Skip to main content

Advertisement

Log in

Synthesis of Al2O3-SiO2 aerogels with low thermal conductivity and high strength by methyltriethoxysilane as a silica precursor

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this work, Al2O3-SiO2 aerogels with low thermal conductivity and high strength were prepared using methyltriethoxysilane (MTES) as a silica precursor through the sol-gel method and high-temperature calcination. The effects of silica precursor on the thermal conductivity, chemical structure, and pore structure of aerogel as well as the effects of calcination temperature on the thermal conductivity, and mechanical properties of aerogel were investigated. The results indicated that MTES can reduce thermal conductivity by changing the microstructure of aerogel compared with tetraethyl orthosilicate (TEOS). The subsequent high-temperature calcination can further reduce thermal conductivity and improve mechanical properties. The prepared Al2O3-SiO2 aerogels have the characteristics of low thermal conductivity and high strength compared with previous reports. The Al2O3-SiO2 aerogels using MTES as silica precursor and calcined at 800 °C exhibited a density of 0.220 g/cm3, low thermal conductivity of 0.0232 W/(m·K), and a high compressive modulus of 74.29 MPa. In addition, the introduction of MTES can inhibit the sintering and phase transformation of alumina aerogel, and then improve the heat resistance of alumina aerogel. The specific surface areas of Al2O3-SiO2 aerogels before heat treatment, heat-treated at 1000 °C and heat-treated at 1200 °C are 639.68 m2/g, 337.28 m2/g, and 90.67 m2/g, respectively. This work provides a novel method for Al2O3-SiO2 aerogels to reduce thermal conductivity and improve mechanical properties.

Graphical Abstract

This work proposes a novel method to fabricate low thermal conductivity and high strength Al2O3-SiO2 aerogels by simultaneously using MTES as silica precursor and high-temperature calcination. The MTES with inert functional group reduces the shrinkage of aerogels in the preparation process and changes the microstructure of aerogels, then reduces the thermal conductivity of aerogels. High-temperature calcination can further reduces the thermal conductivity and improves the strength Al2O3-SiO2 aerogels by reducing the size of macropores and strengthening the neck. The density, thermal conductivity at room temperature, and Young’s modulus of the as prepared semitransparent and monolithic Al2O3-SiO2 aerogels are 0.220 g/cm3, 0.0232 W/(m·K) and 74.29 MPa, respectively. Compared with the related reports, the prepared Al2O3-SiO2 aerogels has the characteristics of low thermal conductivity and high strength.

Highlights

  • Compared with TEOS, Al2O3-SiO2 aerogels with MTES as silica precursor have lower thermal conductivity.

  • High-temperature calcination can improve mechanical resistance and reduces the thermal conductivity of Al2O3-SiO2 aerogels.

  • The addition of MTES can improve the heat resistance of Al2O3 aerogel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data can be obtained by requesting the corresponding author.

References

  1. Lebedev AE, Menshutina NV, Khudeev II, Kamyshinsky RA (2020) Investigation of alumina aerogel structural characteristics at different «precursor-water-ethanol» ratio. J Non-Crystalline Solids 553:120475. https://doi.org/10.1016/j.jnoncrysol.2020.120475

    Article  CAS  Google Scholar 

  2. Keysar S, Shter GE, Hazan YD, Cohen Y, Grader GS (1997) Heat Treatment of Alumina Aerogels. Chem Mater 9:2464–2467. https://doi.org/10.1021/cm970208s

    Article  CAS  Google Scholar 

  3. Peng F, Jiang YG, Feng J, Liu FQ, Feng JZ, Li LJ (2022) Novel silica-modified boehmite aerogels and fiber-reinforced insulation composites with ultra-high thermal stability and low thermal conductivity. J Eur Ceram Soc 42:6684–6702. https://doi.org/10.1016/j.jeurceramsoc.2022.07.001

    Article  CAS  Google Scholar 

  4. Almeida CMR, Ghica ME, Durães L (2020) An overview on Al2O3-SiO2-based aerogels. Adv Colloid Interface Sci 282:102189. https://doi.org/10.1016/j.cis.2020.102189

    Article  CAS  Google Scholar 

  5. Zu GQ, Shen J, Zou LP, Wang WQ, Lian Y, Zhang ZH, Du A (2013) Nanoengineering Super Heat-Resistant, Strong Alumina Aerogels. Chem Mater 25:4757–4764. https://doi.org/10.1021/cm402900y

    Article  CAS  Google Scholar 

  6. Zu GQ, Shen J, Wei XQ, Ni XY, Zhang ZH, Wang JC, Liu GW (2011) Preparation and characterization of monolithic alumina aerogels. J Non-Crystalline Solids 357:2903–2906. https://doi.org/10.1016/j.jnoncrysol.2011.03.031

    Article  CAS  Google Scholar 

  7. Wu XD, Shao GF, Shen XD, Cui S, Wang L (2016) Novel Al2O3-SiO2 composite aerogels with high specific surface area at elevated temperatures with different alumina/silica molar ratios prepared by a non-alkoxide sol-gel method. RSC Adv 6:5611–5620. https://doi.org/10.1039/c5ra19764c

    Article  CAS  Google Scholar 

  8. Peng F, Jiang YG, Feng JZ, Li LJ, Cai HF, Feng J (2020) A facile method to fabricate monolithic alumina-silica aerogels with high surface areas and good mechanical properties. J Eur Ceram Soc 40:2480–2488. https://doi.org/10.1016/j.jeurceramsoc.2020.01.058

    Article  CAS  Google Scholar 

  9. Wang WQ, Zhang ZH, Zu GQ, Shen J, Zou LP, Lian Y, Liu B, Zhang F (2014) Trimethylethoxysilane-modified super heat-resistant alumina aerogels for high-temperature thermal insulation and adsorption applications. RSC Adv 4:54864–54871. https://doi.org/10.1039/C4RA08832H

    Article  CAS  Google Scholar 

  10. Horiuchi T, Osaki T, Sugiyama T, Suzuki K, Mori T (2001) Maintenance of large surface area of alumina heated at elevated temperatures above 1300 °C by preparing silica-containing pseudoboehmite aerogel. J Non-Crystalline Solids 291:187–198. https://doi.org/10.1016/S0022-3093(01)00817-1

    Article  CAS  Google Scholar 

  11. Shen J, Zhang XX (2021) Recent progress and applications of aerogels in China. J Sol-Gel Sci Technol 106:290–318. https://doi.org/10.1007/s10971-021-05639-2

    Article  CAS  Google Scholar 

  12. Pierre AC, Pajonk GM (2002) Chemistry of Aerogels and Their Applications. Chem Rev 102:4243–4265. https://doi.org/10.1021/cr0101306

    Article  CAS  Google Scholar 

  13. Nicholas L, Sotiriou-Leventis C, Zhang GH, Rawashdeh AMM (2002) Nanoengineering Strong Silica Aerogels. Nano Lett 2:957–960. https://doi.org/10.1021/nl025690e

    Article  CAS  Google Scholar 

  14. Leventis N (2007) Three-Dimensional Core-Shell Superstructures: Mechanically Strong Aerogels. American Chemical Society. Acc Chem Res 40:874–884. https://doi.org/10.1021/ar600033s

    Article  CAS  Google Scholar 

  15. Lu XP, Nilsson O, Fricke J, Pekala RW (1993) Thermal and electrical conductivity of monolithic carbon aerogels. J Appl Phys 73:581–584. https://doi.org/10.1063/1.353367

    Article  Google Scholar 

  16. Fricke J, Lu X, Wang P, Büttner D, Heinemann U (1992) Optimization of monolithic silica aerogel insulants. Int J Heat Mass Transf 35:2305–2309. https://doi.org/10.1016/0017-9310(92)90073-2

    Article  CAS  Google Scholar 

  17. Woignier T, Phalippou J (1988) Mechanical strength of silica aerogels. J Non-Crystalline Solids 100:404–408. https://doi.org/10.1016/0022-3093(88)90054-3

    Article  CAS  Google Scholar 

  18. Zhong Y, Kong Y, Shen XD, Cui S, Yi XB, Zhang JJ (2013) Synthesis of a novel porous material comprising carbon/alumina composite aerogels monoliths with high compressive strength. Microporous Mesoporous Mater 172:182–189. https://doi.org/10.1016/j.micromeso.2013.01.021

    Article  CAS  Google Scholar 

  19. Wu XD, Zhong Y, Kong Y, Shao GF, Cui S, Wang L, Jiao J, Shen XD (2015) Preparation and characterization of C/Al2O3 composite aerogel with high compressive strength and low thermal conductivity. J Porous Mater 22:1235–1243. https://doi.org/10.1007/s10934-015-0001-2

    Article  CAS  Google Scholar 

  20. Zhong Y, Shao GF, Wu XD, Kong Y, Wang X, Cui S, Shen XD (2019) Robust monolithic polymer(resorcinol-formaldehyde) reinforced alumina aerogel composites with mutually interpenetrating networks. RSC Adv 9:22942–22949. https://doi.org/10.1039/c9ra03227d

    Article  CAS  Google Scholar 

  21. Meador MAB, Fabrizio EF, Ilhan F, Dass A, Zhang GH, Vassilaras P, Johnston JC, Leventis N (2005) Cross-linking Amine-Modified Silica Aerogels with Epoxies:Mechanically Strong Lightweight Porous Materials. Chem Mater 17:1085–1098. https://doi.org/10.1021/cm048063u

    Article  CAS  Google Scholar 

  22. Zu GQ, Shen J, Wang WQ, Zou LP, Lian Y, Zhang ZH, Liu B, Zhang F (2014) Robust, Highly Thermally Stable, Core-Shell Nanostructured Metal Oxide Aerogels as High-Temperature Thermal Superinsulators, Adsorbents, and Catalysts. Chem Mater 26:5761–5772. https://doi.org/10.1021/cm502886t

    Article  CAS  Google Scholar 

  23. Ma J, Ye F, Yang CP, Ding JJ, Lin SJ, Zhang B, Liu Q (2017) Heat-resistant, strong alumina-modified silica aerogel fabricated by impregnating silicon oxycarbide aerogel with boehmite sol. Mater Des 131:226–231. https://doi.org/10.1016/j.matdes.2017.06.036

    Article  CAS  Google Scholar 

  24. Hou XB, Zhang RB, Wang BL (2018) Novel self-reinforcing ZrO2-SiO2 aerogels with high mechanical strength and ultralow thermal conductivity. Ceram Int 44:15440–15445. https://doi.org/10.1016/j.ceramint.2018.05.199

    Article  CAS  Google Scholar 

  25. Yu HJ, Tong ZW, Qiao YC, Yang ZC, Yue S, Li XL, Su D, Ji HM (2020) High thermal stability of SiO2-ZrO2 aerogels using solvent-thermal aging. J Solid State Chem 291:121624. https://doi.org/10.1016/j.jssc.2020.121624

    Article  CAS  Google Scholar 

  26. Liu DB, Zhang C, Xue YH (2023) Synthesis and characterization of sol-gel derived lanthanum zirconate ceramic aerogels toward ultralow thermal conductivity. Mater Sci Eng B 287:116127. https://doi.org/10.1016/j.mseb.2022.116127

    Article  CAS  Google Scholar 

  27. Baumann TF, Gash AE, Chinn SC, Sawvel AM, Maxwell RS, Satcher JH (2005) Synthesis of High-Surface-Area Alumina Aerogels without the Use of Alkoxide Precursors. Chem Mater 17:395–401. https://doi.org/10.1021/cm048800m

    Article  CAS  Google Scholar 

  28. Peng F, Jiang YG, Feng J, Cai HF, Feng JZ, Li LJ (2021) Thermally insulating, fiber-reinforced alumina–silica aerogel composites with ultra-low shrinkage up to 1500 °C. Chem Eng J 411:128402. https://doi.org/10.1016/j.cej.2021.128402

    Article  CAS  Google Scholar 

  29. Wu XD, Shao GF, Cui S, Wang L, Shen XD (2015) Synthesis of a novel Al2O3-SiO2 composite aerogel with high specific surface area at elevated temperatures using inexpensive inorganic salt of aluminum. Ceram Int 42:874–882. https://doi.org/10.1016/j.ceramint.2015.09.012

    Article  CAS  Google Scholar 

  30. Himmel B, Gerber T, Biirger H, Holzhfiter G, Olbertz A (1995) Structural characterization of SiO2-A12O3 aerogels. J Non-Crystalline Solids 186:149–158. https://doi.org/10.1016/0022-3093(95)00045-3

    Article  CAS  Google Scholar 

  31. Aravind PR, Mukundan P, Pillai PK, Warrier KGK (2006) Mesoporous silica-alumina aerogels with high thermal pore stability through hybrid sol-gel route followed by subcritical drying. Microporous Mesoporous Mater 96:14–20. https://doi.org/10.1016/j.micromeso.2006.06.014

    Article  CAS  Google Scholar 

  32. Yi XB, Zhang LL, Wang FY, Shen XD, Cui S, Zhang J, Wang XC (2014) Mechanically reinforced composite aerogel blocks by self-growing nanofibers. RSC Adv 4:48601–48605. https://doi.org/10.1039/c4ra07383e

    Article  CAS  Google Scholar 

  33. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2014) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  34. Hegde ND, Rao AV (2007) Physical properties of methyltrimethoxysilane based elastic silica aerogels prepared by the two-stage sol-gel process. J Mater Sci 42:6965–6971. https://doi.org/10.1007/s10853-006-1409-5

    Article  CAS  Google Scholar 

  35. Wang XD, Tian YL, Yu CL, Liu L, Zhang Z, Wu Y, Shen J (2022) Organic/inorganic double-precursor cross-linked alumina aerogel with high specific surface area and high-temperature resistance. Ceram Int 48:17261–17269. https://doi.org/10.1016/j.ceramint.2022.02.287

    Article  CAS  Google Scholar 

  36. Wu LA, Qiao XS, Cui S, Hong ZL, Fan XP (2015) Synthesis of monolithic aerogel-like alumina via the accumulation of mesoporous hollow microspheres. Microporous Mesoporous Mater 202:234–240. https://doi.org/10.1016/j.micromeso.2014.10.015

    Article  CAS  Google Scholar 

  37. Poco JF, Satcher Jr JH, Hrubesh LW (2001) Synthesis of high porosity, monolithic alumina aerogels. J Non-Crystalline Solids 285:57–63. https://doi.org/10.1016/S0022-3093(01)00432-X

    Article  CAS  Google Scholar 

  38. Hayase G, Kugimiya K, Ogawa M, Kodera Y, Kanamori K, Nakanishi K (2014) The thermal conductivity of polymethylsilsesquioxane aerogels and xerogels with varied pore sizes for practical application as thermal superinsulators. J Mater Chem A 2:6525–6531. https://doi.org/10.1039/c3ta15094a

    Article  CAS  Google Scholar 

  39. Lee OJ, Lee KH, Yim TJ, Kim SY, Yoo KP (2002) Determination of mesopore size of aerogels from thermal conductivity measurements. J Non-Crystalline Solids 298:287–292. https://doi.org/10.1016/S0022-3093(01)01041-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (12172229) for their financial.

Funding

This work was supported by the National Natural Science Foundation of China (12172229).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Guoqi Li, Li Hu, Kai Zhang, Sifan Hou and Jinpeng Fan. The first draft of the manuscript was written by Guoqi Li and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jinpeng Fan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Hu, L., Zhang, K. et al. Synthesis of Al2O3-SiO2 aerogels with low thermal conductivity and high strength by methyltriethoxysilane as a silica precursor. J Sol-Gel Sci Technol 108, 35–46 (2023). https://doi.org/10.1007/s10971-023-06164-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06164-0

Keywords

Navigation