Skip to main content
Log in

Size-tuning of hollow periodic mesoporous organosilica nanoparticles (HPMO-NPs) using a dual templating strategy

  • Invited Paper: Sol–gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Monodispersed hollow periodic mesoporous organosilica nanoparticles (HPMO-NPs) with a controlled core cavity and a periodic mesoporous organosilica (PMO) shell are successfully synthesized using a dual templating approach. The PMO shell synthesized by the sol–gel route exhibits a hybrid organic-inorganic framework based on phenylene bridges. The HPMO spherical nanoparticles with a diameter above 500 nm were characterized using a multiscale approach through TEM, BET, SAXS, and FT-IR. They are shown to offer an open periodic mesoporosity, a hollow cavity with a size tailored by the diameter of the core template, and finally, a high surface area (833 m2 · g−1). In addition, we demonstrate that, through the same approach, the size of these hollow spherical nanoparticles can be tuned. Indeed, sub-50-nm hollow nanoparticles with mesoporous shells have also been obtained. The differences observed in the textural properties of these two sizes of hollow mesoporous nano-objects are discussed.

Graphical Abstract

In this work, we focused on the synthesis of hollow periodic mesoporous organosilica nanoparticles (HPMO-NPs) with the precise tuning of the core cavity and the PMO shell. The aim is to obtain two widely different sizes (above 500 nm and below 50 nm) while following the same synthesis strategy. For that, we subsequently used two templating routes: (1) spherical dense silica as a hard template to form the core cavity and (2) a cationic surfactant (CTAB) as soft template co-assembling with a bridged organosilane 1,4-Bis-triethoxysilylbenzene (BTEB) to form the mesoporous organosilica shell. Na2CO3 and HCl solutions are used to successively deliver the two kinds of porosity. Here, the silica cores with fixed diameters, easily obtained using the Stöber method, allow the control of the core cavity size of the HPMO-NPs.

Highlights

  • Dual templating strategy to synthesize HPMO nanospheres.

  • Successful size-tuning of HPMO nanoparticles using hard template route.

  • Uniform and monodisperse HPMO nanoparticles confirmed by TEM analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shi JY, Wang CA, Li ZJ, Wang Q, Zhang Y, Wang W (2011) Heterogeneous organocatalysis at work: functionalization of hollow periodic mesoporous organosilica spheres with MacMillan catalyst. Chem Eur J 7(22):6206–6213. https://doi.org/10.1002/chem.20110007

    Article  Google Scholar 

  2. Jia C, Yang P, Chen H-S, Wang J (2015) Template-free synthesis of mesoporous anatase titania hollow spheres and their enhanced photocatalysis. CrystEngComm 17(15):2940–2948. https://doi.org/10.1039/C4CE02358G

    Article  CAS  Google Scholar 

  3. Teng Z et al. (2015) A facile multi-interface transformation approach to monodisperse multiple-shelled periodic mesoporous organosilica hollow spheres. J Am Chem Soc 137(24):7935–7944. https://doi.org/10.1021/jacs.5b05369

    Article  CAS  Google Scholar 

  4. Chen Y et al. (2014) Hollow mesoporous organosilica nanoparticles: a generic intelligent framework-hybridization approach for biomedicine. J Am Chem Soc 136(46):16326–16334. https://doi.org/10.1021/ja508721y

    Article  CAS  Google Scholar 

  5. Sasidharan M et al. (2011) Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries. Nanoscale 3(11):4768. https://doi.org/10.1039/c1nr10804b

    Article  CAS  Google Scholar 

  6. Wang M, Boyjoo Y, Pan J, Wang S, Liu J (2017) Advanced yolk-shell nanoparticles as nanoreactors for energy conversion. Chin J Catal 38(6):970–990. https://doi.org/10.1016/S1872-2067(17)62818-3

    Article  CAS  Google Scholar 

  7. Liu Y et al. (2019) β-Cyclodextrin-based hollow nanoparticles with excellent adsorption performance towards organic and inorganic pollutants. Nanoscale 11(40):18653–18661. https://doi.org/10.1039/C9NR07342F

    Article  CAS  Google Scholar 

  8. Zhang H, Xu H, Wu M, Zhong Y, Wang D, Jiao Z (2015) A soft–hard template approach towards hollow mesoporous silica nanoparticles with rough surfaces for controlled drug delivery and protein adsorption. J Mater Chem B 3(31):6480–6489. https://doi.org/10.1039/C5TB00634A

    Article  CAS  Google Scholar 

  9. Fu J, Xu Q, Chen J, Chen Z, Huang X, Tang X (2010) Controlled fabrication of uniform hollow core porous shell carbon spheres by the pyrolysis of core/shell polystyrene/cross-linked polyphosphazene composites. Chem Commun 46(35):6563. https://doi.org/10.1039/c0cc01185a

    Article  CAS  Google Scholar 

  10. Li Y, Yang Y, Shi J, Ruan M (2008) Synthesis and characterization of hollow mesoporous carbon spheres with a highly ordered bicontinuous cubic mesostructure. Microporous Mesoporous Mater 112(1–3):597–602. https://doi.org/10.1016/j.micromeso.2007.10.042

    Article  CAS  Google Scholar 

  11. Arnal PM, Weidenthaler C, Schüth F (2006) Highly monodisperse zirconia-coated silica spheres and zirconia/silica hollow spheres with remarkable textural properties. Chem Mater 18(11):2733–2739. https://doi.org/10.1021/cm052580a

    Article  CAS  Google Scholar 

  12. Chenan A, Ramya S, George RP, Kamachi Mudali U (2014) Hollow mesoporous zirconia nanocontainers for storing and controlled releasing of corrosion inhibitors. Ceram Int 40(7):10457–10463. https://doi.org/10.1016/j.ceramint.2014.03.016

    Article  CAS  Google Scholar 

  13. Lou XW, Yuan CL, Lynden A (2007) Shell-by-shell synthesis of tin oxide hollow colloids with nanoarchitectured walls: cavity size tuning and functionalization. Small 3(2):261–265. https://doi.org/10.1002/smll.200600445

    Article  CAS  Google Scholar 

  14. Kim S-W, Kim M, Lee WY, Hyeon T(2002) Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions J Am Chem Soc 124(26):7642–7643. https://doi.org/10.1021/ja026032z

    Article  CAS  Google Scholar 

  15. Asefa T, Tao Z (2012) Biocompatibility of mesoporous silica nanoparticles. Chem Res Toxicol 25(11):2265–2284. https://doi.org/10.1021/tx300166u

    Article  CAS  Google Scholar 

  16. Singh P, Srivastava S, Singh SK (2019) Nanosilica: recent progress in synthesis, functionalization, biocompatibility and biomedical applications. ACS Biomater Sci Eng 5:4882–4898. https://doi.org/10.1021/acsbiomaterials.9b00464

    Article  CAS  Google Scholar 

  17. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397):710–712. https://doi.org/10.1038/359710a0

    Article  CAS  Google Scholar 

  18. Mandal M, Kruk M (2012) Family of single-micelle-templated organosilica hollow nanospheres and nanotubes synthesized through adjustment of organosilica/surfactant ratio. Chem Mater 24(1):123–132. https://doi.org/10.1021/cm202136r

    Article  CAS  Google Scholar 

  19. Inagaki S, Guan S, Ohsuna T, Terasaki O (2002) An ordered mesoporous organosilica hybrid material with a crystal-like wall structure. Nature 416(6878):304–307. https://doi.org/10.1038/416304a

    Article  CAS  Google Scholar 

  20. Haffer S, Tiemann M, Fröba M (2010) Periodic mesoporous organosilica (PMO) materials with uniform spherical core-shell structure. Chem Eur J 16(34):10447–10452. https://doi.org/10.1002/chem.201000643

    Article  CAS  Google Scholar 

  21. Chen Y et al. (2013) Colloidal HPMO nanoparticles: silica-etching chemistry tailoring, topological transformation, and nano-biomedical applications. Adv Mater 25(22):3100–3105. https://doi.org/10.1002/adma.201204685

    Article  CAS  Google Scholar 

  22. Hussain SM et al. (2009) Toxicity evaluation for safe use of nanomaterials: recent achievements and technical challenges. Adv Mater 21(16):1549–1559. https://doi.org/10.1002/adma.200801395

    Article  CAS  Google Scholar 

  23. Tan B, Rankin SE (2005) Dual latex/surfactant templating of hollow spherical silica particles with ordered mesoporous shells. Langmuir 21(18):8180–8187. https://doi.org/10.1021/la050618s

    Article  CAS  Google Scholar 

  24. Blas H, Save M, Pasetto P, Boissière C, Sanchez C, Charleux B (2008) Elaboration of monodisperse spherical hollow particles with ordered mesoporous silica shells via dual latex/surfactant templating: radial orientation of mesopore channels. Langmuir 24(22):13132–13137. https://doi.org/10.1021/la801897k

    Article  CAS  Google Scholar 

  25. Ma X et al. (2016) Hollow periodic mesoporous organosilica nanospheres by a facile emulsion approach. J Colloid Interface Sci 475:66–71. https://doi.org/10.1016/j.jcis.2016.04.026

    Article  CAS  Google Scholar 

  26. Liu J, Hartono SB, Jin YG, Li Z, Lu GQ (Max), Qiao SZ (2010) A facile vesicle template route to multi-shelled mesoporous silica hollow nanospheres. J Mater Chem 20(22):4595. https://doi.org/10.1039/b925201k

    Article  CAS  Google Scholar 

  27. Qiao SZ et al. (2009) Surface-functionalized periodic mesoporous organosilica hollow spheres. J Phys Chem C 113(20):8673–8682. https://doi.org/10.1021/jp810844p

    Article  CAS  Google Scholar 

  28. Koike N, Chaikittisilp W, Shimojima A, Okubo T (2016) Surfactant-free synthesis of hollow mesoporous organosilica nanoparticles with controllable particle sizes and diversified organic moieties. RSC Adv 6(93):90435–90445. https://doi.org/10.1039/C6RA22926C

    Article  CAS  Google Scholar 

  29. Fan W et al. (2019) Generic synthesis of small-sized hollow mesoporous organosilica nanoparticles for oxygen-independent X-ray-activated synergistic therapy. Nat Commun 10(1):1241. https://doi.org/10.1038/s41467-019-09158-1

    Article  CAS  Google Scholar 

  30. Park SS, Moorthy MS, Ha C-S (2014) Periodic mesoporous organosilicas for advanced applications. NPG Asia Mater 6(4):e96. https://doi.org/10.1038/am.2014.13

    Article  CAS  Google Scholar 

  31. Li J, Chen LX, Li X, Zhang CC, Zeng FL (2015) Hollow organosilica nanospheres prepared through surface hydrophobic layer protected selective etching. Appl Surf Sci 340:126–131. https://doi.org/10.1016/j.apsusc.2015.02.168

    Article  CAS  Google Scholar 

  32. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69. https://doi.org/10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  33. Liu S, Cool P, Collart O, Van Der Voort P, Vansant EF, Lebedev OI, Van Tendeloo G, Jiang M (2003) The influence of the alcohol concentration on the structural ordering of mesoporous silica: cosurfactant versus cosolvent. J Phys Chem B 107(38):10405–10411. https://doi.org/10.1021/jp034410w

    Article  CAS  Google Scholar 

  34. Ågren P, Lindén M, Rosenholm JB, Schwarzenbacher R, Kriechbaum M, Amenitsch H, Laggner P, Blanchard J, Schüth F (2000) Kinetics of cosurfactant-surfactant-silicate phase behavior. 1. Short-chain alcohols Langmuir 16(23):8809–8813. https://doi.org/10.1021/la000402k

    Article  CAS  Google Scholar 

  35. de O, Nassor EC, Ávila LR, Pereira PFDS, Ciuffi KJ, Calefi PS, Nassar EJ (2011) Influence of the hydrolysis and condensation time on the preparation of hybrid materials. Mater Res 14(1):1–6. https://doi.org/10.1590/S151614392011005000003

  36. Bantignies J-L et al. (2006) Insights into the self-directed structuring of hybrid organic-inorganic silicas through infrared studies. J Phys Chem B 110(32):15797–15802. https://doi.org/10.1021/jp060975r

    Article  CAS  Google Scholar 

  37. Laird M, Carcel C, Oliviero E, Toquer G, Trens P, Bartlett J, Wong Chi Man M (2020) Microporous Mesoporous Mater 297:110042. https://doi.org/10.1016/j.micromeso.2020.110042

    Article  CAS  Google Scholar 

  38. Tilkin RG, Mahy JG, Monteiro APF, Belet A, Feijóo J, Laird M, Carcel C, Régibeau N, Goideris B, Grandfils C, Wong Chi Man M, Lambert SD (2022) Colloids Surf A Physicochem Eng Asp 642:128629. https://doi.org/10.1016/j.colsurfa2022.128629

  39. Hoffmann F, Güngerich M, Klar PJ, Fröba M (2007) Vibrational spectroscopy of periodic mesoporous organosilicas (PMOs) and their precursors: a closer look. J Phys Chem C 111(15):5648–5660. https://doi.org/10.1021/jp0668596

    Article  CAS  Google Scholar 

  40. Lin F, Meng X, Mertens M, Cool P, Van Doorslaer S (2014) Probing framework–guest interactions in phenylene-bridged periodic mesoporous organosilica using spin-probe EPR. Phys Chem Chem Phys 16(41):22623–22631. https://doi.org/10.1039/C4CP03778B

    Article  CAS  Google Scholar 

  41. Qiao ZA, Zhang L, Guo M, Liu Y, Huo Q (2009) Synthesis of mesoporous silica nanoparticles via controlled hydrolysis and condensation of silicon alkoxide. Chem Mater 21(16):3823–3829. https://doi.org/10.1021/cm901335k

    Article  CAS  Google Scholar 

  42. Sing KSW, Rouquerol F, Rouquerol J (1999) Adsorption by divided and porous materials. Academic Press, London

  43. Thommes M (2010) Physical adsorption, characterization of nanoporous materials. Chem Ing Tech 82:7

    Article  Google Scholar 

  44. He Y, Xu H, Ma S, Zhang P, Huang W, Kong M (2014) Fabrication of mesoporous spherical silica nanoparticles and effects of synthesis conditions on particle mesostructure. Mater Lett 131:361–365. https://doi.org/10.1016/j.matlet.2014.06.026

    Article  CAS  Google Scholar 

  45. Tan B, Rankin ES (2004) Interfacial alignment mechanism of forming spherical silica with radially oriented nanopores. J Phys Chem B 108(52):20122–20129. https://doi.org/10.1021/jp046425f

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Saïd Tahir (L2C, Montpellier, France) for SEM analyses and Dr Erwan Oliviero and Franck Godiard (Plateforme Microscopie Electronique et Analytique, University of Montpellier) for TEM experiments. Infrared measurements were carried out on the IRRAMAN technological platform of the University of Montpellier. This project is supported by the LabEx NUMEV within the I-Site MUSE and was also developed within the scope of the projects CICECO-Aveiro Institute of Materials (UIDB/50011/2020, UIDP/50011/2020 and LA/P/0006/2020) and The Shape of Water (PTDC/NAN-PRO/3881/2020) financed by Portuguese funds through the FCT/MEC (PIDDAC). IEM thanks LabEx NUMEV and The Shape of Water FCT project for the PhD co-tutelle grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Imane El Moujarrad or Jean-Louis Bantignies.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Moujarrad, I., Le Parc, R., Carcel, C. et al. Size-tuning of hollow periodic mesoporous organosilica nanoparticles (HPMO-NPs) using a dual templating strategy. J Sol-Gel Sci Technol 107, 302–311 (2023). https://doi.org/10.1007/s10971-023-06139-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06139-1

Keywords

Navigation