Skip to main content
Log in

Photopyroelectric technique to follow gelation and drying processes in alginate: a proof-of-concept

  • Original Paper: Characterization methods of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The photopyroelectric (PPE) is a versatile technique to assess thermal properties, and it was used in a proof-of-concept experiment to track the gelation and drying processes of sodium alginate (SA). The technique is based on the detection of thermal waves generated by the absorption of modulated light, using a pyroelectric transducer in contact with the sample. It is widely used for the thermal characterization of liquid, gaseous, and pasty materials and, as it works with temperature oscillations of the order of mK, it is suitable for investigating biological samples and phase transition phenomena. The back (BPPE) and front (FPPE) photopyroelectric configurations were used to determine, respectively, thermal diffusivity and thermal effusivity of solutions with 1, 2, and 3% (w/w), with errors around 0.7%. The thermal diffusivity reveals how fast the heat flows in a medium, while the effusivity measures the thermal impedance of the sample in transient heat flow, reflecting thus the ability of materials to exchange heat with the surroundings. The gelation processes, simultaneously with drying, were followed with both properties and determined as a function of the time, after Ca2+ addition. The thermal diffusivity fluctuates around 1.45 × 10−7 m2/s in the first 30 min, increasing afterward, while the thermal effusivity decreases during 30 min and then tends to stabilize around 1.44 × 103 Ws1/2m−2K−1. In our experiments, gelation and drying occur simultaneously and the thermal diffusivity showed to be sensitive to the polymer chains crosslinking, while the effusivity is sensitive to the evaporation of surface and unbound moisture. Thus, the PPE technique could be explored as a valuable tool to track the gelation and drying/evaporation of such systems.

Graphical Abstract

Highlights

  • PPE technique could be explored as a valuable tool to track the gelation and drying/evaporation of gel systems.

  • Photopyroelectric technique detects changes in thermal properties due to changes in both polymer-polymer interactions and polymer-water interactions of gel-like systems.

  • Thermal effusivity is more sensitive to the alginate gelation process than water loss.

  • Thermal diffusivity is more sensitive to the drying process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Manjula B, Varaprasad K, Sadiku R, Raju KM (2013) Preparation and characterization of sodium alginate-based hydrogels and their in vitro release studies. Adv Polym Technol 32:213401–2134012. https://doi.org/10.1002/adv.21340

    Article  CAS  Google Scholar 

  2. Wu J, Wu Z, Sun X et al. (2017) Effect of Sodium Alginate on the properties of thermosensitive Hydrogels. J Chin Chem Soc 64:231–238. https://doi.org/10.1002/jccs.201600152

    Article  CAS  Google Scholar 

  3. Hu C, Lu W, Mata A et al. (2021) Ions-induced gelation of alginate: Mechanisms and applications. Int J Biol Macromol 177:578–588

    Article  CAS  Google Scholar 

  4. Zohuriaan MJ, Shokrolahi F (2004) Thermal studies on natural and modified gums. Polym Test 23:575–579. https://doi.org/10.1016/j.polymertesting.2003.11.001

    Article  CAS  Google Scholar 

  5. Singh B, Bala R (2014) Polysaccharide based hydrogels as controlled drug delivery system for GIT cancer. Int J Biol Macromol 65:524–533. https://doi.org/10.1016/j.ijbiomac.2014.02.004

    Article  CAS  Google Scholar 

  6. Rioux LE, Turgeon SL, Beaulieu M (2007) Characterization of polysaccharides extracted from brown seaweeds. Carbohydr Polym 69:530–537. https://doi.org/10.1016/j.carbpol.2007.01.009

    Article  CAS  Google Scholar 

  7. Mazur K, Buchner R, Bonn M, Hunger J (2014) Hydration of sodium alginate in aqueous solution. Macromolecules 47:771–776. https://doi.org/10.1021/ma4023873

    Article  CAS  Google Scholar 

  8. Kenawy ER, Kamoun EA, Mohy Eldin MS, El-Meligy MA (2014) Physically crosslinked poly(vinyl alcohol)-hydroxyethyl starch blend hydrogel membranes: Synthesis and characterization for biomedical applications. Arab J Chem 7:372–380. https://doi.org/10.1016/j.arabjc.2013.05.026

    Article  CAS  Google Scholar 

  9. Khalid I, Ahmad M, Minhas MU, Barkat K (2018) Preparation and characterization of alginate-PVA-based semi-IPN: controlled release pH-responsive composites. Polym Bull 75:1075–1099. https://doi.org/10.1007/s00289-017-2079-y

    Article  CAS  Google Scholar 

  10. Aoki K, Wang B, Chen J, Nishiumi T (2012) Diffusion coefficients in viscous sodium alginate solutions. Electrochim Acta 83:348–353. https://doi.org/10.1016/j.electacta.2012.08.004

    Article  CAS  Google Scholar 

  11. Gao YZ, Chen JC, Cui Z et al. (2022) Biocompatible propylene glycol alginate-g-polytetrahydrofuran amphiphilic graft copolymers for highly effective drug carriers. Polym (Guildf) 246:124706. https://doi.org/10.1016/J.POLYMER.2022.124706

    Article  CAS  Google Scholar 

  12. Poncelet D, Lencki R, Beaulieu C et al. (1992) Production of alginate beads by emulsification/internal gelation. I. Methodology. Appl Microbiol Biotechnol 38:39–45

    Article  CAS  Google Scholar 

  13. Kurozawa LE, Hubinger MD (2017) Hydrophilic food compounds encapsulation by ionic gelation. Curr. Opin Food Sci 15:50–55

    Article  Google Scholar 

  14. Strobel SA, Scher HB, Nitin N, Jeoh T (2016) In situ cross-linking of alginate during spray-drying to microencapsulate lipids in powder. Food Hydrocoll 58:141–149. https://doi.org/10.1016/j.foodhyd.2016.02.031

    Article  CAS  Google Scholar 

  15. Xiao Q, Gu X, Tan S (2014) Drying process of sodium alginate films studied by two-dimensional correlation ATR-FTIR spectroscopy. Food Chem 164:179–184. https://doi.org/10.1016/j.foodchem.2014.05.044

    Article  CAS  Google Scholar 

  16. Lin D, Kelly AL, Miao S (2021) Alginate-based emulsion micro-gel particles produced by an external/internal O/W/O emulsion-gelation method: Formation, suspension rheology, digestion, and application to gel-in-gel beads. Food Hydrocoll 120:106926. https://doi.org/10.1016/j.foodhyd.2021.106926

    Article  CAS  Google Scholar 

  17. Safaei M, Taran M, Imani MM (2019) Preparation, structural characterization, thermal properties and antifungal activity of alginate-CuO bionanocomposite. Mater Sci Eng C 101:323–329. https://doi.org/10.1016/j.msec.2019.03.108

    Article  CAS  Google Scholar 

  18. Zhou J, Du G, Hu J, et al. (2022) The establishment of Boron nitride @sodium alginate foam/ polyethyleneglycol composite phase change materials with high thermal conductivity, shape stability, and reusability. Chinese J Chem Eng. https://doi.org/10.1016/j.cjche.2022.04.001

  19. Carneiro-da-Cunha MG, Cerqueira MA, Souza BWS et al. (2010) Physical and thermal properties of a chitosan/alginate nanolayered PET film. Carbohydr Polym 82:153–159. https://doi.org/10.1016/j.carbpol.2010.04.043

    Article  CAS  Google Scholar 

  20. Lacoste C, El Hage R, Bergeret A et al. (2018) Sodium alginate adhesives as binders in wood fibers/textile waste fibers biocomposites for building insulation. Carbohydr Polym 184:1–8. https://doi.org/10.1016/j.carbpol.2017.12.019

    Article  CAS  Google Scholar 

  21. Yoong WC, Loke CF, Juan JC et al. (2022) Alginate-enabled green synthesis of S/Ag1.93S nanoparticles, their photothermal property and in-vitro assessment of their anti-skin-cancer effects augmented by a NIR laser. Int J Biol Macromol 201:516–527. https://doi.org/10.1016/j.ijbiomac.2022.01.062

    Article  CAS  Google Scholar 

  22. Yang M, Li L, Yu S et al. (2020) High performance of alginate/polyvinyl alcohol composite film based on natural original melanin nanoparticles used as food thermal insulating and UV–vis block. Carbohydr Polym 233:115884. https://doi.org/10.1016/j.carbpol.2020.115884

    Article  CAS  Google Scholar 

  23. Naghavi EA, Dehghannya J, Ghanbarzadeh B (2018) 3D computational simulation for the prediction of coupled momentum, heat and mass transfer during deep-fat frying of potato strips coated with different concentrations of alginate. J Food Eng 235:64–78. https://doi.org/10.1016/j.jfoodeng.2018.04.026

    Article  CAS  Google Scholar 

  24. Naidu DS, John MJ (2021) Cellulose nanofibrils reinforced xylan-alginate composites: Mechanical, thermal and barrier properties. Int J Biol Macromol 179:448–456. https://doi.org/10.1016/j.ijbiomac.2021.03.035

    Article  CAS  Google Scholar 

  25. Kawakita R, Leveau JHJ, Jeoh T (2021) Optimizing viability and yield and improving stability of Gram-negative, non-spore forming plant-beneficial bacteria encapsulated by spray-drying. Bioprocess Biosyst Eng 44:2289–2301. https://doi.org/10.1007/s00449-021-02604-9

    Article  CAS  Google Scholar 

  26. Tang Y, Scher HB, Jeoh T (2020) Industrially scalable complex coacervation process to microencapsulate food ingredients. Innov Food Sci Emerg Technol 59:https://doi.org/10.1016/j.ifset.2019.102257

  27. Ramprakash B, Incharoensakdi A (2022) Alginate encapsulated nanobio-hybrid system enables improvement of photocatalytic biohydrogen production in the presence of oxygen. Int J Hydrog Energ 47:11492–11499. https://doi.org/10.1016/j.ijhydene.2022.01.183

    Article  CAS  Google Scholar 

  28. Chen S, Ma D, Gao W et al. (2022) High efficiency solar steam generator comprising sodium alginate-polydopamine hydrogel for photothermal water sanitation. Sustain Energy Technol Assess 51:101998. https://doi.org/10.1016/j.seta.2022.101998

    Article  Google Scholar 

  29. Zhang Q, Chen B, Wu K et al. (2021) PEG-filled kapok fiber/sodium alginate aerogel loaded phase change composite material with high thermal conductivity and excellent shape stability. Compos Part A Appl Sci Manuf 143:106279. https://doi.org/10.1016/j.compositesa.2021.106279

    Article  CAS  Google Scholar 

  30. Huang X, Alva G, Jia Y, Fang G (2017) Morphological characterization and applications of phase change materials in thermal energy storage: A review. Renew Sustain Energy Rev 72:128–145. https://doi.org/10.1016/j.rser.2017.01.048

    Article  CAS  Google Scholar 

  31. Hussanan A, Qasim M, Chen ZM (2020) Heat transfer enhancement in sodium alginate based magnetic and non-magnetic nanoparticles mixture hybrid nanofluid. Phys A Stat Mech Appl 550:https://doi.org/10.1016/j.physa.2019.123957

  32. Haldar K, Chakraborty S (2021) Thermo-hydrodynamic analysis of drop impact calcium alginate gelation process. Eur J Mech B/Fluids 86:231–242. https://doi.org/10.1016/j.euromechflu.2020.12.012

    Article  Google Scholar 

  33. Raymundo-Ortiz AI, Ramos-Ramirez EG, Cruz-Orea A, Salazar-Montoya JA (2013) Application of photothermal techniques in the determination of the water-vapor diffusion coefficient and thermal effusivity of hydrogels. Int J Thermophys 34:1591–1596. https://doi.org/10.1007/s10765-013-1391-5

    Article  CAS  Google Scholar 

  34. Guimarães AO, MacHado FAL, Da Silva EC, Mansanares AM (2012) Investigating thermal properties of biodiesel/diesel mixtures using photopyroelectric technique. Thermochim Acta 527:125–130. https://doi.org/10.1016/j.tca.2011.10.016

    Article  CAS  Google Scholar 

  35. Strzałkowski K, Dadarlat D, Streza M, Firszt F (2015) On the optimization of experimental parameters in photopyroelectric investigation of thermal diffusivity of solids. Thermochim Acta 614:232–238. https://doi.org/10.1016/j.tca.2015.06.027

    Article  CAS  Google Scholar 

  36. Dadarlat D (2009) Photopyroelectric calorimetry of liquids; recent development and applications. Laser Phys 19:1330–1339. https://doi.org/10.1134/s1054660x09060255

    Article  CAS  Google Scholar 

  37. Almond DP, Patel PM (1996) Photothermal Science and Techniques. Chapman and Hall, London

  38. Jafari H, Ghaffari-bohlouli P, Podstawczyk D, et al. (2022) Tannic acid post-treatment of enzymatically crosslinked chitosan-alginate hydrogels for biomedical applications. Carbohydr Polym 295:https://doi.org/10.1016/J.CARBPOL.2022.119844

  39. Kumar A, Sah DK, Khanna K, et al. (2023) A calcium and zinc composite alginate hydrogel for pre-hospital hemostasis and wound care. Carbohydr Polym 299:https://doi.org/10.1016/J.CARBPOL.2022.120186

  40. Reis CP, Neufeld RJ, Vilela S, et al. (2008) Review and current status of emulsion/dispersion technology using an internal gelation process for the design of alginate particles. 23:245–257. https://doi.org/10.1080/02652040500286086

  41. Vargas PO, Pereira NR, Guimarães AO et al. (2018) Shrinkage and deformation during convective drying of calcium alginate. LWT - Food Sci Technol 97:213–222. https://doi.org/10.1016/j.lwt.2018.06.056

    Article  CAS  Google Scholar 

  42. Mandelis A (2011) Perspective: Photopyroelectric effects and pyroelectric measurements: “invited review article: Photopyroelectric calorimeter for the simultaneous thermal, optical, and structural characterization of samples over phase transitions.”. Rev Sci Instrum 82:120901. https://doi.org/10.1063/1.3669517

    Article  CAS  Google Scholar 

  43. Mandelis A, Zver MM (1985) Theory of photopyroelectric spectroscopy of solids. J Appl Phys 57:4421–4430. https://doi.org/10.1063/1.334565

    Article  CAS  Google Scholar 

  44. Delenclos S, Chirtoc M, Sahraoui AH et al. (2002) Assessment of calibration procedures for accurate determination of thermal parameters of liquids and their temperature dependence using the photopyroelectric method. Rev Sci Instrum 73:2773. https://doi.org/10.1063/1.1488147

    Article  CAS  Google Scholar 

  45. Machado FAL, Zanelato EB, Guimarães AO et al. (2012) Thermal properties of biodiesel and their corresponding precursor vegetable oils obtained by photopyroelectric methodology. Int J Thermophys 33:1848–1855. https://doi.org/10.1007/s10765-012-1245-6

    Article  CAS  Google Scholar 

  46. Longuemart S, Quiroz AG, Dadarlat D et al. (2002) An application of the front photopyroelectric technique for measuring the thermal effusivity of some foods. Instrum Sci Technol 30:157–165. https://doi.org/10.1081/CI-120003895

    Article  Google Scholar 

  47. Zammit U, Marinelli M, Mercuri F et al. (2011) Invited review article: Photopyroelectric calorimeter for the simultaneous thermal, optical, and structural characterization of samples over phase transitions. Rev Sci Instrum 82:https://doi.org/10.1063/1.3663970

  48. Bindhu CV, Harilal SS, Nampoori VPN, Vallabhan CPG (1998) Thermal diffusivity measurements in organic liquids using transient thermal lens calorimetry. Opt Eng 37:2791. https://doi.org/10.1117/1.601825

    Article  CAS  Google Scholar 

  49. Balderas-López JA, Mandelis A, Garcia JA (2000) Thermal-wave resonator cavity design and measurements of the thermal diffusivity of liquids. Rev Sci Instrum 71:2933–2937. https://doi.org/10.1063/1.1150713

    Article  Google Scholar 

  50. Menon PC, Rajesh RN, Glorieux C (2009) High accuracy, self-calibrating photopyroelectric device for the absolute determination of thermal conductivity and thermal effusivity of liquids. Rev Sci Instrum 80:054904. https://doi.org/10.1063/1.3131625

    Article  CAS  Google Scholar 

  51. Sakiyama T, Akutsu M, Miyawaki O, Yano T (1999) Effective thermal diffusivity of food gels impregnated with air bubbles. J Food Eng 39:323–328. https://doi.org/10.1016/S0260-8774(99)00021-7

    Article  Google Scholar 

  52. Strumillo C, Kudra T (1986) Drying: Principles, Applications and Design. Gordon and Breach Science Publishers, New York

  53. Teixeira VFT, Pereira NR, Waldman WR et al. (2014) Ion exchange kinetics of magnetic alginate ferrogel beads produced by external gelation. Carbohydr Polym 111:198–205. https://doi.org/10.1016/j.carbpol.2014.04.009

    Article  CAS  Google Scholar 

  54. Blandino A, Macías M, Cantero D (1999) Formation of calcium alginate gel capsules: Influence of sodium alginate and CaCl2 concentration on gelation kinetics. J Biosci Bioeng 88:686–689. https://doi.org/10.1016/S1389-1723(00)87103-0

    Article  CAS  Google Scholar 

  55. Ibos L, Tlili R, Boudenne A et al. (2018) Thermophysical characterization of polymers according to the temperature using a periodic method. Polym Test 66:235–243. https://doi.org/10.1016/j.polymertesting.2018.01.023

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Writing – original draft preparation: PACP, AOG, NRP; Data acquisition and analysis: PACP, PAAMMM; Discussion and revision: PACP, PAAMMM, NRP, WRW, ECS, MES, AOG.

Corresponding author

Correspondence to André O. Guimarães.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pessoa, P.A.C., Moll, P.A.A.M.M., Pereira, N.R. et al. Photopyroelectric technique to follow gelation and drying processes in alginate: a proof-of-concept. J Sol-Gel Sci Technol 107, 513–522 (2023). https://doi.org/10.1007/s10971-023-06146-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06146-2

Keywords

Navigation