Skip to main content
Log in

Investigation of the structural and linear/nonlinear optical characteristics of ZnO nanostructures alloyed with Co3O4 and NiO

  • Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

ZnO/(1-x)Co3O4/xNiO/ (x = 0.0, 0.3, 0.5, 0.7, 0.9 and 1) samples were formed using co-precipitation method. Rietveld analysis for synchrotron x-ray diffraction was used to explore the different developed phases, their structural and microstructural in the system. X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR) techniques were used to explore the existences of different ions and their exchange between different oxides. TEM microscopy revealed homogeneous spherical particle morphology with nano size for all samples. Diffuse reflectance measurements showed high absorbance of the samples with x = 0, 0.7 and 1.0 in visible region, may be used in coating eyeglasses to save skin around the eyes. The optical band gap energy value of the different samples was affected by the percentage of each oxide. The normal and anomalous dispersion behaviors of the refractive index depended on the composition of the sample and the measured wavelength range. The effect of alloying on the linear and nonlinear optical parameters was also explored.

Graphical Abstract

Highlights

  • ZnO/(1–x)Co3O4/xNiO samples were prepared by co-precipitation method.

  • XPS, FTIR, TEM and UV-Vis measurements were performed

  • Cations are incorporated into the lattice of the oxides.

  • The crystallite size of ZnO and Co2O3 phases are decreased.

  • Samples with x = 0.3 and 0.5 can be applied in low-profile optical devices and waveguides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

References

  1. Hassan AK, Ali GM (2020) Superlattices Microstruct. Thin film NiO/BaTiO3/ZnO heterojunction diode-based UVC photodetectors. 147:106690

  2. Elavarasan N, Rajkumar C, Venkatesh G, Srinivasan M, Palanisamy G, Shobana Priyanka D, Kim H (2022) Significant enhancement of Z-Scheme mechanism based photocatalytic performance of Co3O4/ZnO–Cu nanocomposite for degradation of hazardous dye. J Phys Chem Solids 169:110856

    Article  CAS  Google Scholar 

  3. Batool S, Hasan M, Dilshad M, Zafar A, Tariq T, Shaheen A, Iqbal R, Ali Z, Munawar T, Iqbal F, Hassan SG, Shu X, Caprioli G (2022) Biochem. Green synthesized ZnO-Fe2O3-Co3O4 nanocomposite for antioxidant, microbial disinfection and degradation of pollutants from wastewater. Syst Ecol 105:104535

    Article  CAS  Google Scholar 

  4. Zhang J, Xie L(2021) Synthesis and sonophotocatalytic activities of ZnO\BiVO4\Co3O4 composites. Chem Phys Lett 775:138660

    Article  CAS  Google Scholar 

  5. Kupfer B, Majhi K, Keller DA, Bouhadana Y, Ruhle S, Barad HN, Anderson AY, Zaban A (2014) Thin film Co3O4/TiO2 heterojunction solar cells. Adv Energy Mater 140:1007

    Google Scholar 

  6. Dong C, Xiao X, Chen G, Guan H, Wang Y (2015) Synthesis and photocatalytic degradation of methylene blue over p-n junction Co3O4/ZnO core/shell nanorods. Mater Chem Phys 155:1

    Article  CAS  Google Scholar 

  7. Cho CH, Oh JY, Il Lee T (2022) Two-Dimensional Self-Assembled Network Structure of Co3O4 Quantum-Dot-Decorated ZnO Nanobeads for ppb-Level Acetone Sensors. Mater Lett 314:131826

    Article  CAS  Google Scholar 

  8. Jana TK, Pal A, Chatterjee K (2015) Magnetic and photocatalytic study of Co3O4–ZnO nanocomposite. J Alloy Compd 653:338

    Article  CAS  Google Scholar 

  9. Shi T, Hou H, Hussain S, Ge C, Alsaiari MA, Alkorbi AS, Liu G, Alsaiari R, Qiao G (2022) Efficient detection of hazardous H2S gas using multifaceted Co3O4/ZnO hollow nanostructures. Chemosphere 287:132178

    Article  CAS  Google Scholar 

  10. Ye Z, Miao R, Miao F, Tao B, Zang Y, Chu PK (2021) 3D nanoporous core-shell ZnO@Co3O4 electrode materials for high-performance supercapacitors and nonenzymatic glucose sensorsJ. Electroanal Chem 903:115766

    Article  CAS  Google Scholar 

  11. Lee J, Kim J, Kim J, Mirzaei A, Kim HW, Kim SS (2019) ppb-Level Selective Hydrogen Gas Detection of Pd-Functionalized In2O3-Loaded ZnO Nanofiber Gas Sensors. Int J Hydrog Energy 44:27499

    Article  CAS  Google Scholar 

  12. Zeng Q, Feng J, Lin X, Zhao Y, Liu H, Wang S, Dong Z, Feng W (2020) One-step facile synthesis of a NiO/ZnO biomorphic nanocomposite using a poplar tree leaf template to generate an enhanced gas sensing platform to detect n-butanol. J Alloy Compd 815:150550

    Article  CAS  Google Scholar 

  13. Klochko NP, Kopach VR, Tyukhov II, Zhadan DO, Klepikova KS, Khrypunov GS, Petrushenko SI, Lyubov VM, Kirichenko MV, Dukarov SV, Khrypunova AL (2018) Metal oxide heterojunction (NiO/ZnO) prepared by low temperature solution growth for UV-photodetector and semi-transparent solar cell. Sol Energy 164:149

    Article  CAS  Google Scholar 

  14. Obodo RM, Ahmad A, Jain GH, Ahmad I, Maaza M, Ezema FI (2020) 8.0 MeV copper ion (Cu++) irradiation-induced effects on structural, electrical, optical and electrochemical properties of Co3O4-NiO-ZnO/GO nanowires. Mater Sci Energy Technol 3:193

    CAS  Google Scholar 

  15. Abel Noelson E, Anandkumar M, Marikkannan M, Ragavendran V, Thorgersen A, Sagadevan S, Annaraj J, Mayandi J (2022) Excellent photocatalytic activity of Ag2O loaded ZnO/NiO nanocomposites in sun-light and their biological applications. Chem Phys Lett 796:139566

    Article  CAS  Google Scholar 

  16. Zhu L, Hao C, Zhou S, Wang X, Zhou T, Guo Y (2021) Ternary ZnO/Co3O4/NiO inherited layered core-shell structure from a double template for high performanced supercapacitor. J Materiomics 7:708

    Article  Google Scholar 

  17. Abdellatief M, Al Najdawi M, Momani Y, Aljamal B, Abbadi A (2022) Me Harfouche, G Paolucci, Operational status of the X-ray powder diffraction beamline at the SESAME synchrotron. J Synchrotron Radiat 29(2):532

    Article  CAS  Google Scholar 

  18. Abdellatief M, Abdellatief M, Rebuffi L, Khosroabadi H, Najdawi M, Abu-Hanieh T, Attal M, Paolucci G (2017) The SESAME materials science beamline for XRD applications. Powder Diffr 32(S1):S6

    Article  CAS  Google Scholar 

  19. Heiba ZK, Mohamed MB, Abd Ellatief A, El-naggar AM, Badawi A (2022) J Mater Sci: Mater Electron 33(30):23555

    CAS  Google Scholar 

  20. Heiba ZK, Mohamed MB, El-naggar AM, Badawi A, Elshimy H (2022) Structural and the optical characteristics of PbSx. thin films, J Mater Sci: Mater Electron 33(29):23270

    CAS  Google Scholar 

  21. Xu H, Hai Z, Diwu J, Zhang Q, Gao L, Cui D, Zang J, Liu J, Xue C (2015) Synthesis and Microwave Absorption Properties of Core-Shell Structured Co3O4-PANI Nanocomposites. J Nanomater 2015:1

    Article  CAS  Google Scholar 

  22. Tan BJ, Klabunde KJ, Sherwood PMA (1991) XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt-manganese particles on alumina and silica. J Am Chem Soc 113:855

    Article  CAS  Google Scholar 

  23. Li Q, Wang X, Tang K, Wang M, Wang C, Yan C (2017) Electronic Modulation of Electrocatalytically Active Center of Cu7S4 Nanodisks by Cobalt-Doping for Highly Efficient Oxygen Evolution Reaction. ACS Nano 11:12230

    Article  CAS  Google Scholar 

  24. Geng X, Lahem D, Zhang C, Li C-J, Olivier M-G, Debliquy M (2019) Visible light enhanced black NiO sensors for ppb-level NO2 detection at room temperature. Ceram Int 45:4253

    Article  CAS  Google Scholar 

  25. Kotta A, Kim E-B, Ameen S, Shin H-S, Seo HK (2020) Communication—Ultra-Small NiO Nanoparticles Grown by Low-Temperature Process for Electrochemical Application. J Electrochem Soc 167:167517

    Article  CAS  Google Scholar 

  26. Heiba ZK, Mohamed MB, Ahmed SI (2021) Modifying the structure and optical characteristics of ZnMn2O4 by alloying with CdS to form heterostructure nanocomposite. Appl Phys A 127(11):1

    Article  Google Scholar 

  27. Zhang C, Xie A, Zhang W, Chang J, Liu C, Gu L, Duo X, Pan F, Luo S (2021) CuMn2O4 spinel anchored on graphene nanosheets as a novel electrode material for supercapacitor. J Energy Storage 34:102181

    Article  Google Scholar 

  28. Wang DW, Wang QH, Wang TM (2011) Morphology-controllable synthesis of cobalt oxalates and their conversion to mesoporous Co3O4 nanostructures for application in supercapacitors. Inorg Chem 50:6482

    Article  CAS  Google Scholar 

  29. Koninck MD, Poirier S-C, Marsan B (2006) Cux Co3 − xO4 Used as Bifunctional Electrocatalyst: Physicochemical properties and electrochemical characterization for the oxygen evolution reaction. J Electrochem Soc 153(11):A2103

    Google Scholar 

  30. Obodo RM, Ahmad A, Jain GH, Ahmad I, Maaza M, Ezema FI (2020) 8.0 MeV copper ion (Cu++) irradiation-induced effects on structural, electrical, optical and electrochemical properties of Co3O4-NiO-ZnO/GO nanowires. Mater Sci Energy Technol 3:193

    CAS  Google Scholar 

  31. Munawar T, Iqbal F, Yasmeen S, Mahmood K, Hussain A (2020) Multi metal oxide NiO-CdO-ZnO nanocomposite–synthesis, structural, optical, electrical properties and enhanced sunlight driven photocatalytic activity. Ceram Int 46:2421

    Article  CAS  Google Scholar 

  32. Heiba ZK, Mohamed MB, Ahmed SI, Albassam AA (2020) Structural, optical, and electronic properties of non-stoichiometric nano-ZnS1−x: Mnx. J Mater Sci Mater Electron 31(16):13447

    Article  CAS  Google Scholar 

  33. Yasmeen S, Iqbal F, Munawar T, Nawaz MA, Asghar M, Hussain A (2019) Synthesis and photocatalytic study of Zn0.90Co0.10O and Zn0.90Co0.05M0.05O (M = Ca, Ba, Cr, Pb) nanocrystals: structural, optical and electrical investigations. Ceram Int 45:17859

    Article  CAS  Google Scholar 

  34. Sharma RK, Ghose R (2016) Synthesis of Co3O4–ZnO mixed metal oxide nanoparticles by homogeneous precipitation method. J Alloy Compd 686:64

    Article  CAS  Google Scholar 

  35. Fayek SA, El-Ocker M, Hassanien AS (2001) Optical and electrical properties of Ge10+xSe40Te50−x thin film. Mater Chem Phys 70(2):231

    Article  CAS  Google Scholar 

  36. Mohamed SH, Drese R (2006) tructural and optical properties of direct current sputtered zinc aluminum oxides with a high Al concentration. Thin Solid Films 513:64

    Article  CAS  Google Scholar 

  37. Sharma I, Sharma P, Hassanien AS (2022) Optical properties and optoelectrical parameters of the quaternary chalcogenide amorphous Ge15SnxS35-xTe50 films. J Non-Cryst Solids 590:121673

    Article  CAS  Google Scholar 

  38. El-naggar AM, Heiba ZK, Kamal AM, Mohamed MB (2023) Structural, dielectric, linear and nonlinear optical parameters of Zn0.9Cu0.1S filled PVA/CMC/PEG blends. Optical Quantum Electron 55(9):1

    Article  Google Scholar 

  39. Choi JW, Han Z, Sohn B-U, Chen GFR, Smith C, Kimerling LC, Richardson KA, Agarwal AM, Tan DTH (2016) Nonlinear characterization of GeSbS chalcogenide glass waveguides. Sci Rep 6:39234

    Article  CAS  Google Scholar 

  40. Nguyen-Truong HT (2014) Energy-loss function including damping and prediction of plasmon lifetime. J Electron Spectrosc Relat Phenom 193:79

    Article  CAS  Google Scholar 

  41. Suma GR, Subramani NK, Shilpa KN, Sachhidananda S, Satyanarayana SV (2017) Effect of Ce0.5Zr0.5O2 nano fillers on structural and optical behaviors of poly(vinyl alcohol). J Mater Sci: Mater Electron 28(14):10707

    CAS  Google Scholar 

  42. Ticha H, Tichy L (2002) Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J Optoelectron Adv Mater 4:381

    CAS  Google Scholar 

Download references

Acknowledgements

The researchers would like to acknowledge Deanship of Scientific Research, Taif University for funding this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed, discussed the results and approved the final manuscript.

Corresponding authors

Correspondence to Zein K. Heiba or Ali Badawi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heiba, Z.K., Mohamed, M.B., Abdellatief, M. et al. Investigation of the structural and linear/nonlinear optical characteristics of ZnO nanostructures alloyed with Co3O4 and NiO. J Sol-Gel Sci Technol 108, 175–186 (2023). https://doi.org/10.1007/s10971-023-06196-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06196-6

Keywords

Navigation