maximum dielectric constant & refractive index at 0.6 THz, which is confirmed by the electric properties of PZT. As annealing temperature increases, dielectric and refractive index decreased due to depolarization.

Graphical Abstract

Fig. a XRD of PZT annealed at different temperatures. b Raman spectra of PZT annealed at different temperatures. c P-E loop of 700 0c annealed PZT. d Dielectric constant of PZT which is obtained from Terahertz spectra.

Highlights

  • PZT nano powders obtained from Solgel method.

  • Tetragonal structure found from the XRD and accordingly Raman modes assigned.

  • Energy gap of PZT increased with annealing temperature.

  • Electric polarization increased with annealing temperature.

  • Terahertz spectra provides refractive and dielectric constant, which decreased with frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated and analyzed during this study are included in this published article. The raw data can be provided if requested.

References

  1. Jaffe B, Cook WR, Jaffe H, Piezoelectric Ceramics, Academic Press: London, 1971

  2. Siddiqui M, Mohamed JJ, Ahmad ZA (2020) J Aust Cera Soc 56:371–377

    Article  CAS  Google Scholar 

  3. Chen Z, Li Z, Li J, Liu C, Lao C, Fu C, Liu C, Li Y, Wang P, He Y (2019) J Eur Ceram Soc 39:661–687

    Article  CAS  Google Scholar 

  4. Watson B, Friend J, Yeo L (2009) Sensor Actuator Phys 152:219–233

    Article  CAS  Google Scholar 

  5. Mashimo T (2017) Sensor Actuator Phys. 257:106–112

    Article  CAS  Google Scholar 

  6. Mashimo T, Terashima K (2015) Sensor Actuator Phys. 233:15–21

    Article  CAS  Google Scholar 

  7. Ri CS, Kim MJ, Kim CS, Im SJ (2015) Ultrasonics 59:59–63

    Article  Google Scholar 

  8. Taro O, Toyama S (2014) Development of spherical ultrasonic motor for space. Appl Mech Mater 555:26–31

    Article  Google Scholar 

  9. Jo S-H, Lee S-G, Lee Y-H (2012) Nano Res Lett 7:54

    Article  Google Scholar 

  10. Shen Z, Chen Z, Lu Q, Qiu Z, Jiang A, Qu X, Chen Y, Liu R (2011) Nano Res Lett 6:474

    Article  Google Scholar 

  11. Sachdeva A, Arora M, Tandon RP (2009) J Nanosci Nanotechnol 9(11):6631

    Article  CAS  Google Scholar 

  12. Cernea M, Montanari G, Galassi C, Costa AL (2006) Nanotechnology 17(6):1731

    Article  CAS  Google Scholar 

  13. Morita T et al. (1997) Jpn J Appl Phys 36:2998

    Article  CAS  Google Scholar 

  14. Bezzia F, Costaa AL, Piazzaa D, Ruffinia A, Albonettia S, Galassia C (2005) J Eur Ceram Soc 25:3323–3334

    Article  Google Scholar 

  15. Amiriyana M, Nematib ZA, Rahmanifarc MS, Ramesha S, Meenaloshinia S, Tolouei R (2011) AIP Conf Proc 1315:265

    Article  Google Scholar 

  16. Marakhovsky MA, Panich AA, Talanov MV, Marakhovskiy VA (2021) Ferroelectrics 575:143–149

    Article  Google Scholar 

  17. Zhang XD, Meng XJ, Sun JL, Lin T, Chu JH (2005) Appl Phys Lett 86:252902

    Article  Google Scholar 

  18. Cho K-H, Kang M-G, Kang C-Y, Yoon S-J, Lee Y, Kim J-H, Cho B-H (2009) J Electrochem Soc 156:G230

    Article  CAS  Google Scholar 

  19. Qiu S, Zheng X, Gao C, Gan X, Chen J, Fan H (2008) Ceram Int 35:733

    Article  Google Scholar 

  20. Sahu M, Pradhan SK, Hajra S, Panigrahi BK, Choudhary RNP (2019) Appl Phys A 125(3):183

    Article  CAS  Google Scholar 

  21. Saha S, Singh RP, Rout A, Mishra A, Ali A, Basumatary H, Ranjan R (2023) Inducing ferromagnetism and magnetoelectric coupling in the ferroelectric alloy system BiFeO3–PbTiO3 via additives. J Appl Phys 133 (6):064101.

  22. Sharma P, Hajra S, Sahoo S, Rout PK, Choudhary RNP (2017) Proc Appl Ceram 11(3):171–176

    Article  CAS  Google Scholar 

  23. Fu D et al. (2003) Appl Phys Lett 82(13):2130–2132

    Article  CAS  Google Scholar 

  24. Dai X, Xu Z, Viehland D (1996) J Appl Phys 79(2):1021–1026

    Article  CAS  Google Scholar 

  25. Grüner ZS (2010) J Am Ceram Soc 93(1):48–50

    Article  Google Scholar 

  26. Jain V, Biesinger MC, Linford MR (2018) Appl Surf Sci 447:548–553

    Article  CAS  Google Scholar 

  27. Takahashi S, Sasaki Y, Hirose S, Uchino K (1995) Jpn J Appl Phys 34:5328–5331

    Article  CAS  Google Scholar 

  28. Souza Filho AG, Lima KCV, Ayala AP, Guedes I, Freire PTC, Melo FEA, Mendes Filho J, Araujo EB, Eiras JA (2002) Phys Rev B 66:132107–1-4

    Article  Google Scholar 

  29. Frantti J, Lantto V, Nishio S, Kakihana M (1999) Phys Rev B 59:12

    Article  CAS  Google Scholar 

  30. Lima KCV, Souza Filho AG, Ayala AP, Mendes Filho J, Freire PTC, Melo FEA, Araujo EB, Eiras JA (2001) Phys Rev B 63:184105–1-5

    Article  Google Scholar 

  31. El-Harrad P, Becker C, Carabatos-Nedelec J, Handerek ZU, Dmytrow D (1995) J Appl Phys 78:5581

    Article  CAS  Google Scholar 

  32. Frantti J, Lantto V, Lappalainen J (1996) J Appl Phys 79:1065

    Article  CAS  Google Scholar 

  33. Deluca M, Fukumura H, Tonari N, Capiani C, Hasuike N, Kisoda K, Galassi C, Harima H (2011) J Raman spectr 42(3):488–495

    Article  CAS  Google Scholar 

  34. Rouquette J, Haines J, Bornand V, Pintard M, Papet P, Sauvajol JL (2006) Phys Rev B 73:224118

    Article  Google Scholar 

  35. Kafadaryan E, Aghamalyan N, Nikogosyan S, Shirinyan H, Manukyan A, Hayrapetyan A, Badalyan G, Song Y, Wu N, Ignatiev A (2006) Jpn J Appl Phys 45:1702

    Article  CAS  Google Scholar 

  36. Pontes FM, Leite ER, Nunes MSJ, Pontes DSL, Longo E, Magnani R, Pizani PS, Varela JA (2004) J Eur Ceram Soc 24:2969

    Article  CAS  Google Scholar 

  37. Escote MT, Pontes FM, Leite ER, Longo E, Jardim RF, Pizani PS (2004) J Appl Phys 96:2186

    Article  CAS  Google Scholar 

  38. Arau´jo EB, Yukimitu K, Moraes JCS, Pelaio LHZ, Eiras JA, Phys J (2002) Condens Matter 14:5195

    Article  Google Scholar 

  39. Bhaskar A, Chang T-H, Chang H-Y, Cheng S-Y (2009) Appl Surf Sci 255:3795

    Article  CAS  Google Scholar 

  40. Kim H-G, Choi HJ (2021) Phys Rev B 103(8):085404

    Article  CAS  Google Scholar 

  41. Lee H, Kang YS, Cho S-J, Xiao B, Morkoç H, Kang TD, Lee GS, Li J, Wei S-H, Snyder P (2005) J Appl Phys 98(9):094108

    Article  Google Scholar 

  42. Boerasu I, Pintilie L, Pereira M, Vasilevskiy M, Gomes M (2003) J Appl Phys 93(8):4776–4783

    Article  CAS  Google Scholar 

  43. Pandey S, James A, Raman R, Chatterjee S, Goyal A, Prakash C, Goel T (2005) Phys B 369(1):135–142

    Article  CAS  Google Scholar 

  44. Gupta MK, Aneesh J, Yadav R, Adarsh K, Kim S-W (2017) J Appl Phys 121(17):175103

    Article  Google Scholar 

  45. Jiang P, Luo Q, Xu X, Gong T, Yuan P, Wang Y, Gao Z, Wei W, Tai L, Lv H (2021) Adv Elec Mater 7(1):2000728

    Article  CAS  Google Scholar 

  46. Tagantsev AK, Stolichnov I, Colla EL, Setter N (2001) J Appl Phys 90:1387

    Article  CAS  Google Scholar 

  47. Gerber P, Roelofs A, Ku¨geler C, Bo¨ttger U, Waser R, Prume K (2004) J Appl Phys 96:2800

    Article  CAS  Google Scholar 

  48. Buixaderas E, Nuzhnyy D, Veljko S, Kamba S, Savinov M, Petzelt J, Kosec M (2007) J Appl Phys 101(7):074106–074109

    Article  Google Scholar 

  49. Kasap S, Capper P, Whatmore RW, Ferroelectric Materials, 597-623 in Springer Handbook of Electronic and Photonic Materials. Springer, 2006

  50. Lefki K, Dormans G (1994) J Appl Phys 76(3):1764–1767

    Article  Google Scholar 

  51. Naftaly M, Cain MG, Lepadatu S, Buchacher T, Allam J (2016) Adv Appl Ceram 115:5260

    Article  Google Scholar 

  52. Withayachumnankul W, Fischer BM, Lin H, Abbott D (2008) J Opt Soc Am B 25(6):1059–1072.25

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank to Dr. Vasanth G Sathe & Dr. Uday Deshpande at UGC -DAE-CSR Indore for supporting Raman spectroscopy& FTIR, UV-visible spectroscopy.

Author contributions

Conception and design of study: KY, KUK, and DD. Acquisition of data: KY, MN, VRR. Analysis and/or interpretation of data: KY, Drafting the manuscript: KY, KUK. Revising the manuscript critically for important intellectual content: DD, AKC, DH and KY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Yadagiri.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadagiri, K., Nagaraju, M., Reddy, V.R. et al. Terahertz based optical & electrical properties of PZT. J Sol-Gel Sci Technol 109, 237–245 (2024). https://doi.org/10.1007/s10971-023-06262-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06262-z

Keywords

Navigation