Skip to main content
Log in

Effect of microwave irradiations on exchange bias and spin reorientation in cr doped iron oxide thin films – Sol-Gel approach

  • Original Paper: Sol-gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Microwave-assisted sol-gel method has proven to be a better alternate to conventional chemical approaches. In the present research work, chromium (Cr) doped thin films of iron oxide are prepared by modified sol-gel method, i.e. by using microwaves. Samples are prepared with microwave power of 720 W, whereas doping is varied in the range of 0 to 14 wt%. Maghemite phase (γ-Fe2O3) is observed for undoped sample, whereas hematite (α-Fe2O3) is observed for the samples prepared with 2–4 wt% Cr doping. Magnetite (Fe3O4) phase of iron oxide is observed at relatively higher doping concentrations, i.e. 6–10 wt%. Ferromagnetic behaviour along with high saturation magnetization is observed with the increase in Cr doping concentration. Increased value of squareness is observed at higher Cr concentration, i.e. 6–14 wt%. Higher value of saturation magnetization (Ms) is observed with 10 wt% Cr doping i.e. ~83 emu/g, whereas decrease in Ms is witnessed with further increase in dopant concentration to 12–14 wt%. Impedance measurements show that transport mechanism in Cr doped Fe3O4 is governed by tunnelling across the grain boundaries. Room temperature coupling of magnetic and dielectric behavior is observed under the effect of different frequency values.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Rajput PJ, Bhandari SU, Wadhwa G (2022) A Review on-Spintronics an Emerging Technology. Silicon 14:9195–9210

    Article  CAS  Google Scholar 

  2. Kim H, Amarnath A, Bagherzadeh J, Talati N, Dreslinski RG (2021) Low-power electronic technologies for harsh radiation environments. Nat Electron 4(4):243–253

    Article  Google Scholar 

  3. A survey describing beyond Si transistors and exploring their implications for future processors (2021) ACM J Emerg Technol Comput Syst (JETC) 17(3):1–44

  4. Zhu M, Zhou J, Sun P, Peng L-M, Zhang Z (2021) Analyzing gamma-ray irradiation effects on carbon nanotube top-gated field-effect transistors. ACS Appl Mater Interfaces 13(40):47756–47763

    Article  CAS  Google Scholar 

  5. Barla P, Joshi VK, Bhat S (2021) Spintronic devices: a promising alternative to CMOS devices. J Comput Electron 20(2):805–837.

    Article  CAS  Google Scholar 

  6. Ahn EC (2020) 2D materials for spintronic devices. NPJ 2D Mater Appl 4(1):1–14

    Article  Google Scholar 

  7. Koo HC, Kim SB, Kim H, Park TE, Choi JW, Kim KW, Lee KJ (2020) Rashba effect in functional spintronic devices. Adv Mater 32(51):2002117

    Article  CAS  Google Scholar 

  8. Cheng B, Qin H, Liu L, Xie J, Hu J (2018) Mechanism of polar catastrophe cancelling induced by charge compensation for epitaxy γ-Fe2O3 film on MgO (001) substrate: a theoretical investigation. Superlattices Microstructures 120:377–381

    Article  CAS  Google Scholar 

  9. Qi Y, Flatté ME (2019) Current-induced spin polarization in nonmagnetic semiconductors. J Superconductivity Nov Magn 32(1):109–114

    Article  CAS  Google Scholar 

  10. Guo L, Gu X, Zhu X, Sun X (2019) Recent advances in molecular spintronics: multifunctional spintronic devices. Adv Mater 31(45):1805355

    Article  CAS  Google Scholar 

  11. Li P, Xia C, Zhu Z, Wen Y, Zhang Q, Alshareef HN, Zhang XX (2016) Ultrathin epitaxial ferromagnetic γ‐Fe2O3 layer as high efficiency spin filtering materials for spintronics device based on semiconductors. Adv Funct Mater 26(31):5679–5689

    Article  CAS  Google Scholar 

  12. Sudarsanam P, Yamauchi Y, & Bharali P (2022) Heterogeneous nanocatalysis for energy and environmental sustainability

  13. Flak D, Chen Q, Mun BS, Liu Z, Rękas M, Braun A (2018) In situ ambient pressure XPS observation of surface chemistry and electronic structure of α-Fe2O3 and γ-Fe2O3 nanoparticles. Appl Surf Sci 455:1019–1028

    Article  CAS  Google Scholar 

  14. Grau-Crespo R, Al-Baitai AY, Saadoune I, De Leeuw NH (2010) Vacancy ordering and electronic structure of γ-Fe2O3 (maghemite): a theoretical investigation. J Phys: Condens Matter 22(25):255401

    Google Scholar 

  15. Hussain M, Khan R, Khan TZ, Khan G, Khattak S, Rahman MU, Safeen K (2019) Dielectric and magnetic properties of cobalt doped γ-Fe2O3 nanoparticles. J Mater Sci: Mater Electron 30(14):13698–13707

    CAS  Google Scholar 

  16. Lai J, Shafi KV, Loos K, Ulman A, Lee Y, Vogt T, Estournes C (2003) Doping γ-Fe2O3 nanoparticles with Mn (III) suppresses the transition to the α-Fe2O3 structure. J Am Chem Soc 125(38):11470–11471

    Article  CAS  Google Scholar 

  17. Nadeem K, Kamran M, Javed A, Zeb F, Hussain SS, Mumtaz M, Mu X (2018) Role of surface spins on magnetization of Cr2O3 coated γ-Fe2O3 nanoparticles. Solid State Sci 83:43–48

    Article  CAS  Google Scholar 

  18. Akbar A, Riaz S, Ashraf R, Naseem S (2015) Magnetic and magnetization properties of iron oxide thin films by microwave assisted sol–gel route. J Sol-Gel Sci Technol 74(2):320–328

    Article  CAS  Google Scholar 

  19. Predoana L, Atkinson I, Karaj DA, Odhiambo VO, Bakos LP, Kovács TN, Pandele-Cusu J, Petrescu S, Rusu A, Szilágyi IM and Pokol G, (2020). Comparative study of the thermal behavior of Sr–Cu–O gels obtained by sol–gel and microwave-assisted sol–gel method. J Therm Anal Calorim, pp.1–8

  20. Khan ZR, Shkir M, Ganesh V, Yahia IS and AlFaify S, (2020). A facile microwave-assisted synthesis of novel ZnMn2O4 nanoparticles and their structural, morphological, optical, surface area, and dielectric studies. Indian J Phys, pp. 1–7

  21. Puga F, Navío JA, Jaramillo-Páez C, Sánchez-Cid P and Hidalgo MC, (2020). Microwave-assisted sol-gel synthesis of TiO2 in the presence of halogenhydric acids. Characterization and photocatalytic activity. J Photochem Photobiol A: Chem, p.112457

  22. Azeem W, Riaz S, Bukhtiar A, Hussain SS, Xu Y, Naseem S (2019) Ferromagnetic ordering and electromagnons in microwave synthesized BiFeO3 thin films. J Magn Magn Mater 475:60–69.

    Article  CAS  Google Scholar 

  23. Phani AR, Santucci S (2006) Evaluation of structural and mechanical properties of aluminum oxide thin films deposited by a sol–gel process: Comparison of microwave to conventional anneal. J Non-Crystalline Solids 352(38–39):4093–4100.

    Article  CAS  Google Scholar 

  24. Phani AR, Passacantando M, Santucci S (2007) Synthesis of nanocrystalline ZnTiO3 perovskite thin films by sol–gel process assisted by microwave irradiation. J Phys Chem Solids 68(3):317–323

    Article  CAS  Google Scholar 

  25. Riaz S, Ashraf R, Akbar A, Naseem S (2014) Microwave assisted iron oxide nanoparticles—structural and magnetic properties. IEEE Trans Magn 50(8):1–4

    Google Scholar 

  26. Majid F, Riaz S, Naseem S (2015) Microwave-assisted sol–gel synthesis of BiFeO 3 nanoparticles. J Sol-Gel Sci Technol 74(2):310–319

    Article  CAS  Google Scholar 

  27. Bukhari BS, Imran M, Bashir M, Riaz S, Naseem S (2018) Honey mediated microwave assisted sol–gel synthesis of stabilized zirconia nanofibers. J Sol-Gel Sci Technol 87(3):554–567

    Article  CAS  Google Scholar 

  28. Imran M, Riaz S, Sanaullah I, Khan U, Sabri AN, Naseem S (2019) Microwave assisted synthesis and antimicrobial activity of Fe3O4-doped ZrO2 nanoparticles. Ceram Int 45(8):10106–10113

    Article  CAS  Google Scholar 

  29. Batool T, Bukhari BS, Riaz S, Batoo KM, Raslan EH, Hadi M, Naseem S (2020) Microwave assisted sol-gel synthesis of bioactive zirconia nanoparticles–Correlation of strength and structure. J Mech Behav Biomed Mater 112:104012

    Article  CAS  Google Scholar 

  30. Factori IM, Amaral JM, Camani PH, Rosa DS, Lima BA, Brocchi M, Souza JS (2021) ZnO nanoparticle/poly (vinyl alcohol) nanocomposites via microwave-assisted sol–gel synthesis for structural materials, UV shielding, and antimicrobial activity. ACS Appl Nano Mater 4(7):7371–7383

    Article  CAS  Google Scholar 

  31. Istrati D, Moroșan A, Stan R, Vasile B, Vasilievici G, Oprea O, Mihaiescu DE (2021) Microwave-assisted Sol–Gel preparation of the nanostructured magnetic system for solid-phase synthesis. Nanomaterials 11(12):3176

    Article  CAS  Google Scholar 

  32. Khalid S, Riaz S, Naeem S, Akbar A, Hussain SS, Xu YB, Naseem S (2021) Spin polarization and magneto-dielectric coupling in Al-modified thin iron oxide films-microwave mediated sol-gel approach. J Ind Eng Chem 103:49–66

    Article  CAS  Google Scholar 

  33. Khalid S, Attia A, Akbar A, Shah ZH, Amna A, Iqbal MJ, Xu YB, Naseem S, Riaz S (2022) Spin reorientation and magnetodielectric anomalies in FexO1+x (x = 2,3) thin films-effect of microwave radiations. J Magn Magn Mater 557:169359

    Article  CAS  Google Scholar 

  34. Azeem W, Riaz S, Bukhtiar A, Hussain SS, Xu Y, Naseem S (2019) Ferromagnetic ordering and electromagnons in microwave synthesized BiFeO3 thin films. J Magn Magn Mater 475:60–69

    Article  CAS  Google Scholar 

  35. Raghavan KV & Reddy BM (Eds.) (2014). Industrial Catalysis and Separations: Innovations for Process Intensification. CRC press

  36. Bouhjar F, Derbali L, Marí B, Bessais B (2020) Electrodeposited Cr-Doped α-Fe2O3 thin films active for photoelectrochemical water splitting. Int J Hydrog Energy 45(20):11492–11501

    Article  CAS  Google Scholar 

  37. Khalid S, Riaz S, Naeem S, Akbar A, Hussain SS, Xu YB, Naseem S (2021) Spin polarization and magneto-dielectric coupling in Al-modified thin iron oxide films-microwave mediated sol-gel approach. J Ind Eng Chem 103:49–66

    Article  CAS  Google Scholar 

  38. Rybakov KI, Eremeev AG, Egorov SV, Bykov YV, Pajkic Z, Willert-Porada M (2008) Effect of microwave heating on phase transformations in nanostructured alumina. J Phys D: Appl Phys 41(10):102008

    Article  Google Scholar 

  39. Cuenca JA, Bugler K, Taylor S, Morgan D, Williams P, Bauer J, Porch A (2016) Study of the magnetite to maghemite transition using microwave permittivity and permeability measurements. J Phys: Condens Matter 28(10):106002

    Google Scholar 

  40. Cullity BD & Chad DG. Introduction to magnetic materials. John Wiley & Sons, 2011

  41. Cullity BD (1956) Elements of X-Ray diffraction. Addison-Wesley, New York, NY, USA

    Google Scholar 

  42. Ahmed AM, Rabia M, Shaban M (2020) The structure and photoelectrochemical activity of Cr-doped PbS thin films grown by chemical bath deposition. RSC Adv 10(24):14458–14470

    Article  CAS  Google Scholar 

  43. Nagaraju P, Vijayakumar Y, Reddy R (2015) Optical and microstructural studies on laser ablated nanocrystalline CeO2 thin films. Glass Phys Chem 41(5):484–488

    Article  CAS  Google Scholar 

  44. Barsoukov E, Macdonald JR(2005) Impedance Spectroscopy Theory. Experiment, and. Applications. John Wiley &Sons, Inc., 2005), Hoboken, NJ, 2nd ed

  45. Kumari N, Kumar V, Singh SK (2014) Synthesis, structural and dielectric properties of Cr3+ substituted Fe3O4 nano-particles. Ceram Int 40(8):12199–12205

    Article  CAS  Google Scholar 

  46. Imran M, Akbar A, Riaz S, Atiq S, Naseem S (2018) Electronic and structural properties of phase-pure magnetite thin films: effect of preferred orientation. J Electron Mater 47(11):6613–6624

    Article  CAS  Google Scholar 

  47. Cui YF, Zhao YG, Luo LB, Yang JJ, Chang H, Zhu MH, Xie H, Ren TL (2010) Dielectric, magnetic, and magnetoelectric properties of La and Ti codoped BiFeO 3. Appl Phys Lett 97(22):222904

    Article  Google Scholar 

  48. Hcini F, Hcini S, Wederni MA, Alzahrani B, Al Robei H, Khirouni K, Zemni S, Bouazizi ML (2022) Structural, optical, and dielectric properties for Mg0· 6Cu0· 2Ni0· 2Cr2O4 chromite spinel. Phys B: Condens Matter 624:413439

    Article  CAS  Google Scholar 

  49. Ansari MS, Othman MHD, Ansari MO, Ansari S, Abdullah H, Harun Z (2020) Magnetite thin films grown on different flexible polymer substrates at room temperature: role of antiphase boundaries in electrical and magnetic properties. J Alloy Compd 846:156368

    Article  CAS  Google Scholar 

  50. Iwauchi K (1971) Dielectric properties of fine particles of Fe3O4 and some ferrites. Jpn J Appl Phys 10(11):1520

    Article  CAS  Google Scholar 

  51. Fuller TF & Harb JN (2018). Electrochemical engineering. John Wiley & Sons

  52. Agrawal K, Behera B, Sahoo SC, Rout SK, Kumar A, Pradhan DK, Das PR (2022) Dielectric, ferroelectric, magnetic and electrical properties of Sm-doped GaFeO3. Appl Phys A 128(2):1–17

    Article  Google Scholar 

  53. Costa MM, Junior GP, Sombra ASB (2010) Dielectric and impedance properties’ studies of the of lead doped (PbO)-Co2Y type hexaferrite (Ba2Co2Fe12O22 (Co2Y)). Mater Chem Phys 123(1):35–39

    Article  CAS  Google Scholar 

  54. Sokolova MV, Voevodin VV, Malakhov JI, Aleksandrov NL, Anokhin EM, Soloviev VR (2019) Barrier properties influence on the surface dielectric barrier discharge driven by single voltage pulses of different duration. J Phys D: Appl Phys 52(32):324001

    Article  CAS  Google Scholar 

  55. Hossain MD, Khan MNI, Nahar A, Ali MA, Matin MA, Hoque SM, Hakim MA, Jamil ATMK (2020) Tailoring the properties of Ni-Zn-Co ferrites by Gd3+ substitution. J Magn Magn Mater 497:165978

    Article  CAS  Google Scholar 

  56. Zhu, D, & Lin, HT (Eds.). (2009) Advanced Ceramic Coatings and Interfaces IV (Vol. 507). Wiley-American Ceramic Society

  57. Channa N, Khalid M, Chandio AD, Mustafa G, Akhtar MS, Khan JK, Kalhoro KA (2020) Nickel-substituted manganese spinel ferrite nanoparticles for high-frequency applications. J Mater Sci: Mater Electron 31(2):1661–1671

    CAS  Google Scholar 

  58. Ali MA, Khan MNI, Chowdhury FUZ, Akhter S, Uddin MM (2015) Structural properties, impedance spectroscopy and dielectric spin relaxation of Ni-Zn ferrite synthesized by double sintering technique. J Scientific Res 7:65–75

    Article  CAS  Google Scholar 

  59. Abdullah OG, Salman YA, Tahir DA, Jamal GM, Ahmed HT, Mohamad AH, Azawy AK (2021) Effect of ZnO nanoparticle content on the structural and ionic transport parameters of polyvinyl alcohol based proton-conducting polymer electrolyte membranes. Membranes 11(3):163

    Article  CAS  Google Scholar 

  60. Morrish AH (1994) Canted antiferromagnetism: hematite. World Scientific

  61. Stucki JW, Goodman BA, & Schwertmann U (2012) Iron in soils and clay minerals (Vol. 217). Springer Science & Business Media

  62. Akbar A, Yousaf H, Riaz S, Naseem S (2019) Role of precursor to solvent ratio in tuning the magnetization of iron oxide thin films–A sol-gel approach. J Magn Magn Mater 471:14–24

    Article  CAS  Google Scholar 

  63. Shatokha V (Ed.) (2018) Iron ores and iron oxide materials. BoD–Books on Demand

  64. Fernandez-Pacheco A (2011) Studies of nanoconstrictions, nanowires and Fe3O4 thin films: electrical conduction and magnetic properties. Fabrication by focused electron/ion beam (1st ed.). Springer, Berlin, Heidelberg, p 188

  65. Cullity BD & Graham CD (2011) Introduction to magnetic materials. (2nd ed.). Wiley-IEEE press, p 568

  66. Slonczewski JC (1958) Origin of magnetic anisotropy in cobalt-substituted magnetite. Phys Rev 110(6):1341

    Article  CAS  Google Scholar 

  67. Lawes G, Kimura T, Varma CM, Subramanian MA, Rogado N, Cava RJ, Ramirez AP (2009) Magnetodielectric effects at magnetic ordering transitions. Prog Solid State Chem 37(1):40–54

    Article  CAS  Google Scholar 

  68. Jayakumar OD, Mandal BP, Majeed J, Lawes G, Naik R, Tyagi AK (2013) Inorganic–organic multiferroic hybrid films of Fe3O4 and PVDF with significant magneto-dielectric coupling. J Mater Chem C 1(23):3710–3715

    Article  CAS  Google Scholar 

  69. Huang YH, Xu ZZ, Liu XQ, Li J, Wu YJ (2018) The origin of enhanced magnetodielectric effect in Y+YbxFe5O12 ceramics. J Appl Phys 124(19):194101

    Article  Google Scholar 

  70. Catalan G (2006) Magnetocapacitance without magnetoelectric coupling. Appl Phys Lett 88:102902

    Article  Google Scholar 

  71. Zuo X, Zhang M, He E, Zhang P, Yang J, Zhu X, Dai J (2018) Magnetic, dielectric, and magneto-dielectric properties of Aurivillius Bi7Fe2CrTi3O21 ceramic. Ceram Int 44(5):5319–5326

    Article  CAS  Google Scholar 

  72. Sun H, Lu X, Xu T, Su J, Jin Y, Ju C, Huang F, Zhu J (2012) Study of multiferroic properties in Bi5Fe0.5Co0.5Ti3O15 thin films. J Appl Phys 111(12):124116

    Article  Google Scholar 

  73. Pandya RJ, Zinzuvadiya S, Thankachen N, Sengunthar P, Patel SS, Debnath AK, Joshi US (2020) Enhanced magnetodielectric coupling in strongly ferroic composite oxide film. AIP Adv 10(7):075319

    Article  CAS  Google Scholar 

  74. Karmakar R, Das AK, Pramanik S, Kuiri PK, Meikap AK (2021) Tunable dielectric properties and magneto-dielectric coupling of hematite based trap free flexible semiconductor. J Alloy Compd 881:160516

    Article  CAS  Google Scholar 

Download references

Funding

Authors acknowledge the financial support of University of the Punjab under Project No. D/212/Est. II.

Author information

Authors and Affiliations

Authors

Contributions

SK contributed to synthesis and preparation of the initial draft. MI contributed to synthesis. ZHS performed magnetic analysis. ZNK contributed to the electronic results. IS performed structural data analysis. SN performed overall supervision and preparation of the final draft. SR performed research design and overall supervision.

Corresponding author

Correspondence to Saira Riaz.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, S., Imran, M., Shah, Z.H. et al. Effect of microwave irradiations on exchange bias and spin reorientation in cr doped iron oxide thin films – Sol-Gel approach. J Sol-Gel Sci Technol 107, 794–809 (2023). https://doi.org/10.1007/s10971-023-06151-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06151-5

Navigation