Skip to main content
Log in

3rd order optical nonlinearity enhancement of halochromic phenol red dye immobilized in PVA/silica hybrid host matrix

  • Original Paper: Characterization methods of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, we investigate the third-order nonlinear optical properties of phenol red (PR) solutions and their hybrid composites, analyzing a PR solution with a pH of 7.56, a zwitterionic PR solution (PRz) with a pH of 1.52, and a PR-doped PVA/silica (PR-PS) hybrid composite made using an acid-catalysed sol-gel method and drop-casting technique. The PR-PS thin film exhibits a smooth and homogeneous surface, with a root mean square roughness (RMS) of 0.816 nm and an average roughness, Ra of 0.648 nm. FESEM was employed to analyze the surface morphology and thickness of the thin film, which was found to be approximately 80 µm. UV-vis analysis demonstrates that PR in the matrix is in its zwitterionic form, with absorption peaks at 450 nm and 515 nm. The PVA/silica hybrid matrix exhibits an enhancement in third-order nonlinear susceptibility, χ(3) by 83.94%. Moreover, our finding also indicates that the PR-PS hybrid composite’s β being being 79.09% and 99.37% larger than that of the PR and PRz samples, respectively. These results suggest that the PR-PS thin film is a promising material for photonic applications, such as nonlinear optical switching devices and optical limiting applications, due to its enhanced nonlinear optical properties.

Graphical Abstract

The diagram above shows the method used to synthesize resulting phenol red (PR) dye immobilized inorganic-organic hybrid matrix along with the results from its cross-sectional image from FESEM, AFM, nonlinear absorption and refraction results from Z-Scan.

Highlights

  • We demonstrate the synthesis of PR immobilized with PVA/silica host matrix (PR-PS) via the acid-catalysed sol-gel approach.

  • FESEM is used to measure both the thickness of the thin film (~80 µm) and the surface morphology of the PR-PS thin film.

  • The third-order nonlinearity of PR, its zwitterionic form (PRz) and PR-PS such as nonlinear absorption and nonlinear refraction is investigated, and PVA/silica host matrix are found to be enhancing the nonlinearity properties of PR dye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N. Bloembergen, “Nonlinear Optics: past, present and future,” in Guided Wave Nonlinear Optics, D. B. Ostrowsky and R. Reinisch, Eds. Dordrecht: Springer Netherlands, 1992, 1–9. https://doi.org/10.1007/978-94-011-2536-9_1

  2. Kaiser W, Garrett CGB (1961) Two-photon excitation in CaF2: Eu2+. Phys Rev Lett 7(6):229–231. https://doi.org/10.1103/PhysRevLett.7.229

    Article  CAS  Google Scholar 

  3. Chiao RY, Garmire E, Townes CH (1964) Self-trapping of optical beams. Phys Rev Lett 13(15):479–482. https://doi.org/10.1103/PhysRevLett.13.479

    Article  Google Scholar 

  4. Parola S, Julián-López B, Carlos LD, Sanchez C (2016) Optical properties of hybrid organic-inorganic materials and their applications. Adv Funct Mater 26(36):6506–6544. https://doi.org/10.1002/adfm.201602730

    Article  CAS  Google Scholar 

  5. Wu J, Li Z, Luo J, and Jen AKY (2020) High-performance organic second- And third-order nonlinear optical materials for ultrafast information processing. J Mater Chem C (Royal Soc Chem), 8, 15009–15026. https://doi.org/10.1039/d0tc03224g.

  6. Parodi V, Jacchetti E, Osellame R, Cerullo G, Polli D, and Raimondi MT (2020) Nonlinear optical microscopy: from fundamentals to applications in live bioimaging (Frontiers Media S.A). Front Bioeng Biotechnol, 8. https://doi.org/10.3389/fbioe.2020.585363.

  7. Adur J, Carvalho HF, Cesar CL, and Casco VH (2016) “Nonlinear microscopy techniques: principles and biomedical applications”. In Microsc Anal, InTech. https://doi.org/10.5772/63451.

  8. Singh V et al. (2019) “Measurements of third-order optical nonlinearity using Z-Scan technique: a review”. In AIP Conf Proc, 2142. https://doi.org/10.1063/1.5122548.

  9. Anandalli MH, Bhajantri RF, Maidur SR, Patil PS (2021) Impact of brilliant green dye on structural, linear, and third-order nonlinear optical properties of poly(vinyl alcohol) polymer composites for optoelectronic applications. J Mater Res 36(14):2856–2871. https://doi.org/10.1557/s43578-021-00289-0

    Article  CAS  Google Scholar 

  10. Hernández-Garcés HR, Castellanos-González VV, González-Fabián L, Infante-Velázquez M, Peña K, Andrain-Sierra Y (2012) Chromoendoscopy with red phenol in the diagnosis of Helicobacter pylori infection. Rev Esp Enferm Dig 104 1:4–9

    Article  Google Scholar 

  11. Held P (2018) Using phenol red to assess pH in tissue culture media using the cytation 5 cell imaging microplate reader to monitor cell culture status. Available on www.biotek.com

  12. Sochacka J (2015) Application of phenol red as a marker ligand for bilirubin binding site at subdomain IIA on human serum albumin. J Photochem Photobio B 151:89–99. https://doi.org/10.1016/j.jphotobiol.2015.07.014

    Article  CAS  Google Scholar 

  13. Kacus H, Sahin Y, Aydogan S, Incekara U, Yilmaz M, and Biber M (2020) Phenol red based hybrid photodiode for optical detector applications. Solid State Electron, 171 https://doi.org/10.1016/j.sse.2020.107864.

  14. Islam S, Abdullah M, (2020) Structural and 3rd order nonlinear optical properties of organic dyes immobilized silica nano-composite. Opt Mater (Amst), 106 https://doi.org/10.1016/j.optmat.2020.110034.

  15. Ali HAM, El-Nahass MM, El-Zaidia EFM (2018) Optical and dispersion properties of thermally deposited phenol red thin films. Opt Laser Technol 107:402–407. https://doi.org/10.1016/j.optlastec.2018.06.001

    Article  CAS  Google Scholar 

  16. Shkir M, Ganesh V, AlFaify S, Yahia IS (2017) Structural, linear and third order nonlinear optical properties of drop casting deposited high quality nanocrystalline phenol red thin films. J Mater Sci: Mater Electron 28(14):10573–10581. https://doi.org/10.1007/s10854-017-6831-8

    Article  CAS  Google Scholar 

  17. Sreedhar S, Illyaskutty N, Sreedhanya S, Philip R, Muneera CI (2016) An organic dye-polymer (phenol red-poly (vinyl alcohol)) composite architecture towards tunable -optical and -saturable absorption characteristics. J Appl Phys, 119 https://doi.org/10.1063/1.4950794.

  18. Innocenzi P, Lebeau B (2005) Organic-inorganic hybrid materials for non-linear optics. J Mater Chem 15(35–36):3821–3831. https://doi.org/10.1039/b506028a

    Article  CAS  Google Scholar 

  19. Pingan H, Mengjun J, Yanyan Z, Ling H (2017) A silica/PVA adhesive hybrid material with high transparency, thermostability and mechanical strength. RSC Adv 7(5):2450–2459. https://doi.org/10.1039/C6RA25579E

    Article  Google Scholar 

  20. Bandyopadhyay A, de Sarkar M, Bhowmick AK (2005) Poly(vinyl alcohol)/silica hybrid nanocomposites by sol-gel technique: synthesis and properties. J Mater Sci 40(19):5233–5241. https://doi.org/10.1007/s10853-005-4417-y

    Article  CAS  Google Scholar 

  21. Pirzada T, Shah SS (2014) Water-resistant poly(vinyl alcohol)-silica hybrids through sol-gel processing. Chem Eng Technol 37(4):620–626. https://doi.org/10.1002/ceat.201300295

    Article  CAS  Google Scholar 

  22. Yang HJ, Yi MH, Ahn T (2014) Novel crosslinked PVA without photoinitiator for organic passivation layers of pentacene thin-film transistors. Mol Cryst Liq Cryst 600(1):138–145. https://doi.org/10.1080/15421406.2014.936806

    Article  CAS  Google Scholar 

  23. Pencheva D, Bryaskova R, Lad U, Kale GM, Kantardjiev T (2012) Sporocidic properties of poly(vinyl alcohol)/silver nanoparticles/TEOS thin hybrid films. J Biomed Nanotechnol 8(3):465–472. https://doi.org/10.1166/jbn.2012.1396

    Article  CAS  Google Scholar 

  24. Bryaskova R, Georgieva N, Andreeva T, Tzoneva R (2013) Cell adhesive behavior of PVA-based hybrid materials with silver nanoparticles. Surf Coat Technol 235:186–191. https://doi.org/10.1016/j.surfcoat.2013.07.032

    Article  CAS  Google Scholar 

  25. Arguello-Sarmiento G, Alvarado-Méndez E (2019) Study of nonlinear optical refractive index in thin films formed by bloom gelatin and organic materials. In 2019 Photonics North. https://doi.org/10.1109/PN.2019.8819514.

  26. Yu YY, Chien WC, Tsai TW (2010) High transparent soluble polyimide/silica hybrid optical thin films. Polym Test 29(1):33–40. https://doi.org/10.1016/j.polymertesting.2009.09.002

    Article  CAS  Google Scholar 

  27. On C, Tanyi EK, Harrison E, Noginov MA (2017) Effect of molecular concentration on spectroscopic properties of poly(methyl methacrylate) thin films doped with rhodamine 6G dye. Opt Mater Express 7(12):4286. https://doi.org/10.1364/ome.7.004286

    Article  CAS  Google Scholar 

  28. Sheik-bahae M, Said AA, van Stryland EW (1989) High-sensitivity, single-beam n_2 measurements. Opt Lett 14(17):955. https://doi.org/10.1364/OL.14.000955

    Article  CAS  Google Scholar 

  29. Sheik-Bahae M, Said AA, Wei T-H, Hagan DJ, van Stryland EW (1990) Sensitive measurement of optical nonlinearities using a single beam. IEEE J Quantum Electron 26(4):760–769. https://doi.org/10.1109/3.53394

    Article  CAS  Google Scholar 

  30. Cuppo FLS, Figueiredo Neto AM, Gómez SL, Palffy-Muhoray P (2002) Thermal-lens model compared with the Sheik-Bahae formalism in interpreting Z-scan experiments on lyotropic liquid crystals. J Optical Soc Am B 19(6):1342. https://doi.org/10.1364/JOSAB.19.001342

    Article  CAS  Google Scholar 

  31. Weaire D, Wherrett BS, Miller DAB, Smith SD (1979) Effect of low-power nonlinear refraction on laser-beam propagation in InSb. Opt Lett 4(10):331. https://doi.org/10.1364/OL.4.000331

    Article  CAS  Google Scholar 

  32. Kogelnik H, Li T (1966) Laser beams and resonators. Appl Opt 5(10):1550–1567. https://doi.org/10.1364/AO.5.001550

    Article  CAS  Google Scholar 

  33. Sun J, Cao JL, Yang XD, Meng LS (2006) Third-order nonlinear optical properties of bis(tetrabutylammonium)bis(4,5-dithiolato-1,3-dithiole-2-thione)copper. Mater Res Bull 41(1):177–182. https://doi.org/10.1016/J.MATERRESBULL.2005.07.021

    Article  CAS  Google Scholar 

  34. Held P (2018) Using phenol red to assess ph in tissue culture media using the cytation 5 cell imaging microplate reader to monitor cell culture status. Available on www.biotek.com

  35. de Meyer T, Hemelsoet K, van Speybroeck V, de Clerck K, “Substituent effects on absorption spectra of pH indicators: an experimental and computational study of sulfonphthaleine dyes.”

  36. Singh V, Aghamkar P (2014) Surface plasmon enhanced third-order optical nonlinearity of Ag nanocomposite film. Appl Phys Lett, 104(11) https://doi.org/10.1063/1.4869443

  37. Bahedi K et al. (2008) Study of nonlinear-optical properties and roughness surface of ZnO:Zr Thin Films. In 2008 2nd ICTON Mediterranean Winter, 1–3. https://doi.org/10.1109/ICTONMW.2008.4773058

  38. Kumari V, Kumar V, Mohan D, Malik BP, Mehra RM (2012) Effect of surface roughness on laser induced nonlinear optical properties of annealed ZnO Thin Films.

  39. Bi L, Wang JW, Chen F, Fu Q (2013) The effect of silica morphology on properties of PVA/silica nano-composites. Chin J Polym Sci (Engl Ed) 31(11):1546–1553. https://doi.org/10.1007/s10118-013-1345-1

    Article  CAS  Google Scholar 

  40. Hassan QMA (2018) Study of nonlinear optical properties and optical limiting of acid green 5 in solution and solid film. Opt Laser Technol 106:366–371. https://doi.org/10.1016/j.optlastec.2018.04.032

    Article  CAS  Google Scholar 

  41. Rosso V, Loicq J, Renotte Y, Lion Y (2004) Optical non-linearity in disperse red 1 dye-doped sol-gel. J Non Cryst Solids 342(1–3):140–145. https://doi.org/10.1016/j.jnoncrysol.2004.06.008

    Article  CAS  Google Scholar 

  42. Bruggeman DAG (1935) Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann Phys 416(7):636–664. https://doi.org/10.1002/andp.19354160705

    Article  Google Scholar 

  43. Dolgaleva K, Boyd RW (2012) Local-field effects in nanostructured photonic materials. Adv Opt Photonics 4(1):1. https://doi.org/10.1364/aop.4.000001

    Article  Google Scholar 

  44. Onsager L (1936) Electric moments of molecules in liquids. J Am Chem Soc 58(8):1486–1493. https://doi.org/10.1021/ja01299a050

    Article  CAS  Google Scholar 

  45. Boyd RW (1999) “Development of composite nonlinear optical materials based on local field enhancement final report”.

Download references

Acknowledgements

The authors thank the Research Creativity and Management Office (RCMO) and Universiti Sains Malaysia (USM) for the research facilities, and the funding through the Short Term Grant Scheme under account number 304/CINOR/6315370 (Code no.: PO5216, Ref. no.: 2021/0067) to conduct this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mundzir Abdullah.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, A.T.B., Bakar, M.A.A., Omar, A.F. et al. 3rd order optical nonlinearity enhancement of halochromic phenol red dye immobilized in PVA/silica hybrid host matrix. J Sol-Gel Sci Technol 107, 523–535 (2023). https://doi.org/10.1007/s10971-023-06153-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06153-3

Keywords

Navigation