Skip to main content
Log in

Effect of Ni2+and Co2+ substitution on the characteristics of the strontium aluminum hexaferrite (SrAl2Fe10O19)

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The nickel and cobalt substituted strontium aluminum hexaferrite Sr1-xNixAl2Fe10O19/Sr1-xCoxAl2Fe10O19 (x = 0.1, 0.2) were synthesized via the sol-gel auto-combustion technique using glycine fuel. The particles formed in the hexagonal crystal structure with space group P63/mmc. The crystallite size of the sample varied in the range of 49–58 nm. The field-emission scanning microscopy was adopted for morphological analysis, and the images revealed the plate-like formation of the particles. X-ray photoelectron spectroscopy confirmed the presence and oxidation states of all the elements. The variation of magnetic parameters as magnetic saturation (33.96–41.54 emu/gm), coercivity (3681–7647 Oe), squareness ratio (0.6), and energy product values (0.23–0.40 MGOe) were studied through vibrating sample magnetometer. The electric studies disclosed the presence of relaxations in the system, which was interpreted through Koop and Maxwell-Wagner’s model. The synthesized samples are potential candidates for permanent magnet and magnetic recording media applications owing their remarkable magnetic properties.

Graphical Abstract

Highlights

  • Conventional and economical sol-gel auto-combustion method was adopted for the synthesis procedure.

  • Double site substitution was performed to investigate the effect on magnetic and dielectric properties.

  • Substitution of Ni yielded a notable energy product value (BHmax) of 3.18 kJ/m3.

  • High dielectric constant values suggest sample’s potential application in microwave frequency range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Liaquat A, Anis-ur-Rehman M, ul Haq A (2020) Impact of Gd doping on the dielectric and magnetic properties of (Sr–Ba) Fe12O19 nanoparticles. J Alloy Compd 822:153561. https://doi.org/10.1016/j.jallcom.2019.153561

    Article  CAS  Google Scholar 

  2. Kumar A, Verma MK, Singh S et al. (2020) Electrical, magnetic and dielectric properties of cobalt-doped barium hexaferrite BaFe12−xCoxO19 (x = 0.0, 0.05, 0.1 and 0.2) ceramic prepared via a chemical route. J Electron Mater 49:6436–6447. https://doi.org/10.1007/s11664-020-08364-8

    Article  CAS  Google Scholar 

  3. Rehman MR, Akram MA, Gul IH (2022) Improved electrical properties of strontium hexaferrite nanoparticles by Co2+ substitutions. ACS Omega 7:43432–43439. https://doi.org/10.1021/acsomega.2c03256

    Article  CAS  Google Scholar 

  4. Chen N, Yang K, Gu M (2010) Microwave absorption properties of La-substituted M-type strontium ferrites. J Alloy Compd 490:609–612. https://doi.org/10.1016/j.jallcom.2009.10.116

    Article  CAS  Google Scholar 

  5. Pullar RC (2012) Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog Mater Sci 57:1191–1334. https://doi.org/10.1016/j.pmatsci.2012.04.001

    Article  CAS  Google Scholar 

  6. Vinnik DA, Trukhanov AV, Podgornov FV et al. (2020) Correlation between entropy state, crystal structure, magnetic and electrical properties in M-type Ba-hexaferrites. J Eur Ceram Soc 40:4022–4028. https://doi.org/10.1016/j.jeurceramsoc.2020.04.036

    Article  CAS  Google Scholar 

  7. VE Zhivulin, OV Zaitseva, EA Trofimovo, et al (2021) Anisotropy of the electrical properties of a single crystal of BaFe11.25Ti0.75O19 M-type barium hexaferrite. J Solid State Chem 298. https://doi.org/10.1016/j.jssc.2021.122104

  8. Buzinaro MAP, Macêdo MA, Costa BFO, Ferreira NS (2019) Disorder of Fe(2)O5 bipyramids and spin-phonon coupling in SrFe 12 O 19 nanoparticles. Ceram Int 45:13571–13574. https://doi.org/10.1016/j.ceramint.2019.03.214

    Article  CAS  Google Scholar 

  9. Saafan SA, Assar ST, Mansour SF (2012) Magnetic and electrical properties of Co1-xCaxFe2O4 nanoparticles synthesized by the auto combustion method. J Alloy Compd 542:192–198. https://doi.org/10.1016/j.jallcom.2012.07.050

    Article  CAS  Google Scholar 

  10. Kishor G, Bhowmik RN, Sinha AK (2022) Structural phase stabilization via Ba site doping with bivalent Sr, Ca and Zn ions and Fe site doping with trivalent Cr and Ga ions in the BaFe12O19 hexaferrite and its magnetic modification. CrystEngComm 24:5269–5288. https://doi.org/10.1039/d2ce00583b

    Article  CAS  Google Scholar 

  11. G Han, R Sui, Y Yu, et al (2021) Structure and magnetic properties of the porous Al-substituted barium hexaferrites. J Magn Magn Mater 528:1–7.

  12. Trusov LA, Gorbachev EA, Lebedev VA et al. (2018) Ca-Al double-substituted strontium hexaferrites with giant coercivity. Chem Commun 54:479–482. https://doi.org/10.1039/c7cc08675j

    Article  CAS  Google Scholar 

  13. XM Ma, J Liu, SZ Zhu, HG Shi (2016) Tuning of magnetic properties of aluminium-doped strontium hexaferrite powders. Chin Phys B 25: https://doi.org/10.1088/1674-1056/25/12/126102

  14. Irshad Z, Bibi I, Ghafoor A et al. (2022) Results in physics Ni doped SrFe12O19 nanoparticles synthesized via micro-emulsion route and photocatalytic activity evaluation for the degradation of crystal violet under visible light irradiation. Results Phys 42:106006. https://doi.org/10.1016/j.rinp.2022.106006

    Article  Google Scholar 

  15. V Dixit, SG Kim, J Park, YK Hong (2017) Effect of ionic substitutions on the magnetic properties of strontium hexaferrite: a first principles study. AIP Adv 7. https://doi.org/10.1063/1.4995309

  16. Alna’washi GA, Alsmadi AM, Bsoul I et al. (2021) Investigation on X-ray photoelectron spectroscopy, structural and low temperature magnetic properties of Ni-Ti co-substituted M-type strontium hexaferrites prepared by ball milling technique. Results Phys 28:104574. https://doi.org/10.1016/j.rinp.2021.104574

    Article  Google Scholar 

  17. Godara SK, Singh M, Kaur V et al. (2021) Effect of calcium solubility on structural, microstructural and magnetic properties of M-type barium hexaferrite. Ceram Int 47:20399–20406. https://doi.org/10.1016/j.ceramint.2021.04.048

    Article  CAS  Google Scholar 

  18. Godara SK, Kaur V, Narang SB et al. (2021) Tailoring the magnetic properties of M-type strontium ferrite with synergistic effect of co- substitution and calcinations temperature. J Asian Ceram Soc 9:686–698. https://doi.org/10.1080/21870764.2021.1911059

    Article  Google Scholar 

  19. Sharma A, Jasrotia R, Kumari N et al. (2022) Tailoring the structural and magnetic traits of copper modified BaFe12O19 nanostructured hexaferrites for recording media application. J Magn Magn Mater 564:170124. https://doi.org/10.1016/j.jmmm.2022.170124

    Article  CAS  Google Scholar 

  20. R Jasrotia, N Kumari, R Verma, et al. (2023) Effect of rare earth (Nd3+) metal doping on structural, morphological, optical and magnetic traits of Zn–Mg nano-ferrites. J Rare Earths https://doi.org/10.1016/j.jre.2022.08.015

  21. Godara SK, Kaur V, Chuchra K et al. (2021) Impact of Zn2+-Zr4+ substitution on M-type Barium Strontium Hexaferrite’s structural, surface morphology, dielectric and magnetic properties. Results Phys 22:103892. https://doi.org/10.1016/j.rinp.2021.103892

    Article  Google Scholar 

  22. Godara SK, Kaur V, Narang SB et al. (2019) Tunable M-type nano barium hexaferrite material by Zn2+/Zr4+ co-doping. Mater Res Express 6:116111

    Article  CAS  Google Scholar 

  23. Kumar S, Kaur T, Kumar S, Srivastava AK (2015) Effect of heat treatment on properties of Sr0.7Nd0.3Co0.3Fe11.7O19. J Supercond Nov Magn 28:2935–2940. https://doi.org/10.1007/s10948-015-3105-7

    Article  CAS  Google Scholar 

  24. Godara SK, Dhaka RK, Kaur N et al. (2021) Synthesis and characterization of Jamun pulp-based M-type barium hexaferrite via sol–gel auto-combustion. Results Phys 22:103903. https://doi.org/10.1016/j.rinp.2021.103903

    Article  Google Scholar 

  25. Zahid M, Siddique S, Anum R et al. (2021) M-type barium hexaferrite-based nanocomposites for EMI shielding application: a review. J Supercond Nov Magn 34:1019–1045

    Article  CAS  Google Scholar 

  26. Joshi H, Kumar AR (2022) Investigations and correlations of structural, magnetic, and dielectric properties of M-type barium hexaferrite (BaFe12O19) for hard magnet applications. J Supercond Nov Magn 35:2435–2451. https://doi.org/10.1007/s10948-022-06203-x

    Article  CAS  Google Scholar 

  27. Yang Y, Wang F, Shao J et al. (2019) Structural, spectral, magnetic, and electrical properties of Gd–Co-co-substituted M-type Ca–Sr hexaferrites synthesized by the ceramic method. Appl Phys A Mater Sci Process 125:1–13. https://doi.org/10.1007/s00339-018-2339-1

    Article  CAS  Google Scholar 

  28. Rashad MM, Rasly M, El-Sayed HM et al. (2013) Controlling the composition and the magnetic properties of hexagonal Co2Z ferrite powders synthesized using two different methods. Appl Phys A Mater Sci Process 112:963–973. https://doi.org/10.1007/s00339-012-7456-7

    Article  CAS  Google Scholar 

  29. SK Godara, M Singh, V Kaur, et al (2022) Effect of calcium solubility on structural, microstructure and magnetic properties of SrFe12O19. Phys B Condens Matter 628. https://doi.org/10.1016/j.physb.2021.413560.

  30. Gupta A, Kar M, Roy PK (2022) Substitutional effect of Ni-Al in electromagnetic properties of Sr-hexaferrite based non-rare earth magnet with high energy density for motor applications. Mater Chem Phys 292:126842. https://doi.org/10.1016/j.matchemphys.2022.126842

    Article  CAS  Google Scholar 

  31. Verma S, Singh A, Sharma S et al. (2023) Magnetic and structural analysis of BaZnxZrxFe12–2xO19 (x = 0.1–0.7) hexaferrite samples for magnetic applications. J Alloy Compd 930:167410. https://doi.org/10.1016/j.jallcom.2022.167410

    Article  CAS  Google Scholar 

  32. Mehmood S, Anis-ur-Rehman M (2020) Association of structural strains and dielectric relaxation in Co-doped Sr-Hexaferrites. Phys B Condens Matter 582:412003. https://doi.org/10.1016/j.physb.2020.412003

    Article  CAS  Google Scholar 

  33. Gupta A, Roy PK (2021) Synthesis and tuning the electro-magnetic properties of Co-Cr substituted Sr-hexaferrite towards diverse usages. Mater Sci Eng B Solid State Mater Adv Technol 263:114815. https://doi.org/10.1016/j.mseb.2020.114815

    Article  CAS  Google Scholar 

  34. Sriramulu G, Maramu N, Reddy BR et al. (2022) Structural, magnetic and electromagnetic properties of microwave-hydrothermally synthesized Sr(Zr-Mn)2xFe12-2xO19 hexaferrites. Mater Res Bull 149:111732. https://doi.org/10.1016/j.materresbull.2022.111732

    Article  CAS  Google Scholar 

  35. S Thakur, B Raina, KK Bamzai (2022) Investigations on structural, spectroscopic and magnetic properties of yttrium barium orthoferrite and nickel doped strontium hexaferrite composites. Appl Phys A Mater Sci Process 128. https://doi.org/10.1007/s00339-022-05399-y

  36. T Yener, İ Araz, A Kırsoy, et al (2022) Electromagnetic properties in the structure of cerium-copper substituted barium hexaferrite. J Mol Struct 1269. https://doi.org/10.1016/j.molstruc.2022.133752

  37. VE Zhivulin, EA Trofimov, OV Zaitseva, et al (2022) Effect of configurational entropy on phase formation, structure, and magnetic properties of deeply substituted strontium hexaferrites. Ceram Int https://doi.org/10.1016/j.ceramint.2022.09.082

  38. Tang R, Jiang C, Qian W et al. (2015) Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41 hexaferrite. Sci Rep. 5:1–11. https://doi.org/10.1038/srep13645

    Article  CAS  Google Scholar 

  39. Rusevich LL, Kotomin EA, Zvejnieks G et al. (2022) Effects of Al Doping on Hydrogen Production Efficiency upon Photostimulated Water Splitting on SrTiO3Nanoparticles. J Phys Chem C 126:21223–21233. https://doi.org/10.1021/acs.jpcc.2c05993

    Article  CAS  Google Scholar 

  40. Anantharamaiah PN, Shashanka HM, Srinivasan S et al. (2022) Structural, magnetic, and magnetostriction properties of flexible, nanocrystalline CoFe2O4 films made by chemical processing. ACS Omega 7:43813–43819. https://doi.org/10.1021/acsomega.2c04943

    Article  CAS  Google Scholar 

  41. Joshi H, Kumar AR (2021) Scrutiny and correlations of structural, magnetic, and dielectric properties of M-type strontium hexaferrite (SrFe12O19) for permanent magnet applications. J Mater Sci Mater Electron 32:4331–4346. https://doi.org/10.1007/s10854-020-05176-8

    Article  CAS  Google Scholar 

  42. Dagar S, Hooda A, Khasa S, Malik M (2020) Structural refinement, investigation of dielectric and magnetic properties of NBT doped BaFe12O19 novel composite system. J Alloy Compd 826:154214. https://doi.org/10.1016/j.jallcom.2020.154214

    Article  CAS  Google Scholar 

  43. Pandey R, Kumar Pradhan L, Kumari S et al. (2020) Surface magnetic interactions between Bi0.85La0.15FeO3 and BaFe12O19 nanomaterials in (1-x)Bi0.85La0.15FeO3-(x)BaFe12O19 nanocomposites. J Magn Magn Mater 508:166862. https://doi.org/10.1016/j.jmmm.2020.166862

    Article  CAS  Google Scholar 

  44. Basha DB, Kumar NS, Kumar GR, et al (2022) Structural, electrical, and magnetic properties of nano Sr1-XLaXFe12O19 (X = 0. 2 - 0. 8)

  45. Z Li, V Koval, A Mahajan, et al (2020) Room-temperature multiferroic behavior in layer-structured Aurivillius phase ceramics. Appl Phys Lett 117. https://doi.org/10.1063/5.0017781

  46. A Hilczer, K Pasińska (2022) Dielectric response of Sr0.95Nd0.05Fe12-xScxO19 hexaferrites nanoceramics as dependent on crystal and microstructure and ceramic heterogeneity. J Alloys Compd 893. https://doi.org/10.1016/j.jallcom.2021.162303

  47. MR Rehman, MA Akram, IH Gul (2022) Improved electrical properties of strontium hexaferrite nanoparticles by Co2+ substitutions. ACS Omega https://doi.org/10.1021/acsomega.2c03256

  48. Khadhraoui S, Triki A, Hcini S et al. (2014) Variable-range-hopping conduction and dielectric relaxation in Pr 0.6Sr0.4Mn0.6Ti0.4O 3±δ perovskite. J Magn Magn Mater 371:69–76. https://doi.org/10.1016/j.jmmm.2014.07.044

    Article  CAS  Google Scholar 

  49. Rahmouni H, Smari M, Cherif B et al. (2015) Conduction mechanism, impedance spectroscopic investigation and dielectric behavior of La0.5Ca0.5-xAgxMnO3 manganites with compositions below the concentration limit of silver solubility in perovskites (0 ≤ x ≤ 0.2). Dalton Trans 44:10457–10466. https://doi.org/10.1039/c5dt00444f

    Article  CAS  Google Scholar 

  50. Lobo LS, Kalainathan S, Kumar AR (2015) Investigation of electrical studies of spinel FeCo2O4 synthesized by sol-gel method. Superlattices Microstruct 88:116–126. https://doi.org/10.1016/j.spmi.2015.09.010

    Article  CAS  Google Scholar 

  51. Thansanga L, Shukla A, Kumar N, Choudhary RNP (2020) Study of effect of Dy substitution on structural, dielectric, impedance and magnetic properties of bismuth ferrite. J Mater Sci Mater Electron 31:10006–10017. https://doi.org/10.1007/s10854-020-03545-x

    Article  CAS  Google Scholar 

  52. Tanwar K, Gyan DS, Gupta P et al. (2018) Investigation of crystal structure, microstructure and low temperature magnetic behavior of Ce4+ and Zn2+ co-doped barium hexaferrites (BaFe12O19). RSC Adv 8:19600–19609. https://doi.org/10.1039/C8RA02455C

    Article  CAS  Google Scholar 

  53. Almessiere MA, Unal B, Slimani Y et al. (2019) Results in physics electrical and dielectric properties of Nb 3 + ions substituted Ba-hexaferrites. Results Phys 14:102468. https://doi.org/10.1016/j.rinp.2019.102468

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge VIT management for the facilities provided for this work. The authors also would like to convey their gratefulness to all the lab members.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Methodology, Formal analysis, and investigation, Writing—original draft preparation: HJ; Writing—review and editing, Supervision: ARK.

Corresponding author

Correspondence to A. Ruban Kumar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, H., Ruban Kumar, A. Effect of Ni2+and Co2+ substitution on the characteristics of the strontium aluminum hexaferrite (SrAl2Fe10O19). J Sol-Gel Sci Technol 109, 32–55 (2024). https://doi.org/10.1007/s10971-023-06245-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06245-0

Keywords

Navigation