Skip to main content

Advertisement

Log in

Depollution of industrial dyes by nanocrystalline Ti0.95Bi0.025X0.025O2 (X = Zr, Nb): visible light harvesting, charge separation and high efficiency

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The benefits of Bi3+, Zr4+ and Nb5+ dopants were employed to activate the visible light response and the photoactivity of TiO2 catalyst for organic dyes degradation. New catalysts composed of Ti0.95Bi0.025Zr0.025O2 and Ti0.95Bi0.025Nb0.025O2 were prepared thru precipitation route. The XRD verified that pure TiO2 has rutile-anatase mixture while Ti0.95Bi0.025Zr0.025O2 and Ti0.95Bi0.025Nb0.025O2 have a single anatase phase. The band gap of TiO2, Ti0.95Bi0.025Zr0.025O2 and Ti0.95Bi0.025Nb0.025O2 catalysts was identified to be 3.12, 3.02 and 2.89 eV, respectively. The SEM image of pure TiO2 showed the formation of spherical grains which become very finer in Ti0.95Bi0.025Nb0.025O2 powder while Ti0.95Bi0.025Zr0.025O2 sample displayed the formation of large grains. The TEM image of (Bi, Nb) codoped TiO2 powder exhibits homogenous spherical particles with mean size of 27 nm were seen. The depollution efficiencies of Ti0.95Bi0.025Zr0.025O2 and Ti0.95Bi0.025Nb0.025O2 catalysts for reactive yellow 145 (RY145), Congo red (CR) and methyl green (MG) dyes were superior compared to pure TiO2. The catalyst of Ti0.95Bi0.025Nb0.025O2 provides the highest photo-activity for degradation of 20 ppm RY145, CR and MG dyes with efficiency of 98%, 99% and 90%, besides practical recycling performance for three runs. The remarkable photocatalytic activity of Ti0.95Bi0.025Nb0.025O2 catalyst was attributed to visible light-activation (2.89 eV) and effective charge separation stimulate by Bi3+ and Nb5+ ions. These findings reflect the opportunities and profit of the treated Ti0.95Bi0.025Nb0.025O2 catalyst on utilizing unlimited solar energy for depollution industrial effluents.

Graphical Abstract

Highlights

  • Nanocrystalline Ti0.95Bi2.5X2.5O2 (X = Zr, Nb) photocatalysts.

  • Tuning the band gap energy and visible light response.

  • Reactive yellow 145, Congo red and Methyl green dyes pollutants.

  • Ti0.95Bi2.5Nb2.5O2 catalyst exhibits a photo-removal efficiency of 90–99% (80 min).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Elanthamilan E, Elizabeth IB, Wang S-F, Lydia IS (2023) Strontium hexaferrite microspheres: Synthesis, characterization and visible-light-driven photocatalytic activity towards the degradation of methylene blue dye. Optical Mater 137:113565

    Article  CAS  Google Scholar 

  2. Zhang L, Guo J, Hao B, Ma H (2022) WO3/TiO2 heterojunction photocatalyst prepared by reactive magnetron sputtering for Rhodamine B dye degradation. Optical Mater 133:113035

    Article  CAS  Google Scholar 

  3. Niknam H, Sadeghzadeh-Attar A (2023) Mg-doped TiO2 nanorods-SrTiO3 heterojunction composites for efficient visible-light photocatalytic degradation of basic yellow 28. Optical Mater 136:113395

    Article  CAS  Google Scholar 

  4. Kumari C, Sharma P, Tanwar M, Sharma H, Kumar R, Chhoker S (2022) Unveiling quaternary GeSbSeEr chalcogenides as photocatalyst: degradation of cationic and anionic pollutant in visible light. Optical Mater 134:113122

    Article  CAS  Google Scholar 

  5. Li H, Cao X, Zhang C, Yu Q, Zhao Z, Niu X, Sun X, Liu Y, Ma L, Li Z (2017) Enhanced adsorptive removal of anionic and cationic dyes from single or mixed dye solutions using MOF PCN-222. RSC Adv 7:16273–16281

    Article  CAS  Google Scholar 

  6. Ahmad A, Mohd-Setapar SH, Chuong CS, Khatoon A, Wani WA, Kumar R, Rafatullah M (2015) Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater. RSC Adv 5:30801–30818

    Article  CAS  Google Scholar 

  7. Rafaqat S, Ali N, Torres C, Rittmann B (2022) Recent progress in treatment of dyes wastewater using microbial-electro-Fenton technology. RSC Adv 12:17104–17137

    Article  CAS  Google Scholar 

  8. Ma H, Zhang H, Tong M, Cao J, Wu W (2019) Synergetic effects of graphene–CoPc/silk fibroin three-dimensional porous composites as catalysts for acid red G degradation. RSC Adv 9:24751–24759

    Article  CAS  Google Scholar 

  9. Sheng M, Zhang L, Wang D, Li M, Li L, West JL, Fu S (2018) Fabrication of dye-doped liquid crystal microcapsules for electro-stimulated responsive smart textiles. Dyes Pigments 158:1–11

    Article  CAS  Google Scholar 

  10. Qu R, George TF, Li G (2022) Development in liquid crystal microcapsules: fabrication, optimization and applications. J Mater Chem C 10:413–432

    Article  CAS  Google Scholar 

  11. Al-Tohamy R, Ali SS, Li F, Okasha KM, Mahmoud YA-G, Elsamahy T, Jiao H, Fu Y, Sun J (2022) A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol Environ Saf 231:113160

    Article  CAS  Google Scholar 

  12. Helmy M, Hegazy M, Mohamed A, Hassan K (2023) Predicting the degradation of reactive red-147 dye in textile wastewater using response surface methodology technique. Appl Water Sci 13:25

    Article  CAS  Google Scholar 

  13. Javaid R, Qazi UY (2019) Catalytic oxidation process for the degradation of synthetic dyes: an overview. Int J Environ Res Public Health 16:2066

    Article  CAS  Google Scholar 

  14. Sarkodie B, Amesimeku J, Frimpong C, Howard EK, Feng Q, Xu Z (2023) Photocatalytic degradation of dyes by novel electrospun nanofibers: A review. Chemosphere 313:137654

    Article  CAS  Google Scholar 

  15. Rashid R, Shafiq I, Akhter P, Iqbal MJ, Hussain M (2021) A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method. Environ Sci Pollut Res 28:9050–9066

    Article  CAS  Google Scholar 

  16. Khamparia S, Jaspal DK (2017) Adsorption in combination with ozonation for the treatment of textile waste water: a critical review. Front Environ Sci Eng 11:8

    Article  Google Scholar 

  17. Gogoi D, Makkar P, Ghosh NN (2021) Solar light-irradiated photocatalytic degradation of model dyes and industrial dyes by a magnetic CoFe2O4−gC3N4 S-scheme heterojunction photocatalyst. ACS Omega 6:4831–4841

    Article  CAS  Google Scholar 

  18. Zhang F, Wang X, Liu H, Liu C, Wan Y, Long Y, Cai Z (2019) Recent advances and applications of semiconductor photocatalytic technology. Appl Sci 9:2489

    Article  CAS  Google Scholar 

  19. Yang Y, Tan H, Cheng B, Fan J, Yu J, Ho W (2021) Near-infrared-responsive photocatalysts. Small methods 5:2001042

    Article  CAS  Google Scholar 

  20. Wang Z, Yang C, Lin T, Yin H, Chen P, Wan D, Xu F, Huang F, Lin J, Xie X, Jiang M (2013) Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy Environ Sci 6:3007–3014

    Article  CAS  Google Scholar 

  21. Chakraborty A, Samriti, Ruzimuradov O, Gupta RK, Cho J, Prakash J (2022) TiO2 nanoflower photocatalysts: Synthesis, modifications and applications in wastewater treatment for removal of emerging organic pollutants. Environ Res 212:113550

    Article  CAS  Google Scholar 

  22. Zhang L-Y, Yanga J-J, You Y-H (2021) Construction and photocatalytic performance of fluorinated ZnO–TiO2 heterostructure composites. RSC Adv 11:38654–38666

    Article  CAS  Google Scholar 

  23. Etacheri V, Valentin CD, Schneider J, Bahnemann D, Pillai SC (2015) Visible-light activation of TiO2 photocatalysts: advances in theory and experiments. J Photochem Photobiol C 25:1–29

    Article  CAS  Google Scholar 

  24. Anucha CB, Altin I, Bacaksiz E, Stathopoulos VN (2022) Titanium dioxide (TiO2)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: In the light of modification strategies. Chem Eng J Adv 10:100262

    Article  CAS  Google Scholar 

  25. Karuppasamy P, Nisha NRN, Pugazhendhi A, Kandasamy S, Pitchaimuthu S (2021) An investigation of transition metal doped TiO2 photocatalysts for the enhanced photocatalytic decoloration of methylene blue dye under visible light irradiation. J Environ Chem Eng 9:105254

    Article  CAS  Google Scholar 

  26. Toloman D, Stefan M, Pana O, Rostas AM, Silipas TD, Pogacean F, Pruneanu S, Leostean C, Barbu-Tudoran L, Popa A (2022) Transition metal ions as a tool for controlling the photocatalytic activity of MWCNT-TiO2 nanocomposites. J Alloy Compd 921:166095

    Article  CAS  Google Scholar 

  27. Sayılkan F, Asiltürk M, Tatar P, Kiraz N, Şener Ş, Arpaç E, Sayılkan H (2008) Photocatalytic performance of Sn-doped TiO2 nanostructured thin films for photocatalytic degradation of malachite green dye under UV and VIS-lights. Mater Res Bull 43:127–134

    Article  Google Scholar 

  28. Mohamed HH, Al Qarni F, Alomair NA (2021) Design of porous Ga doped TiO2 nanostructure for enhanced solar light photocatalytic applications. Mater Res Bull 133:111057

    Article  CAS  Google Scholar 

  29. Sescu AM, Favier L, Lutic D, Soto-Donoso N, Ciobanu G, Harja M (2021) TiO2 doped with noble metals as an efficient solution for the photodegradation of hazardous organic water pollutants at ambient conditions. Water 13:19

    Article  CAS  Google Scholar 

  30. Prakash J, Samriti, Kumar A, Dai H, Janegitz BC, Krishnan V, Swart HC, Sun S (2021) Novel rare earth metal–doped one-dimensional TiO2 nanostructures: fundamentals and multifunctional applications. Mater Today Sustain 13:100066

    Article  Google Scholar 

  31. Wang J, Huang J, Meng J, Li Q, Yang J (2017) Enhanced photoelectrochemical performance of anatase TiO2 for water splitting via surface codoping. RSC Adv 7:39877–39884

    Article  CAS  Google Scholar 

  32. Li H, Liu J, Qian J, Li Q, Yang J (2014) Preparation of Bi-doped TiO2 nanoparticles and their visible light photocatalytic performance. Chin J Catal 35:1578–1589

    Article  CAS  Google Scholar 

  33. Xiang H, Tuo B, Tian J, Hu K, Wang J, Cheng J, Tang Y (2021) Preparation and photocatalytic properties of Bi-doped TiO2/montmorillonite composite. Optical Mater 117:111137

    Article  CAS  Google Scholar 

  34. Aqeel M, Ikram M, Imran M, Ul-Hamid A, Qumar U, Shahbaz A, Ikramf M, Saeed A (2020) TiO2 Co-doped with Zr and Ag shows highly efficient visible light photocatalytic behavior suitable for treatment of polluted water. RSC Adv 10:42235–42248

    Article  CAS  Google Scholar 

  35. Yang X, Min Y, Li S, Wang D, Mei Z, Liang J, Pan F (2018) Conductive Nb-doped TiO2 thin films with whole visible absorption to degrade pollutants. Catal Sci Technol 8:1357–1365

    Article  CAS  Google Scholar 

  36. Murugesan C, Chandrasekaran G (2015) Impact of Gd3+-substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles. RSC Adv 5:73714–73725

    Article  CAS  Google Scholar 

  37. Singh A, Kumar S (2022) Structural, chemical, optical and photocatalytic properties of Zr co-doped anatase-rutile mixed phase TiO2: Ag nanoparticles. J Alloy Compd 925:166709

    Article  CAS  Google Scholar 

  38. Karkare MM (2014) Choice of precursor not affecting the size of anatase TiO2 nanoparticles but affecting morphology under broader view. Int Nano Lett 4:111

    Article  Google Scholar 

  39. Zhang L, Li Y, Zhang Q, Wang H (2013) Formation of the modified ultrafine anatase TiO2 nanoparticles using the nanofiber as a microsized reactor. CrystEngComm 15:1607–1612

    Article  CAS  Google Scholar 

  40. Dhandayuthapani T, Sivakumar R, Ilangovan R (2016) Growth of micro flower rutile TiO2 films by chemical bath deposition technique: Study on the properties of structural, surface morphological, vibrational, optical and compositional. Surf Interfaces 4:59–68

    Article  CAS  Google Scholar 

  41. Barrocas B, Monteiro OC, Nunes MR, Silvestre AJ (2019) Influence of Re and Ru doping on the structural, optical and photocatalytic properties of nanocrystalline TiO2. SN Appl Sci 1:556

    Article  CAS  Google Scholar 

  42. Zhang Z, Luo Z, Yang Z, Zhang S, Zhang Y, Zhou Y, Wang X, Fu X (2013) Band-gap tuning of N-doped TiO2 photocatalysts for visible-light-driven selective oxidation of alcohols to aldehydes in water. RSC Adv 3:7215–7218

    Article  CAS  Google Scholar 

  43. Goswami P, Ganguli JN (2013) Tuning the band gap of mesoporous Zr-doped TiO2 for effective degradation of pesticide quinalphos. Dalton Trans 42:14480–14490

    Article  CAS  Google Scholar 

  44. Estrada-Flores S, Pérez-Berumen CM, Flores-Guia TE, García-Cerda LA, Rodríguez-Hernández J, Esquivel-Castro TA, Martínez-Luévanos A (2022) Mechanosynthesis of mesoporous Bi-doped TiO2: The effect of bismuth doping and ball milling on the crystal structure, optical properties, and photocatalytic activity. Crystals 12:1750

    Article  CAS  Google Scholar 

  45. Ren D, Li H, Cheng X (2015) Tailoring the electronic and optical properties of anatase TiO2 by (S, Nb) co-doping from a DFT plus U calculation. Solid State Commun 223:54–59

    Article  CAS  Google Scholar 

  46. Uyanga E, Gibaud A, Daniel P, Sangaa D, Sevjidsuren G, Altantsog P, Beuvier T, Lee CH, Balagurov AM (2014) Structural and vibrational investigations of Nb-doped TiO2 thin films. Mater Res Bull 60:222–231

    Article  CAS  Google Scholar 

  47. Saha T, Podder J, Islam MR, Das HN (2022) Effect of tungsten doping on the microstructure, optical and photocatalytic activity of titanium dioxide thin films deposited by spray pyrolysis. Optical Mater 133:113065

    Article  CAS  Google Scholar 

  48. Kiziltas H (2022) Fabrication and characterization of photoelectrode B–Co/TiO2 nanotubes for effective photoelectrochemical degradation of rhodamine B. Optical Mater 123:111926

    Article  CAS  Google Scholar 

  49. Rahman H, Norbert A, Nair PS, Joseph JA, Shaji S, Deshpande U, Naduvath J, Shanu AS, Philip RR (2022) Influence of sodium doping on the material properties and photocatalytic activity of anatase titanium dioxide nanotubes prepared by anodization. Optical Mater 134:113172

    Article  CAS  Google Scholar 

  50. Abutalib MM, Alghamdi HM, Rajeh A, Nur O, Hezma AM, Mannaa MA (2022) Fe3O4/Co3O4-TiO2 S-scheme photocatalyst for degradation of organic pollutants and H2 production under natural sunlight. J Mater Res Technol 20:1043–1056

    Article  CAS  Google Scholar 

  51. Sood S, Mehta SK, Umar A, Kansal SK (2014) The visible light-driven photocatalytic degradation of Alizarin red S using Bi-doped TiO2 nanoparticles. N J Chem 38:3127–3136

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through project no. (IFKSURG-2-1445).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sobhy M. Yakout.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakout, S.M., El-Zaidy, M.E. Depollution of industrial dyes by nanocrystalline Ti0.95Bi0.025X0.025O2 (X = Zr, Nb): visible light harvesting, charge separation and high efficiency. J Sol-Gel Sci Technol 107, 417–429 (2023). https://doi.org/10.1007/s10971-023-06124-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06124-8

Keywords

Navigation