Skip to main content
Log in

Adsorption and photocatalytic study of dyes for waste-water treatment using Mn modified DyCrO3 nanomaterials

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In the present work, DyCr0.8Mn0.2O3 and DyCr0.5Mn0.5O3 nanoparticles have been prepared via the sol-gel route and characterized by X-ray diffraction and UV-Visible Diffuse reflectance spectroscopy, SEM, EDX, and Photoluminescence spectroscopy. The influence of Mn substitution on the structural, optical, and photocatalytic properties of DyCrO3 has been studied. The XRD patterns confirm the orthorhombic phase of compounds with Pbnm space group. Furthermore, crystallite size of the nanoparticles is found to be 79.36 nm and 83.33 nm for DyCr0.8Mn0.2O3 and DyCr0.5Mn0.5O3, respectively. The optical bandgap energy of DyCr0.8Mn0.2O3 and DyCr0.5Mn0.5O3 compounds is 2.68 eV and 2.34 eV, respectively. The Photoluminescence spectrum exhibits blue, yellow and red emissions at 380 nm excitation wavelength. The dye degradation efficiency of DyCr0.8Mn0.2O3 and DyCr0.5Mn0.5O3 compounds was tested on MB and RhB dyes under solar light irradiation for 180 min. The highest degradation efficiencies for DyCr0.8Mn0.2O3 and DyCr0.5Mn0.5O3 compounds are 84% and 92% for RhB dye and 63% and 77% for MB dye in the presence of solar irradiation. The photodegradation kinetics obeys the first order linear kinetics and adsorption data follows pseudo second order model. Further, adsorption isotherms process follows the Langmuir and Freundlich model in the dark.

Graphical Abstract

Absorbance spectra of RhB dye using DCMO20 and DCMO50 photocatalysts under solar light irradiation

Highlights

  • DyCr0.8Mn0.2O3 and DyCr0.5Mn0.5O3 nanoparticles synthesized by sol-gel method.

  • Optical bandgap values of DCMO20 and DCMO50 compounds are 2.68 eV and 2.34 eV, respectively.

  • Highest degradation efficiencies for DCMO20 and DCMO50 compounds are 84% and 92% for RhB dye.

  • Adsorption isotherm process of compounds follows Langmuir and Freundlich model in dark.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Alrozi R, Zubir NA, Bakar NFA, Ladewig BP, Motuzas J, Bakar NHHA, Wang DK, da Costa JCD (2023) Functional role of B-site substitution on the reactivity of CaMFeO3 (M = Cu, Mo, Co) perovskite catalysts in heterogeneous Fenton-like degradation of organic pollutant. J Taiwan Inst Chem Eng 143:104675

    Article  CAS  Google Scholar 

  2. Sohrabian M, Mahdikhah V, Alimohammadi E, Sheibani S (2023) Improved photocatalytic performance of SrTiO3 through a Z-scheme polymeric-perovskite heterojunction with g-C3N4 and plasmonic resonance of Ag mediator. Appl Surf Sci 618:156682

    Article  CAS  Google Scholar 

  3. Qadir I, Singh S, Sharma S, Manhas U, Atri AK, Singh D (2023) New Rare Earth-Doped Bilayered Perovskite Oxide Photocatalysts Sr2La0.5R0.5FeMnO7 (R = La, Nd, Sm, Gd, Dy) for the Degradation of Highly Toxic Methylene Blue Dye in Wastewater under Visible Light: Structural, Optical, and Magnetic Properties. ACS Omega 8:2010–2026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Venkatesh G, Suganesh R, Jayaprakash J, Srinivasan M, Prabu KM (2022) Perovskite type BaSnO3-reduced graphene oxide nanocomposite for photocatalytic decolourization of organic dye pollutant. Chem Phys Lett 787:139237

    Article  CAS  Google Scholar 

  5. Hu S, Yuan J, Tang S, Luo D, Shen Q, Qin Y, Zhou J, Tang Q, Chen S, Luo X, Xu D (2022) Perovskite-type SrFeO3/g-C3N4 S-scheme photocatalyst for enhanced degradation of Acid Red B. Opt Mater (Amst) 132:112760

    Article  CAS  Google Scholar 

  6. Farhadi S, Mahmoudi F, Amini MM, Dusek M, Jarosova M (2017) Synthesis and characterization of a series of novel perovskite-type LaMnO3 /Keggin-type polyoxometalate hybrid nanomaterials for fast and selective removal of cationic dyes from aqueous solutions. Dalt Trans 46:3252–3264

    Article  CAS  Google Scholar 

  7. Chiam S-L, Pung S-Y, Yeoh F-Y (2020) Recent developments in MnO2-based photocatalysts for organic dye removal: A review. Environ Sci Pollut Res 27:5759–5778

    Article  CAS  Google Scholar 

  8. Sheng L, Zhang Y, Tang F, Liu S (2018) Mesoporous/microporous silica materials: Preparation from natural sands and highly efficient fixed-bed adsorption of methylene blue in wastewater. Microporous Mesoporous Mater 257:9–18

    Article  CAS  Google Scholar 

  9. Ata S, Shaheen I, Aslam H, Mohsin IU, Alwadai N, Huwayz MAL, Iqbal M, Younas U (2023) Barium and strontium doped La-based perovskite synthesis via sol-gel route and photocatalytic activity evaluation for methylene blue. Results Phys 45:106235

    Article  Google Scholar 

  10. Tavakkoli H, Hamedi F (2016) Synthesis of Gd0.5Sr0.5FeO3 perovskite-type nanopowders for adsorptive removal of MB dye from water. Res Chem Intermed 42:3005–3027

    Article  CAS  Google Scholar 

  11. Anusha HS, Yadav S, Tenzin T, Prabagar JS, Anilkumar KM, Kitirote W, Shivaraju HP (2023) Improved CeMnO3 perovskite framework for visible-light-aided degradation of tetracycline hydrochloride antibiotic residue and methylene blue dye Int J Environ Sci Technol 20:13519–13534

    Article  CAS  Google Scholar 

  12. Tabari T, Tavakkoli H, Zargaran P, Beiknejad D (2012) Fabrication of perovskite-type oxide BaPbO3 nanoparticles and their efficiency in photodegradation of methylene blue. South Afr J Chem 65:239–244

    CAS  Google Scholar 

  13. Zhang M, Sun W, Lv H, Zhang Z-H (2021) Syntheses and applications of perovskite-based photocatalysts in light-driven organic reactions. Curr Opin Green Sustain Chem 27:100390

    Article  CAS  Google Scholar 

  14. Zhang W, Ma Y, Zhu X, Liu S, An T, Bao J, Hu X, Tian H (2021) Fabrication of Ag decorated g-C3N4/LaFeO3 Z-scheme heterojunction as highly efficient visible-light photocatalyst for degradation of methylene blue and tetracycline hydrochloride. J Alloy Compd 864:158914

    Article  CAS  Google Scholar 

  15. Balta Z, Simsek EB (2022) Understanding the structural and photocatalytic effects of incorporation of hexagonal boron nitride whiskers into ferrite type perovskites (BiFeO3, MnFeO3) for effective removal of pharmaceuticals from real wastewater. J Alloy Compd 898:162897

    Article  CAS  Google Scholar 

  16. Nassar IM, Wu S, Li L, Li X (2018) Facile Preparation of n ‐Type LaFeO3 Perovskite Film for Efficient Photoelectrochemical Water Splitting. ChemistrySelect 3:968–972

    Article  CAS  Google Scholar 

  17. Cheng C, Gao S, Zhu J, Wang G, Wang L, Xia X (2020) Enhanced performance of LaFeO3 perovskite for peroxymonosulfate activation through strontium doping towards 2,4-D degradation. Chem Eng J 384:123377

    Article  CAS  Google Scholar 

  18. Kanhere P, Chen Z (2014) A review on visible light active perovskite-based photocatalysts. Molecules 19:19995–20022

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kacem K, Casanova-Chafer J, Ameur S, Nsib MF, Llobet E (2023) Gas sensing properties of graphene oxide loaded with SrTiO3 nanoparticles. J Alloy Compd 941:169011

    Article  CAS  Google Scholar 

  20. Wang J, Xiao S, Qian W, Zhang K, Yu J, Xu X, Wang G, Zheng S, Yang S (2021) Self-Driven Perovskite Narrowband Photodetectors with Tunable Spectral Responses. Adv Mater 33:2005557

    Article  CAS  Google Scholar 

  21. Mendoza R, Oliva J, Padmasree KP, Mtz-Enriquez AI, Hayat A, Rodriguez-Gonzalez V (2022) A sustainable avocado-peel based electrode for efficient graphene supercapacitors: enhancement of capacitance by using Sr doped LaMnO3 perovskites. Ceram Int 48:30967–30977

    Article  CAS  Google Scholar 

  22. Lei N, Qiao Y, Liu G, R. Xu R, Jiang G, Demir M, Ma P (2022) MnO2 modified perovskite oxide SrCo0.875Nb0.125O3 as supercapacitor electrode material. Mater Chem Phys 288:126389

    Article  CAS  Google Scholar 

  23. Das A, Peu SD, Akanda MAM, Salah MM, Hossain MS, Das BK (2023) Numerical Simulation and Optimization of Inorganic Lead-Free Cs3Bi2I9-Based Perovskite Photovoltaic Cell: Impact of Various Design Parameters. Energies 16:2328

    Article  CAS  Google Scholar 

  24. Rafaqat M, Ali G, Ahmad N, Jafri SHM, Atiq S, Abbas G, Mustafa GM, Raza R (2023) The substitution of La and Ba in X0.5Sr0.5Co0.8Mn0.2O3 as a perovskite cathode for low temperature solid oxide fuel cells. J Alloy Compd 937:168214

    Article  CAS  Google Scholar 

  25. Shingange K, Swart HC, Mhlongo GH (2023) Enhanced ethanol sensing abilities of fiber-like La1−xCexCoO3(0 ≤x ≤ 0.2) perovskites based-sensors at low operating temperatures. Sens Actuators B Chem 377:133012

    Article  CAS  Google Scholar 

  26. Panwar N, Singh K, Kanwar K, Bitla Y, Kumar S, Puli VS (2022) Low-Temperature Magnetic and Magnetocaloric Properties of Manganese-Substituted Gd0.5Er0.5CrO3 Orthochromites. Crystals 12:263

    Article  CAS  Google Scholar 

  27. Zeeshan M, Yaqub MA, Khan S, Ramay SM, Atiq S (2023) Fast Polarization Switching Capability Mediated by Oxygen Deficiency in Co-Substituted SrFeO3-δ Perovskites. J Phys Chem Solids 181:111557.

  28. Wang S, Hou C, Yuan L, Qu M, Zou B, Lu D (2016) Hydrothermal preparation of perovskite structures DyCrO3 and HoCrO3. Dalt Trans 45:17593–17597

    Article  CAS  Google Scholar 

  29. McDannald A, Vijayan S, Shi J, Chen A, Jia QX, Aindow M, Jain M (2019) Magnetic and tunable dielectric properties of DyCrO3 thin films. J Mater Sci 54:8984–8994

    Article  ADS  CAS  Google Scholar 

  30. McDannald A, Jain M (2015) Magnetocaloric properties of rare-earth substituted DyCrO3. J Appl Phys 118:43904

    Article  Google Scholar 

  31. Wang Q, Lv B, Wu Q, Wang Q, Lv B, Wu Q, Hu X, Luo X, Fang J, Yu N, Yang HM, Pan M, Ge H (2023) Study on the critical behavior and magnetocaloric effect of RCrO3 (R = Gd, Dy). Ceram Int 49:11903–11911

    Article  CAS  Google Scholar 

  32. Yin LH, Shi TF, Zhang RR, Park CB, Kim KH, Yang J, Tong P, Song WH, Dai JM, Zhu XB (2018) Electric dipoles via Cr3+(d3) ion off-center displacement in perovskite DyCr O3. Phys Rev B 98:54301

    Article  ADS  CAS  Google Scholar 

  33. Ahsan R, Mitra A, Omar S, Khan MZR, Basith MA (2018) Sol–gel synthesis of DyCrO3 and 10% Fe-doped DyCrO3 nanoparticles with enhanced photocatalytic hydrogen production abilities. RSC Adv 8:14258–14267

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gupta P, Bhargava R, Das R, Poddar P (2013) Static and dynamic magnetic properties and effect of surface chemistry on the morphology and crystallinity of DyCrO3 nanoplatelets. Rsc Adv 3:26427–26432

    Article  ADS  CAS  Google Scholar 

  35. Abed YF, Das S, Ali MS, Rana Z, Basith MA (2022) Nanostructured DyCrO3-rGO for efficient photocatalytic dye degradation and hydrogen generation. Mater Lett 318:132159

    Article  CAS  Google Scholar 

  36. Rani M, Dahiya S, Panwar N (2022) Optical, dielectric and photocatalytic investigation on Dy1-xHoxCrO3 (x= 0, 0.5) perovskites. Ceram Int 48:19925–19936

    Article  CAS  Google Scholar 

  37. McDannald A, Dela Cruz CR, Seehra MS, Jain M (2016) Negative exchange bias in single-phase D y1− xNdxCrO3 induced by Nd doping. Phys Rev B 93:184430

    Article  ADS  Google Scholar 

  38. Maqbool H, Bibi I, Nazeer Z, Majid F, Ata S, Raza Q, Iqbal M, Slimani Y, Khan MI, Fatima M (2022) Effect of dopant on ferroelectric, dielectric and photocatalytic properties of Co–La-doped dysprosium chromite prepared via microemulsion route. Ceram Int 48:31763–31772

    Article  CAS  Google Scholar 

  39. Das S, Dokala RK, Weise B, Medwal R, Rawat RS, Mishra PK, Thota S (2022) Effect of Ce substitution on the local magnetic ordering and phonon instabilities in antiferromagnetic DyCrO3 perovskites. J Phys Condens Matter 34:345803

    Article  CAS  Google Scholar 

  40. Qahtan AAA, Husain S, Somvanshi A, Fatema M, Khan W (2020) Investigation of alteration in physical properties of dysprosium orthochromite instigated through cobalt doping. J Alloy Compd 843:155637

    Article  CAS  Google Scholar 

  41. Hossain R, Billah A, Ishizaki M, Kubota MS, Hirose F, Ahmmad B (2021) Oxygen vacancy mediated room-temperature ferromagnetism and band gap narrowing in DyFe0.5Cr.5O3 nanoparticles. Dalt Trans 50:9519–9528

    Article  CAS  Google Scholar 

  42. Qahtan AAA, Husain S, Zarrin N, Somvanshi A, Fatema M, Khan W (2021) Raman scattering, electronic transport and dielectric features of Co-doped DyCrO3. J Mater Sci Mater Electron 32:15108–15133

    Article  CAS  Google Scholar 

  43. Yuan B, Yang J, Zuo XZ, Kan XC, Zhu XB, Dai JM, Song WH, Sun YP (2016) Observation of ferroelectricity and magnetoelectric coupling in Mn-doped orthochromite DyCr0.5Mn0.5O3. J Alloy Compd 656:830–834

    Article  CAS  Google Scholar 

  44. Kanwar K, Coondoo I, Anas M, Malik VK, Kumar P, Kumar S, Kulriya PK, Kaushik SD, Panwar N (2021) A comparative study of the structural, optical, magnetic and magnetocaloric properties of HoCrO3 and HoCr0.85Mn0.15O3 orthochromites. Ceram Int 47:7386–7397

    Article  CAS  Google Scholar 

  45. Manzoor S, Husain S, Somvanshi A, Fatema M, Zarrin N (2019) Exploring the role of Zn doping on the structure, morphology, and optical properties of LaFeO3. Appl Phys A 125:509

    Article  ADS  Google Scholar 

  46. Kotnana G, Jammalamadaka SN (2015) Band gap tuning and orbital mediated electron–phonon coupling in HoFe1−xCrxO3 (0≤ x≤ 1). J Appl Phys 118:124101

    Article  ADS  Google Scholar 

  47. Mguedla R, Kharrat ABJ, Saadi M, Khirouni K, Chniba-Boudjada N, Boujelben W (2020) Structural, electrical, dielectric and optical properties of PrCrO3 ortho-chromite. J Alloy Compd 812:152130

    Article  CAS  Google Scholar 

  48. Zarrin N, Husain S, Khan W, Manzoor S (2019) Sol-gel derived cobalt doped LaCrO3: structure and physical properties. J Alloy Compd 784:541–555

    Article  CAS  Google Scholar 

  49. Madani A, Alghamdi M, Alamri B, Althobaiti S (2023) Structural and optical properties of Sb–BaTiO3 and Y–BaTiO3 doped ceramics prepared by solid-state reaction. Opt Mater (Amst) 137:113480

    Article  CAS  Google Scholar 

  50. Kanwar K, Chen B-R, Kuo Y-K, Panwar N (2023) A study on the structural, optical, magnetization reversal and bipolar magnetic switching behavior of SmCr0.85Mn0.15O3 nanoparticles. Ceram Int 49:2506–2514

    Article  CAS  Google Scholar 

  51. Hou S, Gangishetty MK, Quan Q, Congreve DN (2018) Efficient blue and white perovskite light-emitting diodes via manganese doping. Joule 2:2421–2433

    Article  CAS  Google Scholar 

  52. Parobek D, Roman BJ, Dong Y, Jin H, Lee E, Sheldon M, Son DH (2016) Exciton-to-dopant energy transfer in Mn-doped cesium lead halide perovskite nanocrystals. Nano Lett 16:7376–7380

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Zou S, Liu Y, Li J, Liu C, Feng R, Jiang F, Li Y, Song J, Zeng H, Hong M (2017) Stabilizing cesium lead halide perovskite lattice through Mn (II) substitution for air-stable light-emitting diodes. J Am Chem Soc 139:11443–11450

    Article  CAS  PubMed  Google Scholar 

  54. Omri K, Alyamani A, Mir LEL (2018) Photoluminescence and cathodoluminescence of Mn doped zinc silicate nanophosphors for green and yellow field emissions displays. Appl Phys A 124:1–7

    Article  CAS  Google Scholar 

  55. Venkataswamy P, Jampaiah D, Kandjani AE, Sabri YM, Reddy BM, Vithal M (2018) Transition (Mn, Fe) and rare earth (La, Pr) metal doped ceria solid solutions for high performance photocatalysis: Effect of metal doping on catalytic activity. Res Chem Intermed 44:2523–2543

    Article  CAS  Google Scholar 

  56. Dai Luu M, Dao NN, Van Nguyen D, Pham NC, Doan TD (2016) A new perovskite-type NdFeO3 adsorbent: synthesis, characterization, and As (V) adsorption. Adv Nat Sci Nanosci Nanotechnol 7:25015

    Article  Google Scholar 

  57. Ghiasi E, Malekzadeh A (2020) Removal of various textile dyes using LaMn(Fe)O3and LaFeMn0.5O3 nanoperovskites; RSM optimization, isotherms and kinetics studies. J Inorg Organomet Polym Mater 30:2789–2804

    Article  CAS  Google Scholar 

  58. Verduzco LE, Garcia-Díaz R, Martinez AI, Salgado RA, Méndez-Arriaga F, Lozano-Morales SA, Avendaño-Alejo M, Padmasree KP (2020) Degradation efficiency of methyl orange dye by La0.5Sr0.5CoO3 perovskite oxide under dark and UV irradiated conditions. Dye Pigment 183:108743

    Article  CAS  Google Scholar 

  59. Qahtan AAA, Husain S, Somvanshi A, Khan W, Manea YK (2020) Influence of Mn doping on dielectric properties, conduction mechanism and photocatalytic nature of gadolinium-based orthochromites. J Mater Sci Mater Electron 31:9335–9351

    Article  CAS  Google Scholar 

  60. Wang S, Yang B, Liu Y (2017) Synthesis of a hierarchical SnS2 nanostructure for efficient adsorption of Rhodamine B dye. J Coll Interfac Sci 507:225–233

    Article  ADS  CAS  Google Scholar 

  61. Farhadi S, Mahmoudi F (2019) Improving the adsorption ability of perovskite-type LaNiO3 nanomaterial towards organic dyes by hybridizing with phosphotungstic acid. Polyhedron 169:39–50

    Article  CAS  Google Scholar 

  62. Arman MM (2022) Synthesis, characterization, magnetic properties, and applications of La0.85Ce0.15FeO3 perovskite in heavy metal Pb2+ removal. J Supercond Nov Magn 35:1241–1249

    Article  CAS  Google Scholar 

  63. Garba ZN, Xiao W, Zhou W, Lawan I, Jiang Y, Zhang M, Yuan Z (2019) Process optimization and synthesis of lanthanum-cobalt perovskite type nanoparticles (LaCoO3) prepared by modified proteic method: Application of response surface methodology. Korean J Chem Eng 36:1826–1838

    Article  CAS  Google Scholar 

  64. Lu S, Zhu K, Hayat T, Alharbi NS, Chen C, Song G, Chen D, Sun Y (2019) Influence of carbonate on sequestration of U (VI) on perovskite. J Hazard Mater 364:100–107

    Article  CAS  PubMed  Google Scholar 

  65. Khor CM, Khan MM, Khan MY, Khan A, Harunsani MH (2022) Enhanced photocatalytic activity of La and Zr-codoped AgNbO3 for rhodamine B and methylene blue degradation. J Saudi Chem Soc 26:101534

    Article  CAS  Google Scholar 

  66. Tripathi VK, Nagarajan R (2017) Correlating the Influence of Two Magnetic Ions at the A-Site with the Electronic, Magnetic, and Catalytic Properties in Gd1–xDyxCrO3. ACS Omega 2:2657–2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xian T, Yang H, Di L (2014) Photocatalytic reduction synthesis of SrTiO3-graphene nanocomposites and their enhanced photocatalytic activity. Nanoscale Res Lett 9:1–9

    Article  ADS  CAS  Google Scholar 

  68. Abdi M, Mahdikhah V, Sheibani S (2020) Visible light photocatalytic performance of La-Fe co-doped SrTiO3 perovskite powder. Opt Mater 102:109803

    Article  CAS  Google Scholar 

  69. Aamir M, Bibi I, Ata S, Majid F, Kamal F, Alwadai S, Sultan N, Iqbal M, S.Aadil M, Iqbal M (2021) Graphene oxide nanocomposite with Co and Fe doped LaCrO3 perovskite active under solar light irradiation for the enhanced degradation of crystal violet dye. J Mol Liq 322:114895

    Article  CAS  Google Scholar 

  70. Ghafoor A, Bibi I, Majid F, Ata S, Nouren S, Raza Q, Mansoor S, Alqahtani FO, Elqahtani ZM, Iqbal M (2023) Yttrium and cobalt doped LaNiO3 nanoparticles synthesis and solar light driven photocatalytic removal of Rhodamine B. Mater Res Bull 159:112112

    Article  CAS  Google Scholar 

  71. Gupta P, Poddar P (2015) Using Raman and dielectric spectroscopy to elucidate the spin phonon and magnetoelectric coupling in DyCrO3 nanoplatelets. RSC Adv 5:10094–10101

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Dr Neeraj Panwar would like to thank DST SERB, India, for the use of facilities sanctioned in the Project ECR/2017/002681. Ms Manjeet Rani is thankful to DST New Delhi India for the INSPIRE fellowship (IF No. 190213). The XRD facility under CIF CURaj is also acknowledged. The authors also gratefully acknowledge Dr Anil Ohlan (Department of Physics, MDU Rohtak) and Dr Ritu Singh (Department of Environmental Science, CURaj) for providing the facility for optical and absorbance measurements to execute the photocatalytic analysis.

Author information

Authors and Affiliations

Authors

Contributions

MR: conceptualization, methodology, investigation, preparation of samples, Formal Analysis, writing original draft. KS: Formal Analysis, investigation. NP: conceptualization, methodology, investigation, validation, reviewing and editing.

Corresponding author

Correspondence to Neeraj Panwar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, M., Singh, K. & Panwar, N. Adsorption and photocatalytic study of dyes for waste-water treatment using Mn modified DyCrO3 nanomaterials. J Sol-Gel Sci Technol 109, 483–501 (2024). https://doi.org/10.1007/s10971-023-06249-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06249-w

Keywords

Navigation