Skip to main content
Log in

Fabrication of TiO2/SiO2/Ag/PDMS superhydrophobic coating for efficient oil/water separation

  • Original Paper: Sol-gel and hybrid materials with surface modification for applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Adsorption based materials play a rather important prospect in the treatment of petroleum. Currently, most of the adsorbent materials work based on substrates such as sponges and aerogels, to endow super-hydrophobic/super-oleophilic properties on the membrane surface. As the adsorbent material reaches the end of its useful life, it undoubtedly further exacerbates the burden on the environment from an environmental protection perspective. Here, we modified the recycled discarded air filter with polydimethylsiloxane (PDMS), γ-aminopropyltriethoxysilane (KH-550), TiO2, SiO2, and Ag. The results showed that the prepared PDMS-1 (TiO2/SiO2/Ag)@ discard air filter has excellent super-hydrophobicity and enhanced antibacterial properties, and possesses mechanical durability and chemical stability. The modified discarded air filter had an absorption capacity of up to 23.2 g/g of carbon tetrachloride. This research provides a new oil-absorbent substrate with a secondary use strategy to reduce environmental damage. Ultimately, it exhibits excellent performance almost indistinguishable from other adsorbent materials.

Graphical Abstract

This graphic abstract focuses on the preparation process of super-hydrophobic/super-oleophilic discarded air cartridges for oil adsorption. We modified the recycled discarded air filter with polydimethylsiloxane (PDMS), γ-aminopropyltriethoxysilane (KH-550), TiO2, SiO2, and Ag. The results show that the modified discarded air cartridge surface is super-hydrophobic/super-oleophilic, and also has excellent oil absorption capacity.

Highlights

  • A facile method was developed to prepare superhydrophobic TiO2/SiO2/Ag nanoparticle coating.

  • The superhydrophobic discard air filters were fabricated by simple dip coating method.

  • The contact angle of water on the superhydrophobic surface is more than 154°.

  • Impressive antibacterial activities and resistance to both acid and alkali.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Luo WJ, Sun DW, Chen SS, Shanmugam L, Xiang Y, Yang JL (2020) Robust microcapsules with durable superhydrophobicity and superoleophilicity for efficient oil-water separation. Acs Appl Mater Interfaces 12(51):57547–57559. https://doi.org/10.1021/acsami.0c15455

    Article  CAS  Google Scholar 

  2. Wang ZX, Lau CH, Zhang NQ, Bai YP, Shao L (2015) Mussel-inspired tailoring of membrane wettability for harsh water treatment. J Mater Chem A 3(6):2650–2657. https://doi.org/10.1039/c4ta05970k

    Article  CAS  Google Scholar 

  3. Tony MA, Zhao YQ, Purcell PJ, El-Sherbiny MF (2009) Evaluating the photo-catalytic application of Fenton’s reagent augmented with TiO2 and ZnO for the mineralization of an oil-water emulsion. J Environ Sci Health Part a-Toxic/Hazard Subst Environ Eng 44(5):488–493. https://doi.org/10.1080/10934520902719894

    Article  CAS  Google Scholar 

  4. Van der Bruggen B, Vandecasteele C, Van Gestel T, Doyen W, Leysen R (2003) A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ Prog 22(1):46–56. https://doi.org/10.1002/ep.670220116

    Article  Google Scholar 

  5. Kilic MY, Yonar T, Kestioglu K (2013) Pilot-scale treatment of olive oil mill wastewater by physicochemical and advanced oxidation processes. Environ Technol 34(12):1521–1531. https://doi.org/10.1080/09593330.2012.758663

    Article  CAS  Google Scholar 

  6. Pastor D, Sanchez J, Porte C, Albaiges J (2001) The Aegean Sea oil spill in the Galicia coast (NW Spain). I. Distribution and fate of the crude oil and combustion products in subtidal sediments. Mar Pollut Bull 42(10):895–904. https://doi.org/10.1016/s0025-326x(01)00048-0

    Article  CAS  Google Scholar 

  7. Mullin JV, Champ MA (2003) Introduction/overview to in situ burning of oil spills. Spill Sci Technol Bull 8(4):323–330. https://doi.org/10.1016/s1353-2561(03)00076-8

    Article  CAS  Google Scholar 

  8. Lee K, de Mora S (1999) In situ bioremediation strategies for oiled shoreline environments. Environ Technol 20(8):783–794. https://doi.org/10.1080/09593332008616875

    Article  CAS  Google Scholar 

  9. Pontes J, Mucha AP, Santos H, Reis I, Bordalo A, Basto MC, Bernabeu A, Almeida CMR (2013) Potential of bioremediation for buried oil removal in beaches after an oil spill. Mar Pollut Bull 76(1-2):258–265. https://doi.org/10.1016/j.marpolbul.2013.08.029

    Article  CAS  Google Scholar 

  10. Klasson KT, Taylor PA, Walker JF, Jones SA, Cummins RL, Richardson SA (2004) Investigation of a centrifugal separator for in-well oil water separation. Pet Sci Technol 22(9-10):1143–1159. https://doi.org/10.1081/lft-200034055

    Article  CAS  Google Scholar 

  11. Pal S, Mondal S, Maity J (2019) Fabrication of thin fluoropolymer adhered cotton fabric surface for efficiently microscopic to macroscopic level oil/water separation. Surf Topogr Metrol Prop 7 (2). https://doi.org/10.1088/2051-672X/ab0cbf

  12. Galblaub OA, Shaykhiev IG, Stepanova SV, Timirbaeva GR (2016) Oil spill cleanup of water surface by plant-based sorbents: Russian practices. Process Saf Environ Prot 101:88–92. https://doi.org/10.1016/j.psep.2015.11.002

    Article  CAS  Google Scholar 

  13. Suni S, Kosunen AL, Hautala M, Pasila A, Romantschuk M (2004) Use of a by-product of peat excavation, cotton grass fibre, as a sorbent for oil-spills. Mar Pollut Bull 49(11-12):916–921. https://doi.org/10.1016/j.marpolbul.2004.06.015

    Article  CAS  Google Scholar 

  14. Bandura L, Franus M, Jozefaciuk G, Franus W (2015) Synthetic zeolites from fly ash as effective mineral sorbents for land-based petroleum spills cleanup. Fuel 147:100–107. https://doi.org/10.1016/j.fuel.2015.01.067

    Article  CAS  Google Scholar 

  15. Lu ZH, Zia Q, Meng JM, Liu T, Song J, Li JS (2020) Hierarchical porous poly(l-lactic acid)/SiO2 nanoparticles fibrous membranes for oil/water separation. J Mater Sci 55(34):16096–16110. https://doi.org/10.1007/s10853-020-05115-2

    Article  CAS  Google Scholar 

  16. Cheng QY, An XP, Li YD, Huang CL, Zeng JB (2017) Sustainable and biodegradable superhydrophobic coating from epoxidized soybean oil and ZnO nanoparticles on cellulosic substrates for efficient oil/water separation. Acs Sustain Chem Eng 5(12):11440–11450. https://doi.org/10.1021/acssuschemeng.7b02549

    Article  CAS  Google Scholar 

  17. Liu K, Qi KL, Zhao YJ, Wang X, Yang CH, Fu JX, Li YD, Li PL (2020) Preparation and properties of super-hydrophobic TiO2&POTS@PP microfiltration membrane for oil/water separation. Mater Lett 263. https://doi.org/10.1016/j.matlet.2019.127237

  18. Luo ZY, Lyu SS, Wang YQ, Mo DC (2017) Fluorine-induced superhydrophilic Ti foam with surface nanocavities for effective oil-in-water emulsion separation. Ind Eng Chem Res 56(3):699–707. https://doi.org/10.1021/acs.iecr.6b04059

    Article  CAS  Google Scholar 

  19. Dong BB, Yang MY, Wang FH, Hao LY, Xu X, Wang G, Agathopoulos S (2019) Porous Al2O3 plates prepared by combing foaming and gel-tape casting methods for efficient collection of oil from water. Chem Eng J 370:658–665. https://doi.org/10.1016/j.cej.2019.03.218

    Article  CAS  Google Scholar 

  20. Han L, Wu WH, Huang Z, Lei W, Li SS, Zhang HJ, Jia QL, Zhang SW (2021) Preparation and characterization of a novel fluorine-free and pH-sensitive hydrophobic porous diatomite ceramic as highly efficient sorbent for oil-water separation. Sep Purif Technol 254. https://doi.org/10.1016/j.seppur.2020.117620

  21. Zhang N, Zhou Y, Zhang YN, Jiang W, Wang TH, Fu JJ (2018) Dual-templating synthesis of compressible and superhydrophobic spongy polystyrene for oil capture. Chem Eng J 354:245–253. https://doi.org/10.1016/j.cej.2018.07.184

    Article  CAS  Google Scholar 

  22. Qu JY, Han Q, Gao F, Qiu JS (2017) Carbon foams produced from lignin-phenol-formaldehyde resin for oil/water separation. N. Carbon Mater 32(1):86–91. https://doi.org/10.1016/s1872-5805(17)601094

    Article  CAS  Google Scholar 

  23. Song Y, Li HH, Gao Y, Yue QY, Gao BY, Kong WJ, Zang YN, Jiang WQ (2019) Grass-modified graphene aerogel for effective oil-water separation. Process Saf Environ Prot 129:119–129. https://doi.org/10.1016/j.psep.2019.06.018

    Article  CAS  Google Scholar 

  24. Liu ZY, Qin ZP, Zhao G, Aladejana JT, Wang HK, Huang A, Chen DG, Xie YQ, Peng XF, Chen TJ (2021) High-efficiency oil/water absorbent using hydrophobic silane-modified plant fiber sponges. Compos Commun 25. https://doi.org/10.1016/j.coco.2021.100763

  25. Li LX, Li BC, Sun HX, Zhang JP (2017) Compressible and conductive carbon aerogels from waste paper with exceptional performance for oil/water separation. J Mater Chem A 5(28):14858–14864. https://doi.org/10.1039/c7ta03511j

    Article  CAS  Google Scholar 

  26. Li ZB, Qian W, Chen YL, Xu P, Li J, Yang J (2021) A new treasure in industrial solid waste-coal fly ash for effective oil/water separation. J Taiwan Inst Chem Eng 118:196–203. https://doi.org/10.1016/j.jtice.2020.12.026

    Article  CAS  Google Scholar 

  27. Wang C, Xu GG, Gu XY, Zhao P, Gao YH (2022) Recycling of waste attapulgite to prepare ceramic membranes for efficient oil-in-water emulsion separation. J Eur Ceram Soc 42(5):2505–2515. https://doi.org/10.1016/j.jeurceramsoc.2021.12.053

    Article  CAS  Google Scholar 

  28. Gammoun A, Tahiri S, Albizane A, Azzi M, De la Guardia M (2007) Decontamination of water polluted with oil through the use of tanned solid wastes. J Environ Eng Sci 6(5):553–559. https://doi.org/10.1139/s07-006

    Article  CAS  Google Scholar 

  29. Singh AK, Mishra S, Singh JK (2019) Underwater superoleophobic biomaterial based on waste potato peels for simultaneous separation of oil/water mixtures and dye adsorption. Cellulose 26(9):5497–5511. https://doi.org/10.1007/s10570-019-02458-1

    Article  CAS  Google Scholar 

  30. Zhang JL, Xu H, Guo J, Chen TC, Liu HT (2020) Superhydrophobic polypyrrole-coated cigarette filters for effective oil/water separation. Appl Sci Basel 10(6). https://doi.org/10.3390/app10061985

  31. Mitra D, Tai MH, Abdullah EB, Wang CH, Neoh KG (2021) Facile fabrication of porous waste-derived carbon-polyethylene terephthalate composite sorbent for separation of free and emulsified oil from water. Sep Purif Technol 279. https://doi.org/10.1016/j.seppur.2021.119664

  32. Thakur R, Das D, Das A (2013) Electret air filters. Sep Purif Rev 42(2):87–129. https://doi.org/10.1080/15422119.2012.681094

    Article  Google Scholar 

  33. Zhang RF, Liu C, Hsu PC, Zhang CF, Liu N, Zhang JS, Lee HR, Lu YY, Qiu YC, Chu S, Cui Y (2016) Nanofiber air filters with high-temperature stability for efficient PM2.5 removal from the pollution sources. Nano Lett 16(6):3642–3649. https://doi.org/10.1021/acs.nanolett.6b00771

    Article  CAS  Google Scholar 

  34. Zerboni A, Rossi T, Bengalli R, Catelani T, Rizzi C, Priola M, Casadei S, Mantecca P (2022) Diesel exhaust particulate emissions and in vitro toxicity from Euro 3 and Euro 6 vehicles. Environ Pollut 297. https://doi.org/10.1016/j.envpol.2021.118767

  35. Chen T, Zhou S, Hu ZH, Fu XK, Liu ZY, Su BL, Wan HR, Du XH, Gao ZJ (2021) A multifunctional superhydrophobic melamine sponge decorated with Fe3O4/Ag nanocomposites for high efficient oil-water separation and antibacterial application. Colloid Surf A-Physicochem Eng Asp 626. https://doi.org/10.1016/j.colsurfa.2021.127041

  36. Jia XL, Xiao PW, Luo JH, He MY, Wang YH, Wang PM, Jiang B, Xiao B (2023) Synthesis of asymmetric dumbbell-like SiO2 nanoparticles in aqueous phase and their emulsification properties. J Sol-Gel Sci Technol. https://doi.org/10.1007/s10971-022-05984-w

  37. Armyanov S, Stankova NE, Atanasov PA, Valova E, Kolev K, Georgieva J, Steenhaut O, Baert K, Hubin A (2015) XPS and mu-Raman study of nanosecond-laser processing of poly(dimethylsiloxane) (PDMS). Nucl Instrum Methods Phys Res Sect B-Beam Interact Mater At 360:30–35. https://doi.org/10.1016/j.nimb.2015.07.134

    Article  CAS  Google Scholar 

  38. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8):988–994. https://doi.org/10.1021/ie50320a024

    Article  CAS  Google Scholar 

  39. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40(0):546–551. https://doi.org/10.1039/TF9444000546

    Article  CAS  Google Scholar 

  40. Rong X, Chen XX, Li P, Zhao CY, Peng S, Ma HY, Qu HQ (2022) Mechanically durable anti-bacteria non-fluorinated superhydrophobic sponge for highly efficient and fast microplastic and oil removal. Chemosphere 299. https://doi.org/10.1016/j.chemosphere.2022.134493

  41. Wu J, Wang N, Wang L, Dong H, Zhao Y, Jiang L (2012) Electrospun porous structure fibrous film with high oil adsorption capacity. Acs Appl Mater Interfaces 4(6):3207–3212. https://doi.org/10.1021/am300544d

    Article  CAS  Google Scholar 

  42. Kim DW, Eum K, Kim H, Kim D, de Mello MD, Park K, Tsapatsis M (2019) Continuous ZIF-8/reduced graphene oxide nanocoating for ultrafast oil/water separation. Chem Eng J 372:509–515. https://doi.org/10.1016/j.cej.2019.04.179

    Article  CAS  Google Scholar 

  43. Ai JX, Guo ZG (2020) Facile preparation of a superamphiphobic fabric coating with hierarchical TiO2 particles. N. J Chem 44(44):19192–19200. https://doi.org/10.1039/d0nj04032k

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Tianjin Research Innovation Project for Postgraduate Students (2021YJSS350).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Guo Yan or Zhifeng Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, WG., Li, XC., Wei, JH. et al. Fabrication of TiO2/SiO2/Ag/PDMS superhydrophobic coating for efficient oil/water separation. J Sol-Gel Sci Technol 108, 187–199 (2023). https://doi.org/10.1007/s10971-023-06166-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06166-y

Keywords

Navigation