Skip to main content
Log in

A-site deficiency study of La2CoMnO6 double perovskite oxide and its catalytic performance in propane total oxidation reaction

  • Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Because of their strong chemical stability and composition adjustability, lanthanide perovskite oxides have attracted much attention. La2CoMnO6 double perovskite oxide catalysts and derived materials La2-xCoMnO6 with x = 0.02, 0.05, 0.10, and 0.15 have been synthesized using the facile sol-gel method, and their catalytic deep oxidation performance was probed in the propane combustion reaction. Compared with stoichiometric double perovskite, nonstoichiometric samples exhibited different activity and stability. Among the investigated samples, the La2-0.05CoMnO6‌ catalyst exhibited the best performance for propane catalytic combustion. Propane could reach 90% conversion at 423 °C on the best catalyst. Besides, the stability of this catalyst was better than the stoichiometric double perovskite. The elaborated samples were characterized by a variety of techniques, such as XPS, XRD, ICP, H2-TPR, O2-TPD, and FTIR. Better reducibility and boosted oxygen vacancy content were responsible for improving propane degradation on the catalyst, which was correlated with the induction of lanthanum ion deficiency in La2CoMnO6 samples.

Graphical Abstract

The graphical abstract demonstrates the light-off curve of propane abatement as a function of reaction temperature. The A-site nonstoichiometry led to catalytic activity enhancement at certain degrees of deficiency.

Highlights

  • Certain amount of La-deficiency is conducive to the best performance of La2CoMnO6 catalysts.

  • Nonstoichiometry in double perovskite oxides led to augmented durability in deep propane oxidation.

  • Proper tuning of oxygen species and the reducibility of double perovskite led to boosted combustion activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets used or analyzed during study are available from corresponding author on reasonable request.

References

  1. Zhang K, Ding H, Pan W, Mu X, Qiu K, Ma J, Zhao Y, Song J, Zhang Z (2022) Research Progress of a Composite Metal Oxide Catalyst for VOC Degradation. Environ Sci Technol 56:9220–9236. https://doi.org/10.1021/acs.est.2c02772

    Article  CAS  Google Scholar 

  2. Rezaei Shadegan H, Maghsoodi S, Ghanavati B, Shahbazi Kootenaei A, Azimi A (2021) Effects of strontium and copper substitution on the catalytic performance of LaCoO3 in the combustion of methane: an optimization study. Iran J Catal 11:137–147

    Google Scholar 

  3. Rezaei Shadegan H, Maghsoodi S, Ghanavati B, Shahbazi Kootenaei A, Azimi A (2020) Catalytic combustion of methane over La2BCoO6 perovskites containing Ni, Cu and Fe: impact of B-sites on oxygen species and catalytic activity. React Kinet Mech Catal 131:737–752. https://doi.org/10.1007/s11144-020-01871-z

    Article  CAS  Google Scholar 

  4. Aziz A, Bae J, Kim KS (2020) Preparation of Fe-Co-ZSM-5 Bimetal Catalysts with Different Alternate Metal Inclusions for Catalytic Removal of VOCs from Air. Water, Air, Soil Pollut 231:155. https://doi.org/10.1007/s11270-020-04530-0

    Article  CAS  Google Scholar 

  5. Ismail R, Arfaoui J, Ksibi Z, Ghorbel A, Delahay G (2023) The promoting effect of Ce on Ag/ZrO2 catalyst for the total oxidation of toluene into CO2 in the presence of water vapor. J Sol-Gel Sci Technol https://doi.org/10.1007/s10971-023-06043-8

  6. Roozbahani H, Maghsoodi S, Raei B, Kootenaei AS, Azizi Z (2022) Effects of catalyst preparation methods on the performance of La2MMnO6 (M=Co, Ni) double perovskites in catalytic combustion of propane. Korean J Chem Eng 39:586–595. https://doi.org/10.1007/s11814-021-0930-1

    Article  CAS  Google Scholar 

  7. Guo Y, Wen M, Li G, An T (2021) Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: a critical review. Appl Catal B Environ 281:119447. https://doi.org/10.1016/j.apcatb.2020.119447

    Article  CAS  Google Scholar 

  8. Zang M, Zhao C, Wang Y, Chen S (2019) A review of recent advances in catalytic combustion of VOCs on perovskite-type catalysts. J Saudi Chem Soc 23:645–654. https://doi.org/10.1016/j.jscs.2019.01.004

    Article  CAS  Google Scholar 

  9. Zhu J, Li H, Zhong L, Xiao P, Xu X, Yang X, Zhao Z, Li J (2014) Perovskite Oxides: Preparation, Characterizations, and Applications in Heterogeneous Catalysis. ACS Catal 4:2917–2940. https://doi.org/10.1021/cs500606g

    Article  CAS  Google Scholar 

  10. Yang Q, Liu G, Liu Y (2018) Perovskite-Type Oxides as the Catalyst Precursors for Preparing Supported Metallic Nanocatalysts: A Review. Ind Eng Chem Res 57:1–17. https://doi.org/10.1021/acs.iecr.7b03251

    Article  CAS  Google Scholar 

  11. Royer S, Alamdari H, Duprez D, Kaliaguine S (2005) Oxygen storage capacity of La1−xA′xBO3 perovskites (with A′=Sr, Ce; B=Co, Mn)—relation with catalytic activity in the CH4 oxidation reaction. Appl Catal B Environ 58:273–288. https://doi.org/10.1016/j.apcatb.2004.12.010

    Article  CAS  Google Scholar 

  12. Tasca JE, Lavat AE, González MG (2017) Double perovskites La2MMnO6 as catalyst for propane combustion. J Asian Ceram Soc 5:235–241. https://doi.org/10.1016/j.jascer.2017.02.004

    Article  Google Scholar 

  13. Tejuca LG, Fierro JLG, Tascón JMD Structure and Reactivity of Perovskite-Type Oxides, in Advances in Catalysis, DD Eley, H Pines, and PB Weisz, Editors. 1989, Academic Press. p. 237–328.

  14. Pan KL, Pan GT, Chong S, Chang MB (2018) Removal of VOCs from gas streams with double perovskite-type catalysts. J Environ Sci 69:205–216. https://doi.org/10.1016/j.jes.2017.10.012

    Article  CAS  Google Scholar 

  15. Hu R, Ding R, Chen J, Hu J, Zhang Y (2012) Preparation and catalytic activities of the novel double perovskite-type oxide La2CuNiO6 for methane combustion. Catal Commun 21:38–41. https://doi.org/10.1016/j.catcom.2012.01.008

    Article  CAS  Google Scholar 

  16. Huang H, Liu Y, Tang W, Chen Y (2008) Catalytic activity of nanometer La1−xSrxCoO3 (x=0, 0.2) perovskites towards VOCs combustion. Catal Commun 9:55–59. https://doi.org/10.1016/j.catcom.2007.05.004

    Article  CAS  Google Scholar 

  17. Zhang J, Tan D, Meng Q, Weng X, Wu Z (2015) Structural modification of LaCoO3 perovskite for oxidation reactions: The synergistic effect of Ca2+ and Mg2+ co-substitution on phase formation and catalytic performance. Appl Catal B Environ 172-173:18–26. https://doi.org/10.1016/j.apcatb.2015.02.006

    Article  CAS  Google Scholar 

  18. Alifanti M, Florea M, Pârvulescu VI (2007) Ceria-based oxides as supports for LaCoO3 perovskite; catalysts for total oxidation of VOC. Appl Catal B Environ 70:400–405. https://doi.org/10.1016/j.apcatb.2005.10.037

    Article  CAS  Google Scholar 

  19. Vasala S, Karppinen M (2015) A2B′B″O6 perovskites: A review. Prog Solid State Chem 43:1–36. https://doi.org/10.1016/j.progsolidstchem.2014.08.001

    Article  CAS  Google Scholar 

  20. Li X, Li M, Ma X, Miao J, Ran R, Zhou W, Wang S, Shao Z (2020) Nonstoichiometric perovskite for enhanced catalytic oxidation through excess A-site cation. Chem Eng Sci 219:115596. https://doi.org/10.1016/j.ces.2020.115596

    Article  CAS  Google Scholar 

  21. Wu Y, Ni X, Beaurain A, Dujardin C, Granger P (2012) Stoichiometric and non-stoichiometric perovskite-based catalysts: Consequences on surface properties and on catalytic performances in the decomposition of N2O from nitric acid plants. Appl Catal B Environ 125:149–157. https://doi.org/10.1016/j.apcatb.2012.05.033

    Article  CAS  Google Scholar 

  22. Liu H, Ding X, Wang L, Ding D, Zhang S, Yuan G (2018) Cation deficiency design: A simple and efficient strategy for promoting oxygen evolution reaction activity of perovskite electrocatalyst. Electrochim Acta 259:1004–1010. https://doi.org/10.1016/j.electacta.2017.10.172

    Article  CAS  Google Scholar 

  23. Watanabe R, Tsujioka M, Fukuhara C (2016) Performance of Non-stoichiometric Perovskite Catalyst (AxCrO3−δ, A: La, Pr, Nd) for Dehydrogenation of Propane Under Steam Condition. Catal Lett 146:2458–2467. https://doi.org/10.1007/s10562-016-1876-5

    Article  CAS  Google Scholar 

  24. Schön A, Dujardin C, Dacquin J-P, Granger P (2015) Enhancing catalytic activity of perovskite-based catalysts in three-way catalysis by surface composition optimisation. Catal Today 258:543–548. https://doi.org/10.1016/j.cattod.2014.11.002

    Article  CAS  Google Scholar 

  25. Wu M, Chen S, Xiang W (2020) Oxygen vacancy induced performance enhancement of toluene catalytic oxidation using LaFeO3 perovskite oxides. J Chem Eng 387:124101. https://doi.org/10.1016/j.cej.2020.124101

    Article  CAS  Google Scholar 

  26. Zhao A, Ren Y, Wang H, Qu Z (2023) Enhancement of toluene oxidation performance over La1-xCoO3-δ perovskite by lanthanum non-stoichiometry. J Environ Sci 127:811–823. https://doi.org/10.1016/j.jes.2022.06.042

    Article  Google Scholar 

  27. Liu F, Li Z, Ma H, Gao Z (2015) Surface composition and catalytic activity of La-Fe mixed oxides for methane oxidation. Appl Surf Sci 351:709–714. https://doi.org/10.1016/j.apsusc.2015.05.189

    Article  CAS  Google Scholar 

  28. Feng C, Gao Q, Xiong G, Chen Y, Pan Y, Fei Z, Li Y, Lu Y, Liu C, Liu Y (2022) Defect engineering technique for the fabrication of LaCoO3 perovskite catalyst via urea treatment for total oxidation of propane. Appl Catal B Environ 304:121005. https://doi.org/10.1016/j.apcatb.2021.121005

    Article  CAS  Google Scholar 

  29. Lavat AE, Baran EJ (2003) IR-spectroscopic characterization of A2BB′O6 perovskites. Vib Spectrosc 32:167–174. https://doi.org/10.1016/S0924-2031(03)00059-6

    Article  CAS  Google Scholar 

  30. Wu M, Li H, Ma S, Chen S, Xiang W (2021) Boosting the surface oxygen activity for high performance Iron-based perovskite oxide. Sci Total Environ 795:148904. https://doi.org/10.1016/j.scitotenv.2021.148904

    Article  CAS  Google Scholar 

  31. Gong S, Xie Z, Li W, Wu X, Han N, Chen Y (2019) Highly active and humidity resistive perovskite LaFeO3 based catalysts for efficient ozone decomposition. Appl Catal B Environ 241:578–587. https://doi.org/10.1016/j.apcatb.2018.09.041

    Article  CAS  Google Scholar 

  32. Hernández WY, Tsampas MN, Zhao C, Boreave A, Bosselet F, Vernoux P (2015) La/Sr-based perovskites as soot oxidation catalysts for Gasoline Particulate Filters. Catal Today 258:525–534. https://doi.org/10.1016/j.cattod.2014.12.021

    Article  CAS  Google Scholar 

  33. Spinicci R, Tofanari A, Delmastro A, Mazza D, Ronchetti S (2002) Catalytic properties of stoichiometric and non-stoichiometric LaFeO3 perovskite for total oxidation of methane. Mater Chem Phys 76:20–25. https://doi.org/10.1016/S0254-0584(01)00498-9

    Article  CAS  Google Scholar 

  34. Maghsoodi S, Towfighi J, Khodadadi A, Mortazavi Y (2013) The effects of excess manganese in nano-size lanthanum manganite perovskite on enhancement of trichloroethylene oxidation activity. J Chem Eng 215-216:827–837. https://doi.org/10.1016/j.cej.2012.11.005

    Article  CAS  Google Scholar 

  35. Machocki A, Ioannides T, Stasinska B, Gac W, Avgouropoulos G, Delimaris D, Grzegorczyk W, Pasieczna S (2004) Manganese–lanthanum oxides modified with silver for the catalytic combustion of methane. J Catal 227:282–296. https://doi.org/10.1016/j.jcat.2004.07.022

    Article  CAS  Google Scholar 

  36. Liu Y, Dai H, Deng J, Du Y, Li X, Zhao Z, Wang Y, Gao B, Yang H, Guo G (2013) In situ poly(methyl methacrylate)-templating generation and excellent catalytic performance of MnOx/3DOM LaMnO3 for the combustion of toluene and methanol. Appl Catal B Environ 140-141:493–505. https://doi.org/10.1016/j.apcatb.2013.04.051

    Article  CAS  Google Scholar 

  37. Zhu W, Chen X, Liu Z, Liang C (2020) Insight into the Effect of Cobalt Substitution on the Catalytic Performance of LaMnO3 Perovskites for Total Oxidation of Propane. J Phys Chem C 124:14646–14657. https://doi.org/10.1021/acs.jpcc.0c03084

    Article  CAS  Google Scholar 

  38. Luo Y, Zheng Y, Feng X, Lin D, Qian Q, Wang X, Zhang Y, Chen Q, Zhang X (2020) Controllable P Doping of the LaCoO3 Catalyst for Efficient Propane Oxidation: Optimized Surface Co Distribution and Enhanced Oxygen Vacancies. ACS Appl Mater Inter 12:23789–23799. https://doi.org/10.1021/acsami.0c01599

    Article  CAS  Google Scholar 

  39. Wang Y, Wu J, Wang G, Yang D, Ishihara T, Guo L (2021) Oxygen vacancy engineering in Fe doped akhtenskite-type MnO2 for low-temperature toluene oxidation. Appl Catal B Environ 285:119873. https://doi.org/10.1016/j.apcatb.2020.119873

    Article  CAS  Google Scholar 

  40. Li J, Hu R, Zhang J, Meng W, Du Y, Si Y, Zhang Z (2016) Influence of preparation methods of La2CoMnO6/CeO2 on the methane catalytic combustion. Fuel 178:148–154. https://doi.org/10.1016/j.fuel.2016.03.041

    Article  CAS  Google Scholar 

  41. Vazhayil A, Thomas J, Thomas N (2022) Cobalt doping in LaMnO3 perovskite catalysts – B site optimization by solution combustion for oxygen evolution reaction. J Electroanalytical Chem 918:116426. https://doi.org/10.1016/j.jelechem.2022.116426

    Article  CAS  Google Scholar 

  42. Zhang L, Zhang Y, Dai H, Deng J, Wei L, He H (2010) Hydrothermal synthesis and catalytic performance of single-crystalline La2−xSrxCuO4 for methane oxidation. Catal Today 153:143–149. https://doi.org/10.1016/j.cattod.2010.02.059

    Article  CAS  Google Scholar 

  43. Xu Y, Qu Z, Ren Y, Dong C (2021) Enhancement of toluene oxidation performance over Cu–Mn composite oxides by regulating oxygen vacancy. Appl Surf Sci 560:149983. https://doi.org/10.1016/j.apsusc.2021.149983

    Article  CAS  Google Scholar 

  44. Miao H, Wu X, Chen B, Wang Q, Wang F, Wang J, Zhang C, Zhang H, Yuan J, Zhang Q (2020) A-site deficient/excessive effects of LaMnO3 perovskite as bifunctional oxygen catalyst for zinc-air batteries. Electrochim Acta 333:135566. https://doi.org/10.1016/j.electacta.2019.135566

    Article  CAS  Google Scholar 

  45. Zhu W, Chen X, Li C, Liu Z, Liang C (2021) Manipulating morphology and surface engineering of spinel cobalt oxides to attain high catalytic performance for propane oxidation. J Catal 396:179–191. https://doi.org/10.1016/j.jcat.2021.02.014

    Article  CAS  Google Scholar 

  46. Miranda B, Díaz E, Ordóñez S, Vega A, Díez FV (2007) Oxidation of trichloroethene over metal oxide catalysts: Kinetic studies and correlation with adsorption properties. Chemosphere 66:1706–1715. https://doi.org/10.1016/j.chemosphere.2006.07.016

    Article  CAS  Google Scholar 

  47. Miranda B, Díaz E, Ordóñez S, Vega A, Díez FV (2006) Performance of alumina-supported noble metal catalysts for the combustion of trichloroethene at dry and wet conditions. Appl Catal B Environ 64:262–271. https://doi.org/10.1016/j.apcatb.2005.12.008

    Article  CAS  Google Scholar 

  48. Jian Y, Tian M, He C, Xiong J, Jiang Z, Jin H, Zheng L, Albilali R, Shi J-W (2021) Efficient propane low-temperature destruction by Co3O4 crystal facets engineering: Unveiling the decisive role of lattice and oxygen defects and surface acid-base pairs. Appl Catal B Environ 283:119657. https://doi.org/10.1016/j.apcatb.2020.119657

    Article  CAS  Google Scholar 

  49. Chai G, Zhang W, Liotta LF, Li M, Guo Y, Giroir-Fendler A (2021) Total oxidation of propane over Co3O4-based catalysts: Elucidating the influence of Zr dopant. Appl Catal B Environ 298:120606. https://doi.org/10.1016/j.apcatb.2021.120606

    Article  CAS  Google Scholar 

  50. Liu Z, Cheng L, Zeng J, Hu X, Zhangxue S, Yuan S, Bo Q, Zhang B, Jiang Y (2020) Synthesis, characterization and catalytic performance of nanocrystalline Co3O4 towards propane combustion: Effects of small molecular carboxylic acids. J Solid State Chem 292:121712. https://doi.org/10.1016/j.jssc.2020.121712

    Article  CAS  Google Scholar 

  51. Lin D, Li W, Feng X, Chen Y, Tao X, Luo Y, Xia X, Huang B, Qian Q, Chen Q (2021) Boosting low temperature propane oxidation on bamboo-mediated biosynthesis of LaCoO3 via the optimized chelating effect. Mol Catal 499:111315. https://doi.org/10.1016/j.mcat.2020.111315

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Mahshahr Branch, Islamic Azad University, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Shahbazi Kootenaei.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradkhani, F., Kootenaei, A.S., Maghsoodi, S. et al. A-site deficiency study of La2CoMnO6 double perovskite oxide and its catalytic performance in propane total oxidation reaction. J Sol-Gel Sci Technol 108, 136–148 (2023). https://doi.org/10.1007/s10971-023-06198-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06198-4

Keywords

Navigation