Skip to main content

Simple and effective sol-gel methodology to obtain a bactericidal coating for prostheses

Abstract

A silica-based sol-gel antibacterial coating has been prepared, and its performance has been compared with an antibacterial hydroxyapatite-based coating when applied to Ti6Al4V alloy. The antibacterial functionality has been provided by silver nanoparticles (Ag NPs) deposited after Ag+ reduction. This reduction was achieved by a low-temperature treatment in the case of the silica-based coating (<100 °C) and with high temperature in the case of the hydroxyapatite one (500 °C). Field emission scanning electron microscopy (FESEM) showed a better and more homogeneous distribution of Ag NPs on the coating in the case of the silica coating. Atomic force microscopy (AFM) characterization with a 1 nm diameter tip showed the formation of Ag NPs with a diameter of around 30 nm. Ag+ release in simulated body fluid at 37 °C, measured by inductively coupled plasma-mass spectrometry (ICP-MS), showed a continued release of Ag+ with time, achieving 2.68 mg Ag+/L after 40 days in the case of silica-based coating (approximately a fivefold when compared to hydroxyapatite (HA) coating). Antibacterial activity for both coatings was tested against Staphylococcus aureus and Staphylococcus epidermidis, showing a 99.9% lethality compared to the sol-gel coatings without Ag NPs. The silica-based coating combines the advantages of low-temperature synthesis, excellent distribution of Ag NPs, good antibacterial properties, and sustained release for 40 days.

Graphical abstract

The proposed sol-gel method of synthesis of bactericidal coatings showed the formation of Ag NPs of around 30 nm over the entire surface of the silica coating, as observed by FESEM and AFM characterization.

Highlights

  • Silica-based antibacterial coatings with silver nanoparticles have been obtained by sol-gel.

  • Silver nanoparticles (Ag NPs) are generated at low temperature (80 °C).

  • Ag NPs are synthesized due to a redox reaction between Ag+ with GPTMS as observed by FTIR.

  • Atomic force microscopy showed the formation of 30 nm diameter Ag NPs on the surface.

  • Transmission electron microscopy showed the formation of Ag NPs inside the coating.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Neoh KG, Kang ET (2011) Combating Bacterial Colonization on Metals via Polymer Coatings: Relevance to Marine and Medical Applications. ACS Appl Mater Interfac 3:2808–2819. https://doi.org/10.1021/am200646t

    Article  CAS  Google Scholar 

  2. Echeverria C, Torres MDT, Fernández-García M, de la Fuente-Núñez C, Muñoz-Bonilla A (2020) Physical methods for controlling bacterial colonization on polymer surfaces. Biotechnol Adv 43:107586. https://doi.org/10.1016/j.biotechadv.2020.107586

    Article  CAS  Google Scholar 

  3. Reinosa JJ, Enríquez E, Fuertes V, Liu S, Menéndez J, Fernández JF (2022) The challenge of antimicrobial glazed ceramic surfaces. Ceram Int 48:7393–7404. https://doi.org/10.1016/j.ceramint.2021.12.121

    Article  CAS  Google Scholar 

  4. Munir MT, Pailhories H, Eveillard M, Aviat F, Lepelletier D, Belloncle C, Federighi M (2019) Antimicrobial Characteristics of Untreated Wood: Towards a Hygienic Environment. Health 11:152–170. https://doi.org/10.4236/health.2019.112014

    Article  CAS  Google Scholar 

  5. Chen J-C, Munir MT, Aviat F, Lepelletier D, Pape PL, Dubreil L, Irle M, Federighi M, Belloncle C, Eveillard M, Pailhoriès H (2020) Survival of Bacterial Strains on Wood (Quercus petraea) Compared to Polycarbonate, Aluminum and Stainless Steel. Antibiotics 9:804. https://doi.org/10.3390/antibiotics9110804

    Article  CAS  Google Scholar 

  6. Wißmann JE, Kirchhoff L, Brüggemann Y, Todt D, Steinmann J, Steinmann E (2021) Persistence of Pathogens on Inanimate Surfaces: A Narrative Review. Microorganisms 9:343. https://doi.org/10.3390/microorganisms9020343

    Article  CAS  Google Scholar 

  7. Kramer A, Schwebke I, Kampf G (2006) How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis 6:130. https://doi.org/10.1186/1471-2334-6-130

    Article  Google Scholar 

  8. Kawaguchi Y, Shibuya M, Kinoshita I, Yatabe J, Narumi I, Shibata H, Hayashi R, Fujiwara D, Murano Y, Hashimoto H, Imai E, Kodaira S, Uchihori Y, Nakagawa K, Mita H, Yokobori S-i, Yamagishi A (2020) DNA Damage and Survival Time Course of Deinococcal Cell Pellets During 3 Years of Exposure to Outer Space. Front Microbiol 11:2050. https://doi.org/10.3389/fmicb.2020.02050

    Article  Google Scholar 

  9. Salazar CB, Spencer P, Mohamad K, Jabeen A, Abdulmonem WA, Fernández N (2022) Future pandemics might be caused by bacteria and not viruses: Recent advances in medical preventive practice. Int J Health Sci 16:1–3

    Google Scholar 

  10. Zheng S, Bawazir M, Dhall A, Kim H-E, He L, Heo J, Hwang G (2021) Implication of Surface Properties, Bacterial Motility, and Hydrodynamic Conditions on Bacterial Surface Sensing and Their Initial Adhesion. Front Bioeng Biotechnol 9:643722. https://doi.org/10.3389/fbioe.2021.643722

    Article  Google Scholar 

  11. Grinberg M, Orevi T, Kashtan N (2019) Bacterial surface colonization, preferential attachment and fitness under periodic stress. PLOS Comput Biol 15:e1006815. https://doi.org/10.1371/journal.pcbi.1006815

    Article  CAS  Google Scholar 

  12. Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575. https://doi.org/10.1038/nrmicro.2016.94

    Article  CAS  Google Scholar 

  13. Tande AJ, Patel R (2014) Prosthetic Joint Infection. Clin Microbiol Rev 27:302–345. https://doi.org/10.1128/CMR.00111-13

    Article  CAS  Google Scholar 

  14. Salar-Vidal L, Auñón Á, Esteban J (2023) Molecular Diagnosis of Osteoarticular Implant-Associated Infection: Available Techniques and How We Can Use Them. Prosthesis 5:1–12. https://doi.org/10.3390/prosthesis5010001

    Article  Google Scholar 

  15. Trampuz A, Zimmerli W (2005) Prosthetic joint infections: update in diagnosis and treatment. Swiss Med Wkly 135:243–251. https://doi.org/10.4414/smw.2005.10934

    Article  Google Scholar 

  16. Staphylococcus epidermidis Infection (2023) StatPearls Publishing (FL). https://www.ncbi.nlm.nih.gov/books/NBK563240/. Accessed 22 August 2023.

  17. Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339:520–532. https://doi.org/10.1056/NEJM199808203390806

    Article  CAS  Google Scholar 

  18. Lee AS, de Lencastre H, Garau J, Kluytmans J, Malhotra-Kumar S, Peschel A, Harbarth S (2018) Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Prim 4:18033. https://doi.org/10.1038/nrdp.2018.33

    Article  Google Scholar 

  19. Andrade-Del Olmo J, Ruiz-Rubio L, Pérez-Alvarez L, Sáez-Martínez V, Vilas-Vilela JL (2020) Antibacterial Coatings for Improving the Performance of Biomaterials. Coatings 10:139. https://doi.org/10.3390/coatings10020139

    Article  CAS  Google Scholar 

  20. Cloutier M, Mantovani D, Rosei F (2015) Antibacterial Coatings: Challenges, Perspectives, and Opportunities. Trends Biotechnol 33:637–652. https://doi.org/10.1016/j.tibtech.2015.09.002

    Article  CAS  Google Scholar 

  21. Chen X, Zhou J, Qian Y, Zhao L (2023) Antibacterial coatings on orthopedic implants. Mater Today Bio 19:100586. https://doi.org/10.1016/j.mtbio.2023.100586

    Article  CAS  Google Scholar 

  22. Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat Rev Microbiol 11:371–384. https://doi.org/10.1038/nrmicro3028

    Article  CAS  Google Scholar 

  23. Bokov D, Jalil AT, Chupradit S, Suksatan W, Ansari MJ, Shewael IH, Valiev GH, Kianfar E (2021) Nanomaterial by Sol-Gel Method: Synthesis and Application. Adv Mater Sci Eng 2021:5102014. https://doi.org/10.1155/2021/5102014

    Article  CAS  Google Scholar 

  24. Danks AE, Hall SR, Schnepp Z (2016) The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater Horiz 3:91–112. https://doi.org/10.1039/C5MH00260E

    Article  CAS  Google Scholar 

  25. Mahltig B, Grethe T, Haase H (2018) In: Klein L, Aparicio M, Jitianu A (ed) Handbook of Sol-Gel Science and Technology, Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_102-1

  26. Xie K, Zhou Z, Guo Y, Wang L, Li G, Zhao S, Liu X, Li J, Jiang W, Wu S, Hao Y (2019) Long-term prevention of bacterial infection and enhanced osteoinductivity of a hybrid coating with selective silver toxicity. Adv Health Mater 8:1801465. https://doi.org/10.1002/adhm.201801465

    Article  CAS  Google Scholar 

  27. Radin S, Ducheyne P (2007) Controlled release of vancomycin from thin sol–gel films on titanium alloy fracture plate material. Biomaterials 28:1721–1729. https://doi.org/10.1016/j.biomaterials.2006.11.035

    Article  CAS  Google Scholar 

  28. Jia Z, Zhou W, Yan J, Xiong P, Guo H, Cheng Y, Zheng Y (2018) Constructing multilayer silk protein/Nanosilver biofunctionalized hierarchically structured 3D printed Ti6Al4 V scaffold for repair of infective bone defects. ACS Biomater Sci Eng 5:244–261. https://doi.org/10.1021/acsbiomaterials.8b00857

    Article  CAS  Google Scholar 

  29. Wang X, Sun W, Yang W, Gao S, Sun C, Li Q (2019) Mesoporous silica-protected silver nanoparticle disinfectant with controlled Ag+ ion release, efficient magnetic separation, and effective antibacterial activity. Nanoscale Adv 1:840–848. https://doi.org/10.1039/C8NA00275D

    Article  CAS  Google Scholar 

  30. Liu M, Huang F, Hung C-T, Wang L, Bi W, Liu Y, Li W (2022) An implantable antibacterial drug-carrier:mesoporous silica coatings with size-tunable vertical mesochannels. Nano Res 15:4243–4250. https://doi.org/10.1007/s12274-021-4055-y

    Article  CAS  Google Scholar 

  31. Celebioglu A, Topuz F, Yildiz ZI, Uyar T (2019) One-step green synthesis of antibacterial silver nanoparticles embedded in electrospun cyclodextrin nanofibers. Carbohydr Polym 207:471–479. https://doi.org/10.1016/j.carbpol.2018.12.008

    Article  CAS  Google Scholar 

  32. Monerris MJ, Broglia MF, Yslas EI, Barbero C, Rivarola C (2017) Antibacterial Polymeric Nanocomposites Synthesized by In-Situ Photoreduction of Silver Ions without Additives inside Biocompatible Hydrogel Matrices Based on N-Isopropylacrylamide and Derivatives. Express Polym Lett 11:946–962. https://doi.org/10.3144/expresspolymlett.2017.91

    Article  CAS  Google Scholar 

  33. Du L, Wang YJ, Wang K, Shen C, Luo GS (2016) In situ dispersion of oil-based Ag nanocolloids by microdroplet coalescence and their applications in SERS detection. RSC Adv 6:59639–59647. https://doi.org/10.1039/C6RA05269J

    Article  CAS  Google Scholar 

  34. Qu J, Lu X, Li D, Ding Y, Leng Y, Weng J, Qu S, Feng B, Watari F (2011) Silver/hydroxyapatite composite coatings on porous titanium surfaces by sol-gel method. J Biomed Mater Res B Appl Biomater 97B:40–48. https://doi.org/10.1002/jbm.b.31784

    Article  CAS  Google Scholar 

  35. https://www.spmtips.com/afm-tip-hires-c14-cr-au. Accessed 03 August 2023

  36. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res 24:721–734. https://doi.org/10.1002/jbm.820240607

    Article  CAS  Google Scholar 

  37. Stetefeld J, McKenna SA, Patel TR (2016) Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev 8:409–427. https://doi.org/10.1007/s12551-016-0218-6

    Article  CAS  Google Scholar 

  38. Alexander M, Dalgleish DG (2006) Dynamic Light Scattering Techniques and Their Applications in Food Science. Food Biophys 1:2–13. https://doi.org/10.1007/s11483-005-9000-1

    Article  Google Scholar 

  39. Carvalho PM, Felício MR, Santos NC, Gonçalves S, Domingues MM (2018) Application of Light Scattering Techniques to Nanoparticle Characterization and Development. Front Chem 6:237. https://doi.org/10.3389/fchem.2018.00237

    Article  CAS  Google Scholar 

  40. Jia Z, Li J, Gao L, Yang D, Kanaev A (2023) Dynamic Light Scattering: A Powerful Tool for In Situ Nanoparticle Sizing. Coll Interfac 7:15. https://doi.org/10.3390/colloids7010015

    Article  CAS  Google Scholar 

  41. Shibayama M, Norisuye T (2002) Gel Formation Analyses by Dynamic Light Scattering. Bull Chem Soc Jpn 75:641–659. https://doi.org/10.1246/bcsj.75.641

    Article  CAS  Google Scholar 

  42. Pal S, Nisi R, Licciulli A (2022) Antibacterial Activity of In Situ Generated Silver Nanoparticles in Hybrid Silica Films. Photochem 2:479–488. https://doi.org/10.3390/photochem2030033

    Article  CAS  Google Scholar 

  43. Molina J, Oliveira FR, Souto AP, Esteves MF, Bonastre J, Cases F (2013) Enhanced Adhesion of Polypyrrole/PW12O403- Hybrid Coatings on Polyester Fabrics. J Appl Polym Sci 129:422–433. https://doi.org/10.1002/app.38652

    Article  CAS  Google Scholar 

  44. Hench LL (1998) Bioceramics. J Am Ceram Soc 81:1705–1728. https://doi.org/10.1111/j.1151-2916.1998.tb02540.x

    Article  CAS  Google Scholar 

  45. Ma G, Liu XY (2009) Hydroxyapatite: Hexagonal or Monoclinic? Cryst Growth Des 9:2991–2994. https://doi.org/10.1021/cg900156w

    Article  CAS  Google Scholar 

  46. Lu X, Zhang H, Guo Y, Wang Y, Ge X, Leng Y, Watari F (2011) Hexagonal hydroxyapatite formation on TiO2 nanotubes under urea modulation. CrystEngComm 13:3741–3749. https://doi.org/10.1039/C0CE00971G

    Article  CAS  Google Scholar 

  47. Sivachidambaram S, Rao SM (2012) Iodide Retention by Modified Kaolinite in the Context of Safe Disposal of High Level Nuclear Waste. J Hazard Toxic Radioact Waste 16:192–200. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000121

    Article  CAS  Google Scholar 

  48. Reynaud C, Thomas C, Casale S, Nowak S, Costentin G (2021) Development of a thermodynamic approach to assist the control of the precipitation of hydroxyapatites and associated calcium phosphates in open systems. CrystEngComm 23:4857–4870. https://doi.org/10.1039/D1CE00482D

    Article  CAS  Google Scholar 

  49. Ehrt D, Jäger C (1988) Investigations of Solid State Reactions of Binary Polyphosphate—Fluoride Systems by Means of Thermal Analysis, X-Ray Diffraction and NMR Spectroscopy. Z Phys Chem Neue Folge 159:89–102. https://doi.org/10.1524/zpch.1988.159.Part_1.089

    Article  CAS  Google Scholar 

  50. Bulina NV, Makarova SV, Baev SG, Matvienko AA, Gerasimov KB, Logutenko OA, Bystrov VS (2021) A Study of Thermal Stability of Hydroxyapatite. Minerals 11:1310. https://doi.org/10.3390/min11121310

    Article  CAS  Google Scholar 

  51. Swanson HE, Tatge E (1953) Standard X-ray Diffraction Powder Patterns. Natl Bur Stand Circ 539:23

    Google Scholar 

  52. Bellotti R, Picotto GB, Ribotta L (2022) AFM Measurements and Tip Characterization of Nanoparticles with Diferent Shapes. Nanomanuf Metrol 5:127–138. https://doi.org/10.1007/s41871-022-00125-x

    Article  CAS  Google Scholar 

  53. Grobelny J, Del Rio FW, Namboodiri P, Kim D-I, Hackley VA, Cook RF (2012) Standard Guide for Size Measurement of Nanoparticles Using Atomic Force Microscopy. ASTM E2859-11, International Standard. https://doi.org/10.1520/E2859-11

  54. Palchoudhury S, Baalousha M, Lead JR (2015) Chapter 5 - Methods for Measuring Concentration (Mass, Surface Area and Number) of Nanomaterials. Front Nanosci 8:153–181. https://doi.org/10.1016/B978-0-08-099948-7.00005-1

    Article  CAS  Google Scholar 

  55. Zhang H, Huang J, Wang Y, Liu R, Huai X, Jiang J, Anfuso C (2018) Atomic force microscopy for two-dimensional materials: A tutorial review. Opt Commun 406:3–17. https://doi.org/10.1016/j.optcom.2017.05.015

    Article  CAS  Google Scholar 

  56. Yamashita S, Kikkawa J, Yanagisawa K, Nagai T, Ishizuka K, Kimoto K (2018) Atomic number dependence of Z contrast in scanning transmission electron microscopy. Sci Rep 8:12325. https://doi.org/10.1038/s41598-018-30941-5

    Article  CAS  Google Scholar 

  57. Balgude D, Konge K, Sabnis A (2014) Synthesis and characterization of sol–gel derived CNSL based hybrid anticorrosive coatings. J Sol-Gel Sci Technol 69:155–165. https://doi.org/10.1007/s10971-013-3198-z

    Article  CAS  Google Scholar 

  58. Golub P, Doroshenko I, Pogorelov V, Sablinskas V, Balevicius V, Ceponkus J (2013) Temperature Evolution of Cluster Structures in Ethanol. Dataset Pap Phys 2013:473294. https://doi.org/10.1155/2013/473294

    Article  Google Scholar 

  59. Hernández-Barrios CA, Cuao CA, Jaimes MA, Coy AE, Viejo F (2017) Effect of the catalyst concentration, the immersion time and the aging time on the morphology, composition and corrosion performance of TEOS-GPTMS sol-gel coatings deposited on the AZ31 magnesium alloy. Surf Coat Technol 325:257–269. https://doi.org/10.1016/j.surfcoat.2017.06.047

    Article  CAS  Google Scholar 

  60. Khalil KMS (2007) Cerium modified MCM-41 nanocomposite materials via a nonhydrothermal direct method at room temperature. J Coll Interfac Sci 315:562–568. https://doi.org/10.1016/j.jcis.2007.07.030

    Article  CAS  Google Scholar 

  61. Jeon H-J, Yi S-C, Oh S-G (2003) Preparation and antibacterial effects of Ag–SiO2 thin films by sol–gel method. Biomaterials 24:4921–4928. https://doi.org/10.1016/S0142-9612(03)00415-0

    Article  CAS  Google Scholar 

  62. Monteiro DA, Gozzi G, Chinaglia D, Oliveira ON, de Vicente FS (2020) Proton conduction mechanisms in GPTMS/TEOS-derived organic/silica hybrid films prepared by sol-gel process. Synth Met 267:116448. https://doi.org/10.1016/j.synthmet.2020.116448

    Article  CAS  Google Scholar 

  63. Pandey PC, Chauhan DS (2012) 3-Glycidoxypropyltrimethoxysilane mediated in situ synthesis of noble metal nanoparticles: Application to hydrogen peroxide sensing. Analyst 137:376–385. https://doi.org/10.1039/c1an15843k

    Article  CAS  Google Scholar 

  64. Ahlawat DS, Rachna RK, Yadav I (2014) Synthesis and Characterization of Sol–Gel Prepared Silver Nanoparticles. Int J Nanosci 13:1450004. https://doi.org/10.1142/S0219581X14500045

Download references

Acknowledgements

J. Belda is gratefully acknowledged for carrying out ICP-MS measurements. The Electron Microscopy Service of the UPV (Universitat Politècnica de València) is gratefully acknowledged for help with FESEM and EDX characterization. Instituto de Tecnología Química is gratefully acknowledged for carrying out XRD measurements.

Funding

This work was supported by the Instituto Valenciano de Competitividad Empresarial (IVACE) (project reference IMDEEA/2019/10) and the European Union (FEDER).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [JM]; Methodology: [JM, AV-G, SP-M, MSI-P, FB]; Formal analysis and investigation: [JM, AV-G, SP-M, MSI-P, FB]; Writing— original draft preparation: [JM, AV-G]; Writing—review and editing: [JM, AV-G, SP-M, MSI-P, FB]; Funding acquisition: [JM, AV-G, FB]; Resources: [FB].

Corresponding author

Correspondence to J. Molina.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molina, J., Valero-Gómez, A., Pocoví-Martínez, S. et al. Simple and effective sol-gel methodology to obtain a bactericidal coating for prostheses. J Sol-Gel Sci Technol 108, 809–826 (2023). https://doi.org/10.1007/s10971-023-06237-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06237-0

Keywords