Skip to main content
Log in

Electrical and low-field magnetoresistance transport effect of La0.7Ca0.3MnO3: MnO2 composite ceramics

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Simultaneously increasing the temperature coefficient of resistivity (TCR) and low-field magnetoresistance (LFMR) has become important. Generally, Mn ions play an important role in the change of electromagnetic properties of the system, and the change of Mn3+/Mn4+ causes the J-T effect and DE interaction. In this paper, (La0.7Ca0.3MnO3)1-x: (MnO2)x(x = 0–0.2) ceramics are prepared by sol-gel and solid-state routine. The morphology, structure, and transport properties are studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectra (XPS), and four-probe technique test methods. The XRD results show that all samples have high crystallinity and density, and the structure (space group) are determined to be Pnma. The SEM grain statistics diagram results show that with the increase of MnO2, the grain size increases and grain boundary decreases. The XPS shows that Mn4+ ions content increases first and then decreases. Moreover, the electrical and magnetic transport properties of the samples are improved, resistivity(ρ), TCR increased from 39.89 to 44.29%·K−1, MR increased from 53.29 to 75.42%, which is larger than most of the other reported values and provides a new direction for the selection of infrared detection materials.

Graphical Abstract

Highlights

  • (La0.7Ca0.3MnO3)1-x:(MnO2)x(x = 0,0.04,0.08,0.12,0.2) composite were prepared by sol-gel and solid-state routine.

  • By adding MnO2, the structural, electrical and magnetic transport properties of La0.7Ca0.3MnO3 were studied.

  • Both the temperature coefficient of resistance (TCR) and low-field magnetoresistance (LFMR) were greatly enhance.

  • Electrical and magnetic transport properties were investigated and discussed on the basis of the Jahn-Teller (JT) effect and double-exchange (DE) mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fiebig M, Lottermoser T, Meier D, Trassin M (2019) The evolution of multiferroics. Nat Rev Mater 4:146–146

    Article  Google Scholar 

  2. Yu X, Jin S, Li H, Guan X, Gu X, Liu X (2021) High room-temperature TCR and MR of La1-xSrxMnO3 thin films for advanced uncooled infrared bolometers and magnetic sensors. Appl Surf Sci 570:151221

    Article  CAS  Google Scholar 

  3. Yuan L, Wang Q, Tang F, Li B, Ming P, Zhang C (2022) An enhanced thin-film resistance temperature detector and its application for catalyst layer surface temperature measurement inside PEMFC. eTransportation 13:100178

    Article  Google Scholar 

  4. Jonker GH, Van JH (1950) Santen, Ferromagnetic compounds of manganese with perovskite structure. Physica 16:337–349

    Article  CAS  Google Scholar 

  5. Yan F, Zhao G, Song N (2013) Sol-gel preparation of La-doped bismuth ferrite thin film and its low-temperature ferromagnetic and ferroelectric properties. J Rare Earth 31:60–64

    Article  CAS  Google Scholar 

  6. Sun T, Liu Y, Dong G, Zhang S, Li Z, Chu K, Pu X, Li H, Ji F, Zhang H, Chen Q, Liu X (2019) La0.67(Ca0.24Sr0.09)MnO3:xAg2O (0 ≤ x ≤ 0.25) composites with improved room–temperature TCR and MR for advanced uncooling infrared bolometers and magnetic sensors. Appl Surf Sci 493:448–457

    Article  CAS  Google Scholar 

  7. Bhatt RC, Awana VPS, Kishan H, Srivastava PC (2015) Near room temperature magneto-transport (TCR & MR) and magnetocaloric effect in Pr2/3Sr1/3MnO3:Ag2O composite. J Alloy Compd 619:151–156

    Article  CAS  Google Scholar 

  8. Jin S, Yu X, Guan X, Gu X, Yan Y, Wu K, Zhao L, Liu X (2021) Co-optimization of the matrix phase and second phase for improved room-temperature TCR of (La0.6Na0.4MnO3)1−xAgx composites. Mater Lett 304:130714

    Article  CAS  Google Scholar 

  9. Guo J, Zhang H, Li Y, Yang S, Li J, Chen Q (2022) Effect of La-site substitution on the magnetoelectric transport properties of La0.7Ca0.3MnO3 polycrystalline ceramics. Ceram Int 48:17425–17432

    Article  CAS  Google Scholar 

  10. Li Y, Li Y, Li J, Wang C, Chen Q, Zhang H (2022) Effect of Fe substitution on temperature coefficient of resistance and magnetoresistance of La0.67Ca0.33MnO3 polycrystalline ceramics. Ceram Int 48:8169–8176

    Article  CAS  Google Scholar 

  11. Dong G, Liu Y, Zhang S, Chu K, Li H, Pu X, Sun T, Ji F, Liu X (2019) Room-temperature TCR and low-field MR of La0.7Ca0.3-xSrxMnO3 (0.06 ≤ x ≤ 0.1) polycrystalline ceramics. Ceram Int 45:21448–21456

    Article  CAS  Google Scholar 

  12. Li Y, Yan K, Li J, Li Y, Chen Q, Zhang H (2021) Large temperature coefficient of resistance and magnetoresistance of La0.71Ca0.29Mn1-xCoxO3 polycrystalline ceramics. Ceram Int 47:32097–32103

    Article  CAS  Google Scholar 

  13. Wang HS, Qi LF, Li YL, Li JF, Zhu XX, Chen QM, Zhang H (2022) Electrical properties and enhanced low-field magnetoresistance of Mn2O3-added La0.7Ca0.3MnO3 ceramics. Ceram Int 48:33984–33991

    Article  CAS  Google Scholar 

  14. Karmakar S, Taran S, Chaudhuri BK, Sakata H, Sun CP, Huang CL, Yang HD (2005) Study of grain boundary contribution and enhancement of magnetoresistance in La0.67Ca0.33MnO3/V2O5 composites. J Phys D-Appl Phys 38:3757–3763

    Article  CAS  Google Scholar 

  15. Lee DJ, Park CS, Lee CJ, Song JD, Koo HC, Yoon CS, Yoon IT, Kim HS, Kang TW, Shon Y (2014) Enhanced ferromagnetism by preventing antiferromagnetic MnO2 in InP: Be/Mn/InP: Be triple layers fabricated using molecular beam epitaxy. Curr Appl Phys 14:558–562

    Article  Google Scholar 

  16. Ngida REA, Zawrah MF, Khattab RM, Heikal E (2020) Utilization of leached MnO2 for the mechanosynthesis of nano LaxCa1-xMnO3 and LaxSr1-xMnO3: Sinterability and properties. Ceram Int 46:3433–3442

    Article  CAS  Google Scholar 

  17. Chen HL, Jin C, Song XY, Wang P, Chen L, Bai HL (2021) Antiferromagnetic metallic state and low-temperature magnetoresistance in epitaxial La0.85Sr0.15MnO3 films. Appl Surf Sci 569:151032

    Article  CAS  Google Scholar 

  18. Kubo S, Goto S, Iwata R, Kouhara Y, Takei T, Yoshida M (2014) Characteristic evaluation of lead-free sealing glasses composed of V2O5-MnO2-KPO3-CuO. Kagaku Kogaku Ronbunshu 40:137–142

    Article  CAS  Google Scholar 

  19. Ning XK, Wang ZJ, Zhang ZD (2015) Fermi Level shifting, Charge Transfer and Induced Magnetic Coupling at La0.7Ca0.3MnO3/LaNiO3 Interface. Sci Rep 5:8460

    Article  CAS  Google Scholar 

  20. Cheng SL, Du CH, Chuang TH, Lin JG (2019) Atomic replacement effects on the band structure of doped perovskite thin films. Sci Rep 9:7828

    Article  CAS  Google Scholar 

  21. Pashchenko AV, Pashchenko VP, Prokopenko VK, Turchenko VA, Revenko YF, Mazur AS, Sycheva VY, Liedienov NA, Pitsyuga VG, Levchenko GG (2017) Role of structure imperfection in the formation of the magnetotransport properties of rare-earth manganites with a perovskite structure. J Exp Theor Phys 124:100–113

    Article  CAS  Google Scholar 

  22. Cui YJ, Ge HL, Jia GQ, Han YB, Yu SJ, Zhang JC (2004) Transport properties of rare earth manganese oxide La0.67Ca0.33Mn1-xFexO3. J Rare Earths 22:663–667

    Google Scholar 

  23. Millis AJ, Shraiman BI, Mueller R (1996) Dynamic Jahn-Teller Effect and Colossal Magnetoresistance in La 1-xSrxMnO3. Phys Rev Lett 77:175–178

    Article  CAS  Google Scholar 

  24. Yu XH, Li HJ, Chu KL, Pu XR, Gu X, Jin SZ, Guan XL, Liu X (2021) A comparative study on high TCR and MR of La0.67Ca0.33MnO3 polycrystalline ceramics prepared by solid-state and sol-gel methods. Ceram Int 47:13469–13479

    Article  CAS  Google Scholar 

  25. Lee J, Ha Y, Lee S (2021) Hydrogen Control of Double Exchange Interaction in La0.67Sr0.33MnO3 for Ionic-Electric-Magnetic Coupled Applications. Adv Mater 33:2007606

    Article  CAS  Google Scholar 

  26. Li J, Chen Q, Yang SA, Yan K, Zhang H, Liu X (2019) Electrical transport properties and enhanced broad-temperature-range low field magnetoresistance in LCMO ceramics by Sm2O3 adding. J Alloy Compd 790:240–247

    Article  CAS  Google Scholar 

  27. Prasad R, Benedek R, Thackeray MM, Wills JM, Yang LH, First-principles calculations for lithiated manganese oxides, Symposium on Solid State Ionics at the 1998 MRS Fall MeetingBoston, Ma, 1999, pp. 137–142

  28. Gupta Gong, Xiao Duncombe, Lecoeur Trouilloud, Wang Dravid, Sun (1996) Grain-boundary effects on the magnetoresistance properties of perovskite manganite films. Phys Rev B, Condens matter 54:R15629–R15632

    Article  CAS  Google Scholar 

  29. Dong G, Liu Y, Zhang S, Chu KL, Li HJ, Pu XR, Sun T, Ji FQ, Liu X (2019) Room-temperature TCR and low-field MR of La0.7Ca0.3-xSrxMnO3 (0.06 <= x <= 0.1) polycrystalline ceramics. Ceram Int 45:21448–21456

    Article  CAS  Google Scholar 

  30. Liu HX, Wang CB, Wu L, Yin L, Li L, Shen Q, Zhang LM (2018) Effect of Ho-doping on structural, electrical and magnetic properties of La0.7Sr0.3MnO3 ceramics prepared by Plasma-Activated Sintering. J Mater Sci 53:2375–2382

    Article  CAS  Google Scholar 

  31. Yang SA, Chen QM, Yang YR, Gao Y, Xu RD, Zhang H, Ma J (2021) Silver addition in polycrystalline La0.7Ca0.3MnO3: Large magnetoresistance and anisotropic magnetoresistance for manganite sensors. J Alloys Comp 882:160719

    Article  CAS  Google Scholar 

  32. Li D, Chen Q, Li Z, Li Y, Zhang H, Zhang Y (2018) Effects of silver doping on structure and electrical properties of La0.67Ca0.23K0.1MnO3 polycrystalline ceramic. Ceram Int 44:3448–3453

    Article  CAS  Google Scholar 

  33. Li Y, Yu P, Wang XJ, Ling FX, Zhang H, Chen QM (2022) Effect of the calcination temperature on temperature coefficient of resistance and magnetoresistance of La0.67Ca0.33MnO3 polycrystalline ceramics. J Phys Chem Solids 170:110922

    Article  CAS  Google Scholar 

  34. Yuldashev SU, Im H, Yalishev VS, Park CS, Kang TW, Lee S, Sasaki Y, Liu X, Furdyna JK (2003) Effect of additional nonmagnetic acceptor doping on the resistivity peak and the Curie temperature of Ga1-xMnxAs epitaxial layers. Appl Phys Lett 82:1206–1208

    Article  CAS  Google Scholar 

  35. Guo JA, Zhang H, Li YL, Yang SA, Li JF, Chen QM (2022) Effect of La-site substitution on the magnetoelectric transport properties of La0.7Ca0.3MnO3 polycrystalline ceramics. Ceram Int 48:17425–17432

    Article  CAS  Google Scholar 

  36. Venkataiah G, Prasad V, Venugopal P (2007) Reddy, Influence of A-site cation mismatch on structural, magnetic and electrical properties of lanthanum manganites. J Alloy Compd 429:1–9

    Article  CAS  Google Scholar 

  37. Siwach PK, Awana VPS, Kishan H, Prasad R, Singh HK, Balamurugan S, Takayama-Muromachi E, Srivastava ON (2007) Room temperature magneto-resistance and temperature coefficient of resistance in La0.7Ca0.3-xAgxMnO3 thin films. J Appl Phys 101:073912

    Article  Google Scholar 

  38. Clarkson JD, Fina I, Liu ZQ, Lee Y, Kim J, Frontera C, Cordero K, Wisotzki S, Sanchez F, Sort J, Hsu SL, Ko C, Aballe L, Foerster M, Wu J, Christen HM, Heron JT, Schlom DG, Salahuddin S, Kioussis N, Fontcuberta J, Marti X, Ramesh R (2017) Hidden magnetic states emergent under electric field, in a room temperature composite magnetoelectric multiferroic. Sci Rep. 7:15460

    Article  CAS  Google Scholar 

  39. Ren X, Wu TZ, Sun YM, Li Y, Xian GY, Liu XH, Shen CM, Gracia J, Gao HJ, Yang HT, Xu ZJ (2021) Spin-polarized oxygen evolution reaction under magnetic field. Nat Commun 12:2608

    Article  CAS  Google Scholar 

  40. Deac IG, Balasz I (2012) Electroresistance, magnetocapacitance and magnetotransport properties of La0.55Ca0.45MnO3/BaTiO3 composite. Mater Chem Phys 136:850–857

    Article  CAS  Google Scholar 

  41. Petukhov DA (2016) Spin-polarized current and tunnel magnetoresistance in heterogeneous single-barrier magnetic tunnel junctions. Phys E: Low-dimen Syst Nanostruct 80:31–35

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 11564021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Qi, L., Wang, H. et al. Electrical and low-field magnetoresistance transport effect of La0.7Ca0.3MnO3: MnO2 composite ceramics. J Sol-Gel Sci Technol 109, 75–85 (2024). https://doi.org/10.1007/s10971-023-06246-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06246-z

Keywords

Navigation