Skip to main content
Log in

Phytosynthesis of anatase TiO2 nanostructures using grapefruit extract for antimicrobial and catalytic applications

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Plant extracts have been broadly considered to be an environmentally-benign alternative for the in vitro synthesis of stable and shape-controlled metal and metal oxide nanoparticles. In this study, a green procedure based on using grapefruit juice extract was applied in the phytosynthesis of TiO2 nanostructures. The prepared samples, calcined at 600 °C, were subjected to various physicochemical characterisations using FT-IR, Raman, XRD, SEM and XPS. Structural characterisation confirmed the formation of a temperature-stable monophasic anatase polymorph TiO2. The SEM morphological analysis revealed that the synthesised nanoparticles had an almost spherical shape. The antimicrobial activity of the phytosynthesised TiO2 nanostructures was evaluated against gram-positive (E. coli and K. pneumoniae) and gram-negative (Methicillin-resistant Staphylococcus aureus: MRSA) bacterial and fungal (C. Albicans) pathogens in terms of MIC measurements. Overall, the phytosynthesised nanoparticles exhibited high antibacterial power towards gram-positive and gram-negative bacteria but were inactive against C. albicans. Additionally, an evaluation of the phytoprepared nanostructures determined that they exhibited good catalytic performance.

Highlights

  • Phytosynthesis of TiO2 nanoparticles by sol-gel methods using grape fruit extract.

  • Thermal-stable anatase spherical-like TiO2 nanoparticles were achieved.

  • Antimicrobial potential of the TiO2 was screened against bacterial and fungal pathogens.

  • The prepared TiO2 nanostructures exhibited good catalytic performance towards the synthesis of quinazolinonethione derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Chaney RL, Mahoney M, 2014 Phytostabilization and phytomining principles and successes, in: Proceedings of the Life of Mines Conference, Brisbane, Australia: pp. 15–17

  2. Chaney RL, Baker AJ, Morel JL (2021) The long road to developing agromining/phytomining, Agromining: Farming for Metals: Extracting Unconventional Resources Using Plants. 1–22

  3. Kidd PS, Bani A, Benizri E, Gonnelli C, Hazotte C, Kisser J, Konstantinou M, Kuppens T, Kyrkas D, Laubie B (2018) Developing sustainable agromining systems in agricultural ultramafic soils for nickel recovery. Front Environ Sci 6:44

    Article  Google Scholar 

  4. Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z (2020) Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci 11:359

    Article  Google Scholar 

  5. Cristaldi A, Conti GO, Jho EH, Zuccarello P, Grasso A, Copat C, Ferrante M (2017) Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environ Technol Innov 8:309–326

    Article  Google Scholar 

  6. Sharma JK, Kumar N, Singh NP, Santal AR (2023) Phytoremediation technologies and its mechanism for removal of heavy metal from contaminated soil: An approach for a sustainable environment. Front Plant Sci 14:78

    Article  Google Scholar 

  7. Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9:1–24

    Article  CAS  Google Scholar 

  8. Gebre SH (2023) Bio-inspired synthesis of metal and metal oxide nanoparticles: the key role of phytochemicals. J Clust Sci 34:665–704

    Article  CAS  Google Scholar 

  9. Sunny NE, Mathew SS, Chandel N, Saravanan P, Rajeshkannan R, Rajasimman M, Vasseghian Y, Rajamohan N, Kumar SV (2022) Green synthesis of titanium dioxide nanoparticles using plant biomass and their applications-A review. Chemosphere 300:134612

  10. Goutam SP, Saxena G, Singh V, Yadav AK, Bharagava RN, Thapa KB (2018) Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem Eng J 336:386–396

    Article  CAS  Google Scholar 

  11. Ajmal N, Saraswat K, Bakht MA, Riadi Y, Ahsan MJ, Noushad M (2019) Cost-effective and eco-friendly synthesis of titanium dioxide (TiO2) nanoparticles using fruit’s peel agro-waste extracts: characterization, in vitro antibacterial, antioxidant activities. Green Chem Lett Rev 12:244–254

    Article  CAS  Google Scholar 

  12. Amanulla AM, Sundaram R (2019) Green synthesis of TiO2 nanoparticles using orange peel extract for antibacterial, cytotoxicity and humidity sensor applications. Mater Today Proc 8:323–331

    Article  Google Scholar 

  13. Subhapriya S, Gomathipriya P (2018) Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microb Pathogenesis 116:215–220

    Article  CAS  Google Scholar 

  14. Sun Y, Wang S, Zheng J (2019) Biosynthesis of TiO2 nanoparticles and their application for treatment of brain injury-An in-vitro toxicity study towards central nervous system. J Photochem Photobiol B: Biol 194:1–5

    Article  CAS  Google Scholar 

  15. Nadeem M, Tungmunnithum D, Hano C, Abbasi BH, Hashmi SS, Ahmad W, Zahir A (2018) The current trends in the green syntheses of titanium oxide nanoparticles and their applications. Green Chem Lett Rev 11:492–502

    Article  CAS  Google Scholar 

  16. Nabi G, Khalid NR, Tahir MB, Rafique M, Rizwan M, Hussain S, Iqbal T, Majid A (2018) A review on novel eco-friendly green approach to synthesis TiO 2 nanoparticles using different extracts. J Inorg Organomet Polym Mater 28:1552–1564

    Article  CAS  Google Scholar 

  17. Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2016) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications–An updated report. Saudi Pharm J 24:473–484

    Article  Google Scholar 

  18. Wang Q, Zhuang X, Mu J, Deng Z-B, Jiang H, Zhang L, Xiang X, Wang B, Yan J, Miller D (2013) Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat Commun 4:1867

    Article  Google Scholar 

  19. Kaur H, Kaur S, Singh J, Rawat M, Kumar S (2019) Expanding horizon: green synthesis of TiO2 nanoparticles using Carica papaya leaves for photocatalysis application. Mater Res Express 6:095034

    Article  CAS  Google Scholar 

  20. Liu Y, Goebl J, Yin Y (2013) Templated synthesis of nanostructured materials. Chem Soc Rev 42:2610–2653

    Article  CAS  Google Scholar 

  21. Irwansyah FS, Noviyanti AR, Eddy DR, Risdiana R (2022) Green Template-Mediated Synthesis of Biowaste Nano-Hydroxyapatite: A Systematic Literature Review. Molecules 27:5586

    Article  CAS  Google Scholar 

  22. Augustine R, Hasan A (2020) Emerging applications of biocompatible phytosynthesized metal/metal oxide nanoparticles in healthcare. J Drug Deliv Sci Technol 56:101516

    Article  CAS  Google Scholar 

  23. Fiordaliso F, Bigini P, Salmona M, Diomede L (2022) Toxicological impact of titanium dioxide nanoparticles and food-grade titanium dioxide (E171) on human and environmental health. Environ Sci: Nano 9:1199−1211

  24. Waghmode MS, Gunjal AB, Mulla JA, Patil NN, Nawani NN (2019) Studies on the titanium dioxide nanoparticles: Biosynthesis, applications and remediation. SN Appl Sci 1:310

    Article  CAS  Google Scholar 

  25. Jafari S, Mahyad B, Hashemzadeh H, Janfaza S, Gholikhani T, Tayebi L (2020) Biomedical applications of TiO2 nanostructures: recent advances. Int J Nanomed. 15: 3447–3470

  26. Senthamarai R, Madurai Ramakrishnan V, Palanisamy B, Kulandhaivel S (2021) Synthesis of TiO2 nanostructures by green approach as photoanodes for dye-sensitized solar cells. Int J Energy Res 45:3089–3096

    Article  CAS  Google Scholar 

  27. Singh S, Maurya IC, Tiwari A, Srivastava P, Bahadur L (2022) Green synthesis of TiO2 nanoparticles using Citrus limon juice extract as a bio-capping agent for enhanced performance of dye-sensitized solar cells. Surf Interfaces 28:101652

    Article  CAS  Google Scholar 

  28. Nabi G, Majid A, Riaz A, Alharbi T, Kamran MA, Al-Habardi M (2021) Green synthesis of spherical TiO2 nanoparticles using Citrus Limetta extract: Excellent photocatalytic water decontamination agent for RhB dye. Inorg Chem Commun 129:108618

    Article  CAS  Google Scholar 

  29. Ouerghi O, Geesi MH, Riadi Y, Ibnouf EO (2022) Limon-citrus extract as a capping/reducing agent for the synthesis of titanium dioxide nanoparticles: characterization and antibacterial activity. Green Chem Lett Rev 15:483–490

    Article  CAS  Google Scholar 

  30. Uckoo RM, Jayaprakasha GK, Balasubramaniam VM, Patil BS (2012) Grapefruit (Citrus paradisi Macfad) phytochemicals composition is modulated by household processing techniques. J Food Sci 77:C921–C926

    Article  CAS  Google Scholar 

  31. Nava OJ, Soto-Robles CA, Gómez-Gutiérrez CM, Vilchis-Nestor AR, Castro-Beltrán A, Olivas A, Luque PA (2017) Fruit peel extract mediated green synthesis of zinc oxide nanoparticles. J Mol Struct 1147:1–6

    Article  CAS  Google Scholar 

  32. Bokhary KA, Maqsood F, Amina M, Aldarwesh A, Mofty HK, Al-Yousef HM (2022) Grapefruit extract-mediated fabrication of photosensitive aluminum oxide nanoparticle and their antioxidant and anti-inflammatory potential. Nanomaterials 12:1885

    Article  CAS  Google Scholar 

  33. Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrobial Chemother 48:5–16

    Article  CAS  Google Scholar 

  34. Govindasamy GA, Mydin RBS, Sreekantan S, Harun NH (2021) Compositions and antimicrobial properties of binary ZnO–CuO nanocomposites encapsulated calcium and carbon from Calotropis gigantea targeted for skin pathogens. Sci Rep 11:99

    Article  CAS  Google Scholar 

  35. Govindasamy GA, Mydin RBS, Harun NH, Effendy WNFWE, Sreekantan S (2022) Annealing temperature influences the cytocompatibility, bactericidal and bioactive properties of green synthesised TiO2 nanocomposites. Chem Pap 76:5369–5388

    Article  CAS  Google Scholar 

  36. Zewde B, Pitliya P, Raghavan D (2016) The role of surface modified TiO 2 nanoparticles on the mechanical and thermal properties of CTBN toughened epoxy nanocomposite. J Mater Sci 51:9314–9329

    Article  CAS  Google Scholar 

  37. Socrates G (2004) Infrared and Raman characteristic group frequencies: tables and charts, John Wiley & Sons, England

  38. Rajkumari J, Magdalane CM, Siddhardha B, Madhavan J, Ramalingam G, Al-Dhabi NA, Arasu MV, Ghilan AKM, Duraipandiayan V, Kaviyarasu K (2019) Synthesis of titanium oxide nanoparticles using Aloe barbadensis mill and evaluation of its antibiofilm potential against Pseudomonas aeruginosa PAO1. J Photochem Photobiol B: Biol 201:111667

    Article  CAS  Google Scholar 

  39. Narayanan M, Vigneshwari P, Natarajan D, Kandasamy S, Alsehli M, Elfasakhany A, Pugazhendhi A (2021) Synthesis and characterization of TiO2 NPs by aqueous leaf extract of Coleus aromaticus and assess their antibacterial, larvicidal, and anticancer potential. Environ Res 200:111335

    Article  CAS  Google Scholar 

  40. Byrne C, Fagan R, Hinder S, McCormack DE, Pillai SC (2016) New approach of modifying the anatase to rutile transition temperature in TiO 2 photocatalysts. RSC Adv 6:95232–95238

    Article  CAS  Google Scholar 

  41. Saranya KS, Vellora Thekkae Padil V, Senan C, Pilankatta R, Saranya K, George B, Waclawek S, Černík M (2018) Green synthesis of high temperature stable anatase titanium dioxide nanoparticles using gum kondagogu: characterization and solar driven photocatalytic degradation of organic dye. Nanomaterials 8:1002

    Article  Google Scholar 

  42. Geesi MH, Ouerghi O, Elsanousi A, Kaiba A, Riadi Y (2020) Ultrasound-assisted preparation of Cu-doped TiO2 nanoparticles as a nanocatalyst for sonochemical synthesis of pyridopyrimidines, Polycyclic Aromatic Compd. 1–11

  43. Shchukarev AV, Korolkov DV (2004) XPS study of group IA carbonates. Cent Eur J Chem 2:347–362

    CAS  Google Scholar 

  44. Riadi Y, Geesi MH, Ouerghi O, Dehbi O, Elsanousi A, Azzallou R (2021) Synergistic Catalytic Effect of the Combination of Deep Eutectic Solvents and Hierarchical H-TiO2 Nanoparticles toward the Synthesis of Benzimidazole-Linked Pyrrolidin-2-One Heterocycles: Boosting Reaction Yield, Polycyclic Aromatic Compounds. 1–15

  45. Erdem B, Hunsicker RA, Simmons GW, Sudol ED, Dimonie VL, El-Aasser MS (2001) XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Langmuir 17:2664–2669

    Article  CAS  Google Scholar 

  46. Horn M, Schwebdtfeger CF, Meagher EP (1972) Refinement of the structure of anatase at several temperatures, Zeitschrift Für Kristallographie-Crystalline. Materials 136:273–281

    CAS  Google Scholar 

  47. Ma W, Lu Z, Zhang M (1998) Investigation of structural transformations in nanophase titanium dioxide by Raman spectroscopy. Appl Phys A 66:621–627

    Article  CAS  Google Scholar 

  48. Kumar Tripathi A, Chandra Mathpal M, Kumar P, Agrahari V, Kumar Singh M, Kumar Mishra S, Ahmad MM, Agarwal A (2015) Photoluminescence and photoconductivity of Ni doped titania nanoparticles. Adv Mater Lett 6:201–208

    Article  Google Scholar 

  49. Riadi Y, Geesi MH, Ouerghi O, Azzallou R, Dehbi O, Lazar S (2021) Sol-gel TiO2 nanostructures single doped with copper and nickel as nanocatalysts for enhanced performance for the Liebeskind–Srogl reaction. Mater Chem Phys 267:124607

    Article  CAS  Google Scholar 

  50. Hanaor DA, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874

    Article  CAS  Google Scholar 

  51. Kaiba A, Ouerghi O, Geesi MH, Elsanousi A, Belkacem A, Dehbi O, Alharthi AI, Alotaibi MA, Riadi Y (2020) Characterization and catalytic performance of Ni-Doped TiO2 as a potential heterogeneous nanocatalyst for the preparation of substituted pyridopyrimidines. J Mol Struct 1203:127376

    Article  CAS  Google Scholar 

  52. Ouerghi O, Geesi MH, Ibnouf EO, Ansari MJ, Alam P, Elsanousi A, Kaiba A, Riadi Y (2021) Sol-gel synthesized rutile TiO2 nanoparticles loaded with cardamom essential oil: Enhanced antibacterial activity. J Drug Deliv Sci Technol 64:102581

    Article  CAS  Google Scholar 

  53. Luttrell T, Halpegamage S, Tao J, Kramer A, Sutter E, Batzill M (2014) Why is anatase a better photocatalyst than rutile?-Model studies on epitaxial TiO2 films. Sci Rep. 4:4043

    Article  Google Scholar 

  54. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep. 48:53–229

    Article  CAS  Google Scholar 

  55. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep. 63:515–582

    Article  CAS  Google Scholar 

  56. Henderson MA (2011) A surface science perspective on TiO2 photocatalysis. Surf Sci Rep. 66:185–297

    Article  CAS  Google Scholar 

  57. Heggers JP, Cottingham J, Gusman J, Reagor L, McCoy L, Carino E, Cox R, Zhao J-G (2002) The effectiveness of processed grapefruit-seed extract as an antibacterial agent: II. Mechanism of action and in vitro toxicity. J Altern Complement Med 8:333–340

    Article  Google Scholar 

  58. Li M, Yin J-J, Wamer WG, Lo YM (2014) Mechanistic characterization of titanium dioxide nanoparticle-induced toxicity using electron spin resonance. J Food Drug Anal 22:76–85

    Article  CAS  Google Scholar 

  59. Kheiri S, Liu X, Thompson M (2019) Nanoparticles at biointerfaces: Antibacterial activity and nanotoxicology. Colloids Surf B: Biointerfaces 184:110550

    Article  CAS  Google Scholar 

  60. Lin X, Li J, Ma S, Liu G, Yang K, Tong M, Lin D (2014) Toxicity of TiO2 nanoparticles to Escherichia coli: effects of particle size, crystal phase and water chemistry. PloS One 9:e110247

    Article  Google Scholar 

  61. Baranowska-Wójcik E (2021) Factors conditioning the potential effects TiO2 NPs exposure on human microbiota: a mini-review. Biol Trace Elem Res 199:4458–4465

    Article  Google Scholar 

  62. Ramadan SK, Elrazaz EZ, Abouzid KA, El-Naggar AM (2020) Design, synthesis and in silico studies of new quinazolinone derivatives as antitumor PARP-1 inhibitors. RSC Adv 10:29475–29492

    Article  CAS  Google Scholar 

  63. El-Hiti GA, Hussain A, Hegazy AS, Alotaibi MH (2011) Thioxoquinazolines: synthesis, reactions and biological activities. J Sulfur Chem 32:361–395

    Article  CAS  Google Scholar 

  64. Shanavas S, Priyadharsan A, Karthikeyan S, Dharmaboopathi K, Ragavan I, Vidya C, Acevedo R, Anbarasana PM (2020) Green synthesis of titanium dioxide nanoparticles using Phyllanthus niruri leaf extract and study on its structural, optical and morphological properties. Mater Today: Proc 26:3531–3534

    Article  CAS  Google Scholar 

  65. Kaur H, Kumar S, Saini R, Singh PP, Pugazhendhi A (2023) One-pot biogenic synthesis of C. limon/TiO2 with dual applications as an advance photocatalyst and antimicrobial agent, Chemosphere. 139106

  66. Senthilkumar S, Ashok M, Kashinath L, Sanjeeviraja C, Rajendran A (2018) Phytosynthesis and characterization of TiO2 nanoparticles using Diospyros ebenum leaf extract and their antibacterial and photocatalytic degradation of crystal violet. Smart Sci 6:1–9

    Article  Google Scholar 

  67. Asrafuzzaman FNU, Amin KF, Gafur MA, Gulshan F (2023) Mangifera indica mediated biogenic synthesis of undoped and doped TiO2 nanoparticles and evaluation of their structural, morphological, and photocatalytic properties. Results Mater 17:100384

    Article  CAS  Google Scholar 

  68. Saikumari N, Preethi T, Abarna B, Rajarajeswari GR (2019) Ecofriendly, green tea extract directed sol–gel synthesis of nano titania for photocatalytic application. J Mater Sci: Mater Electron 30:6820–6831

    CAS  Google Scholar 

  69. Ahn E-Y, Shin S-W, Kim K, Park Y (2022) Facile green synthesis of titanium dioxide nanoparticles by upcycling mangosteen (Garcinia mangostana) pericarp extract. Nanoscale Res Lett 17:40

    Article  CAS  Google Scholar 

  70. Rao TN, Babji P, Ahmad N, Khan RA, Hassan I, Shahzad SA, Husain FM (2019) Green synthesis and structural classification of Acacia nilotica mediated-silver doped titanium oxide (Ag/TiO2) spherical nanoparticles: Assessment of its antimicrobial and anticancer activity. Saudi J Biol Sci 26:1385–1391

    Article  CAS  Google Scholar 

  71. Bhullar S, Goyal N, Gupta S (2021) Rapid green-synthesis of TiO2 nanoparticles for therapeutic applications. RSC Adv 11:30343–30352

    Article  CAS  Google Scholar 

  72. Sundrarajan M, Bama K, Bhavani M, Jegatheeswaran S, Ambika S, Sangili A, Nithya P, Sumathi R (2017) Obtaining titanium dioxide nanoparticles with spherical shape and antimicrobial properties using M. citrifolia leaves extract by hydrothermal method. J Photochem Photobiol B: Biol 171:117–124

    Article  CAS  Google Scholar 

  73. Ahmad W, Jaiswal KK, Soni S (2020) Green synthesis of titanium dioxide (TiO2) nanoparticles by using Mentha arvensis leaves extract and its antimicrobial properties. Inorg Nano-Met Chem 50:1032–1038

    Article  CAS  Google Scholar 

  74. Kaur H, Kumar S, Kaur G, Kaur N, Badru R, Saini R (2023) An emerging expanse: Novel and eco-friendly-biogenic synthesis of E. cardamomum-wrapped TiO2 nanoparticles for environmental and biological applications, Environ Res. 116599

Download references

Acknowledgements

We extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number (IF-PSAU-2021/01/18174).

Author contributions

Conceptualization: OO, YR, MHG, Methodology: OO, YR, MHG, Software: YR, MHG, AK, OO. Validation: OO, YR, EOI, MHG, AK, Formal analysis: OO, YR, EOI, MHG, AK, Investigation: OO, YR, EOI, MHG, AK, Resources: MHG, OO, YR, EOI. Data Curation: OO, YR, EOI, MHG, AK, Writing—Original Draft: OO, YR, MHG, Writing—Review & Editing: OO, YR, EOI, MHG, AK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed H. Geesi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouerghi, O., Geesi, M.H., Riadi, Y. et al. Phytosynthesis of anatase TiO2 nanostructures using grapefruit extract for antimicrobial and catalytic applications. J Sol-Gel Sci Technol 108, 538–547 (2023). https://doi.org/10.1007/s10971-023-06215-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06215-6

Keywords

Navigation