Skip to main content
Log in

Sol-gel synthesis of ZrFeO3 nanoparticles and study of optical nonlinearity and multiferroicity of its nanocrystalline thin films

  • Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Third order optical nonlinearity and multiferroicity of perovskite ZrFeO3 nanocrystalline thin films are investigated in this work. Rietveld refinement of XRD pattern of ZrFeO3 nanoparticles synthesized by sol-gel method confirmed the monoclinic structure with space group P2m. Thin films of ZrFeO3 nanoparticles were deposited on glass substrates by thermal evaporation method. Open aperture Z-scan technique with CW diode laser of 520 nm wavelength was used to investigate the nonlinear absorption coefficient (β) and imaginary part of third order nonlinear optical susceptibility (Im χ(3)) at 30 mW, 40 mW and 50 mW input laser powers. At each input power, ZrFeO3 thin film exhibits reverse saturation absorption (RSA) behavior with nonlinear absorption coefficient (β) of the order of 3.22 × 10−4 cm/W, which is found to decrease with an increase in power.ZrFeO3 thin film exhibited multiferroic properties with Mr = 0.0042 emu/g Hc = 0.326 kOe, Pr = 0.667 µC/cm2and Ec = 1.145 kV/cm. The results imply that ZrFeO3 films can be considered as a promising perovskite nanomaterial for future applications in multiferroic and nonlinear optical devices.

Graphical Abstract

Highlights

  • ZrFeO3 nanoparticles were synthesized by sol-gel method.

  • ZrFeO3 nanocrystalline thin films were deposited on a glass substrate.

  • ZrFeO3 thin films shows third order optical nonlinearity and multiferroic properties.

  • Reverse Saturable absorption exhibited by ZrFeO3 Thin films at 520 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Harter DJ, Shand ML, Band YB (1984) Power/energy limiter using reverse saturable absorption. J Appl Phys 56:865–868

    Article  CAS  Google Scholar 

  2. Swain D, Anusha PT, Prashant TS, Tewari SP, Sarma T, Panda PK, Rao SV (2012) Ultrafast excited state dynamics and dispersion studies of nonlinear optical properties in dinaphthoporphycenes. Appl Phys Lett 100:141109

    Article  Google Scholar 

  3. Band YB (1986) in Methods in Laser Spectroscopy, Prior Y, Ben-Reuven A, and Rosenbluh M (eds). Springer, Boston, MA, p 117–121.

  4. Gaur A, Mahamad AM, Venugopal RS (2020) Strong two-photon absorption in ErFeO3 thin films studied using femtosecond near-infrared Z-scan technique. J Appl Phys 127:173104

    Article  CAS  Google Scholar 

  5. Jhon YI, Koo J, Anasori B, Seo M, Lee JN, Gogotsi Y, Jhon YM (2017) “Metallic MXene saturable absorber for femtosecond mode‐locked lasers. Adv Mater 29:1702496

    Article  Google Scholar 

  6. Shahriari E, Zohre MF, Mohsen GV, Reza Z (2017) Linear and non-linear optical properties of Ag doped ZnS thin film. Opt Quant Electron 49:1–12

    Article  CAS  Google Scholar 

  7. Wang T, Song S-H, Xu T, Wang M (2016) Maltose-assisted sol–gel synthesis, structural, magnetic and optical properties of multiferroic BiFeO3 nanopowders. J Sol-Gel Sci Technol 80:675–682

    Article  CAS  Google Scholar 

  8. Stegeman GI, William ET (1996) Nonlinear materials for information processing and communications. Philos Transact Royal Soc London Series A: Mathem Phys Eng Sci 354:745–756

    Article  CAS  Google Scholar 

  9. Sutherland RL (2003) Handbook of nonlinear optics, Marcel Dekker, Inc., New York

  10. Boyd RW (2020) Nonlinear Optics, 4th Edition. Academic Press, Cambridge, Massachusetts, USA

  11. Qian Y, Xiao G, Wang G, Lin B, Cui Y, Sun Y (2007) Synthesis and Z-scan measurements of third-order optical nonlinearity in push–pull molecules with dihydroxylethyl amino donor and nitro acceptor. Dyes Pigments 75:218–224

    Article  CAS  Google Scholar 

  12. Sharma J, Kumar A, Kumar S, Srivastava AK (2017) Investigation of structural and magnetic properties of Tb–Ni-doped bismuth ferrite nanoparticles by auto-combustion method. Appl Phys A 123:1–9

    Article  Google Scholar 

  13. Ortega N, Kumar A, Scott JF, Katiyar RS (2015) Multifunctional magnetoelectric materials for device applications. J Phys: Condensed Matter 27:504002

    CAS  Google Scholar 

  14. Wang JBNJ, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, Viehland D et al. (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299:1719–1722

    Article  CAS  Google Scholar 

  15. Yun K, Young M, Noda, Okuyama M (2003) Prominent ferroelectricity of BiFeO 3 thin films prepared by pulsed-laser deposition. Appl Phys Lett 83:3981–3983

    Article  CAS  Google Scholar 

  16. Kumar A, Rai RC, Podraza NJ, Denev S, Ramirez M, Chu Y-H, W. Martin L et al. (2008) Linear and nonlinear optical properties of Bi Fe O 3. Appl Phys Lett 92:121915

    Article  Google Scholar 

  17. Pradhan AK, Zhang K, Hunter D, Dadson JB, Loiutts GB, Bhattacharya P, Katiyar R et al. (2005) Magnetic and electrical properties of single-phase multiferroic BiFeO 3. J Appl Phys 97:093903

    Article  Google Scholar 

  18. Basu SR, Martin LW, Chu YH, Gajek M, Ramesh R, Rai RC, Xu X, Musfeldt JL (2008) Photoconductivity in Bi Fe O 3 thin films. Appl Phys Lett 92:091905

    Article  Google Scholar 

  19. Gu B, Wang Y, Wang J, Ji W (2009) Femtosecond third-order optical nonlinearity of polycrystalline BiFeO3. Optics Exp 17:10970–10975

    Article  CAS  Google Scholar 

  20. Gu B, Wang Y-H, Peng X-C, Ding J-P, He J-L, Wang H-T (2004) Giant optical nonlinearity of a Bi 2 Nd 2 Ti 3 O 12 ferroelectric thin film. Appl Phys Lett 85:3687–3689

    Article  CAS  Google Scholar 

  21. Liu Y, Meng L, Han K, Sun S (2021) Synthesis of nano-zirconium-iron oxide supported by activated carbon composite for the removal of Sb (v) in aqueous solution. RSC Adv 11:31131–31141

    Article  CAS  Google Scholar 

  22. Dou X, Zhang Y, Wang H, Wang T, Wang Y (2011) Performance of granular zirconium–iron oxide in the removal of fluoride from drinking water. Water Res 45:3571–3578

    Article  CAS  Google Scholar 

  23. Ketov SV, Shi X, Xie G, Kumashiro R, Churyumov AY, Bazlov AI, Chen N et al. (2015) Nanostructured Zr-Pd metallic glass thin film for biochemical applications. Sci Rep 5:1–7

    Article  Google Scholar 

  24. Sangwan KM, Ahlawat N, Kundu RS, Rani S, Rani S, Ahlawat N, Murugavel S (2018) Improved dielectric and ferroelectric properties of Mn doped barium zirconium titanate (BZT) ceramics for energy storage applications. J Phys Chem Solids 117:158–166

    Article  CAS  Google Scholar 

  25. Scott EA, Smith SW, Henry MD, Rost CM, Giri A, Gaskins JT, Fields SS, Jaszewski ST, Ihlefeld JF, Hopkins PE (2018) Thermal resistance and heat capacity in hafnium zirconium oxide (Hf1–xZrxO2) dielectrics and ferroelectric thin films. Appl Phys Lett 113:192901

    Article  Google Scholar 

  26. Patrusheva TN, Enyutina TA, Boldyrev VS, Marchenkova SG, Yu Snezhko N, Morozchenko DA, Kholkin AI (2014) Study of thermal conductivity of glass with ZrO2-based thin films. Theor Foundat Chem Eng 48 no. 5:677–681

    Article  Google Scholar 

  27. Xie J, Feng C, Pan X, Liu Y (2014) Structure analysis and multiferroic properties of Zr4+ doped BiFeO3 ceramics. Ceram Int 40:703–706

    Article  CAS  Google Scholar 

  28. Li J, Wang L, Bian L, Zhao PJ, Xu JB (2013) Structural evolution and electric properties of low content Zr-doped BiFeO3 thin films. In Advanced Materials Research, 785, Trans Tech Publications Ltd., Switzerland, p 817–820

  29. Dutta DP, Tyagi AK (2018) Effect of Sm3+ and Zr4+ codoping on the magnetic, ferroelectric and magnetodielectric properties of sonochemically synthesized BiFeO3 nanorods. Appl Surf Sci 450:429–440

    Article  CAS  Google Scholar 

  30. Wang T, Ma Q, Song S-H (2018) Highly enhanced magnetic properties of BiFeO3 nanopowders by aliovalent element Ba-Zr co-doping. J Magnet Magn Mater 465:375–380

    Article  CAS  Google Scholar 

  31. Priya A, Sathiya IB, Shameem Banu M, Shahid (2016) Anwar, and Shamima Hussain. “Studies on the multiferroic properties of (Zr, Cu) co-doped BiFeO3 prepared by sol–gel method. J Sol-Gel Sci Technol 80:579–586

    Article  CAS  Google Scholar 

  32. Fajriyani F, Triyono D (2020) Room temperature impedance analysis of (Bi, Zr) FeO3. In AIP Conference Proceedings, 2256, AIP Publishing LLC, New York, p 030018

  33. Moulay N, Ameri M, Azaz Y, Zenati A, Al-Douri Y, Ameri I (2015) Predictive study of structural, electronic, magnetic and thermodynamic properties of XFeO3 (X= Ag, Zr and Ru) multiferroic materials in cubic perovskite structure: first-principles calculations. Mat Science-Poland 33 no. 2:402–413

    Google Scholar 

  34. Salmani IA, Khan MS, Ali J, Hafiz AK, Mehkoom M, Afzal SM, Khan MS (2023) Third-order optical nonlinearity and multiferroicity of nanoparticles thin films of isovalent rare earth Y3+ ion substituted BiFeO3. Phys B: Conden Matter 655:414750

    Article  CAS  Google Scholar 

  35. Sheik-Bahae M, Said AA, Van Stryland EW (1989) High-sensitivity, single-beam n 2 measurements. Opt Lett 14:955–957

    Article  CAS  Google Scholar 

  36. Salmani I, Ahmad T, Murtaza MS, Khan, Khan MS (2022) Analysis of size-dependent variation in nonlinear absorption coefficient of multiferroic bismuth ferrite nanoparticles synthesized at different sintering temperature. J Nonlinear Opt Phys Mater 31:2250012

    Article  CAS  Google Scholar 

  37. Hill RJ, Howard CJ (1987) Quantitative phase analysis from neutron powder diffraction data using the Rietveld method. J Appl Crystallogr 20:467–474

    Article  CAS  Google Scholar 

  38. Yu X-xiang, Wang Y-hua (2014) Measurement of nonlinear optical refraction of composite material based on sapphire with silver by Kerr-lens autocorrelation method. Opt Exp 22:177–182

    Article  Google Scholar 

  39. Hill NA (2000) Why are there so few magnetic ferroelectrics? J Phys Chem B 104:6694–6709

    Article  CAS  Google Scholar 

  40. Shrout TR, Swartz SL (1992) Processing of ferroelectric and related materials: a review. In ISAF’92: Proceedings of the Eighth IEEE International Symposium on Applications of Ferroelectrics. IEEE, New York, p 80–88

  41. Yu Z, Guo R, Bhalla AS (2000) Orientation dependence of the ferroelectric and piezoelectric behavior of Ba(Ti1−xZrx)O3 single crystals. Appl Phys Lett 77:1535–1537

    Article  CAS  Google Scholar 

  42. Wang YK, Tseng T-Y, Lin P (2003) Preferentially Oriented Ferroelectric Pb (Zr0.53Ti0.47)O3 Thin Films on (110) BaRuO3/Ru/SiO2/Si Substrates. Electrochem Solid-state Lett 7:F1

    Article  Google Scholar 

  43. Wermuth T, Bender J, Venturini W, Guaglianoni C, Tonelli AM, Chavarriaga EA, Arcaro S, Baibich MN, Bergmann CP (2021) Enhancement of magnetic and dielectric properties of KNbO3–CoFe2O4 multiferroic composites via thermal treatment. Ceram Int 47:4874–4883

    Article  CAS  Google Scholar 

  44. Ramam K, Lopez M (2006) Ferroelectric and piezoelectric properties of Ba modified lead zirconium titanate ceramics. J Phys D: Appl Phys 39:4466

    Article  CAS  Google Scholar 

  45. Bammannavar B, Naik L, Pujar R, Chougule B (2008) Influence of Time and Temperature on Resistivity and Microstructure of Cu X Co 1-X FE 2 O 4 Mixed Ferrites. Prog Electromagnet Res Lett 4:121–129

    Article  Google Scholar 

  46. Ilić NI, Bobić JD, Stojadinović BS, Džunuzović AS, Petrović MMV, Dohčević-Mitrović ZD, Stojanović BD (2016) Improving of the electrical and magnetic properties of BiFeO3 by doping with yttrium. Mater Res Bullet 77:60–69

    Article  Google Scholar 

  47. Zhang Y, Wang Y, Qi J, Tian Y, Sun M, Zhang J, Hu T, Wei M, Liu Y, Yang J (2018) Enhanced magnetic properties of BiFeO3 thin films by doping: analysis of structure and morphology. Nanomaterials 8:711

    Article  Google Scholar 

  48. Kasap, Safa O, and Peter Capper, eds. (2006) Springer handbook of electronic and photonic materials. Vol. 11.ch.4, Springer, New York

  49. Krishna Murthy J, Venimadhav A (2013) Giant zero field cooled spontaneous exchange bias effect in phase separated La1. 5Sr0. 5CoMnO6. Appl Phys Lett 103:252410

    Article  Google Scholar 

  50. Fertman E, Dolya S, Desnenko V, Pozhar LA, Kajňaková M, Feher A (2014) Exchange bias in phase-segregated Nd2/3Ca1/3MnO3 as a function of temperature and cooling magnetic fields. J Appl Phys 115:203906

    Article  Google Scholar 

  51. Sheik-Bahae M, Said AA, Wei T-H, Hagan DJ, Van Stryland EW (1990) Sensitive measurement of optical nonlinearities using a single beam. IEEE J Quant Electron 26:760–769

    Article  CAS  Google Scholar 

  52. Chen S, Zheng M-L, Dong X-Z, Zhao Z-S, Duan X-M (2013) Nondegenerate two-photon absorption in a zinc blende-type ZnS single crystal using the femtosecond pump–probe technique. JOSA B 30:3117–3122

    Article  CAS  Google Scholar 

  53. Gu B, Fan Y-X, Chen J, Wang H-T, He J, Ji W (2007) Z-scan theory of two-photon absorption saturation and experimental evidence. J Appl Phys 102:083101

    Article  Google Scholar 

  54. He J, Qu Y, Li H, Mi J, Ji W (2005) Three-photon absorption in ZnO and ZnS crystals. Opt Exp 13:9235–9247

    Article  CAS  Google Scholar 

  55. Chattopadhyay M, Kumbhakar P, Tiwary CS, Mitra AK, Chatterjee U, Kobayashi T (2009) Three-photon-induced four-photon absorption and nonlinear refraction in ZnO quantum dots. Opt Lett 34:3644–3646

    Article  CAS  Google Scholar 

  56. Venkatram N, Narayana Rao D, Giribabu L, Rao SVenugopal (2008) Femtosecond nonlinear optical properties of alkoxy phthalocyanines at 800 nm studied using Z-Scan technique. Chem Phys Lett 464:211–215

    Article  CAS  Google Scholar 

  57. Bellier Q, Makarov NS, Bouit P-A, Rigaut S, Kamada K, Feneyrou P, Berginc G, Maury O, Perry JW, Andraud C (2012) Excited state absorption: a key phenomenon for the improvement of biphotonic based optical limiting at telecommunication wavelengths. Phys Chem Chem Phys 14:15299–15307

    Article  CAS  Google Scholar 

  58. Matsubara E, Mochizuki T, Nagai M, Ito T, Ashida M (2015) Ultrafast near-infrared nonlinear absorption in a multiferroic single crystal of bismuth ferrite. Japanese J Appl Phys 54:092201

    Article  Google Scholar 

  59. Abed S, Bouchouit K, Aida MS, Taboukhat S, Sofiani Z, Kulyk B, Figa V (2016) Nonlinear optical properties of zinc oxide doped bismuth thin films using Z-scan technique. Opt Mater 56:40–44

    Article  CAS  Google Scholar 

  60. Cassano T, Tommasi R, Ferrara M, Babudri F, Farinola GM, Naso F (2001) Substituent-dependence of the optical nonlinearities in poly (2, 5-dialkoxy-p-phenylenevinylene) polymers investigated by the Z-scan technique. Chem Phys 272:111–118

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd. Shahid Khan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salmani, I.A., Khan, M.S., Ali, J. et al. Sol-gel synthesis of ZrFeO3 nanoparticles and study of optical nonlinearity and multiferroicity of its nanocrystalline thin films. J Sol-Gel Sci Technol 107, 742–753 (2023). https://doi.org/10.1007/s10971-023-06160-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06160-4

Keywords

Navigation