Skip to main content
Log in

Effect of Mg and Mn co-doping on the high electrical properties of BiFe1-2xMgxMnxO3−BaTiO3 lead-free ceramics prepared by sol–gel method and two-step sintering method

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Lead-free 0.7BiFe1−2xMgxMnxO3–0.3BaTiO3 (BFMMxO–BTO) piezoceramics were prepared through the sol–gel method followed by a two-step sintering process and the crystal structure and the surface morphology, dielectric, polarization, and piezoelectric properties of lead-free BFMMxO–BTO ceramics were investigated. Through the synergistic effects of Mn and Mg ions to reduce the oxygen vacancies and prevent the formation of defect complexes, the electric performance of lead-free BFMMxO–BTO ceramics was improved. A large remnant polarization (2Pr = 93.8 μC/cm2), low leakage current (4.93 × 10−7 A/cm2), excellent piezoelectric constant (d33 = 193 pC/N), high unipolar strain (0.202%), and high piezoelectric actuator constant (\(d_{33}^ \ast\) = 284 pm/V) were obtained for BFMMxO–BTO ceramics with x = 0.04. These results not only demonstrate that (Mg, Mn)-doped BFO-BTO ceramics are a promising, stable, and reliable candidate material with properties for sustainable piezoelectric applications, and shed light on the necessity of developing high-performance piezoelectric materials.

Graphical Abstract

a P–E hysteresis loops at RT and b Remnant polarization and coercive field of the BFMMx–BT ceramics. 0.7BiFe0.92Mg0.04Mn0.04O3-0.3BaTiO3 ceramic displays real and excellent ferroelectric property (2Pr = 93.8 μC/cm2). c Leakage current density of the BFMMx–BT ceramics. Low oxygen vacancy content and less changed defects result in a limited leakage current density (4.93 × 10−7 A/cm2). d Piezoelectric coefficients d33 and \(d_{33}^ \ast\) of the BFMMx–BT ceramics. 0.7BiFe0.92Mg0.04Mn0.04O3-0.3BaTiO3 ceramic displays high piezoelectric property (d33 = 264 pC/N, \(d_{33}^ \ast\) = 452 pm/V)

Highlights

  • Lead-free 0.7BiFe1-2xMgxMnxO3–0.3BaTiO3 (BFMMx–BT) piezoceramics were prepared through the sol–gel method followed by a two-step sintering process.

  • Low oxygen vacancy content and less changed defects result in a limited leakage current density (4.93 × 10−7 A/cm2).

  • 0.7BiFe0.92Mg0.04Mn0.04O3−0.3BaTiO3 ceramic displays real and excellent ferroelectric property (2Pr = 93.8 μC/cm2) and high piezoelectric property (d33 = 264 pC/N, = 452 pm/V).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Eerenstein W, Mathur N, Scott J (2006) Multiferroic and magnetoelectric materials. Nature 442(7104):759–765

    Article  CAS  Google Scholar 

  2. Fiebig M, Lottermoser TH, Fröhlich D, Goltsev AV, Pisarev RV (2002) Observation of coupled magnetic and electric domains. Nature 419:818–820

    Article  CAS  Google Scholar 

  3. Kong LP, Liu G, Zhang SJ, Yang WG (2015) Origin of the enhanced piezoelectric thermal stability in BiScO3-PbTiO3 single crystals. Appl Phys Lett 106:232901

    Article  Google Scholar 

  4. Gao JH, Wang Y, He ZX, Liu YB, Wang DW, Jin L, Zhao TX, Zhong LS, Ren XB (2019) Laminated modulation of tricritical ferroelectrics exhibiting highly enhanced dielectric permittivity and temperature stability. Adv Funct Mater 29(17):1807162

    Article  Google Scholar 

  5. Wang D, Fan Z, Rao G, Wang G, Liu Y, Yuan C, Ma T, Li D, Tan X, Lu Z, Feteira A (2020) Ultrahigh piezoelectricity in lead-free piezoceramics by synergistic design. Nano Energy 76:104944

    Article  CAS  Google Scholar 

  6. Liu XM, Tan XL (2016) Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics. Adv Mater 28:574–578

    Article  CAS  Google Scholar 

  7. Rödel J, Webber KG, Dittmer R, Jo W, Kimura M, Damjanovic D (2015) Transferrin lead-free piezoelectric ceramics into application. J Eur Ceram Soc 35:1659–1681

    Article  Google Scholar 

  8. Lee MH, Kim DJ, Choi HI, Kim MH, Song TK, Kim WJ, Park JS, Do D (2018) Low sintering temperature for lead‐free BiFeO3‐BaTiO3 ceramics with high piezoelectric performance. J Am Ceram Soc 102:2666–2674

    Google Scholar 

  9. Akram F, Malik RA, Song TK, Lee S, Kim M-H (2019) Thermally-stable high dielectric properties of (1–x)(0.65Bi1.05FeO3–0.35BaTiO3)–xBiGaO3 piezoceramics. J Eur Ceram Soc 39:2304–2309

    Article  CAS  Google Scholar 

  10. Palai R, Katiyar RS, Schmid H (2008) Beta phase and gamma-beta metal-insulator transition inmultiferroic BiFeO3. Phys Rev B 77:014110

    Article  Google Scholar 

  11. Lahiri D, Chattopadhyay S, Kaduk J (2019) XAFS investigation of the correlation of Bi-sublattice disorder with ferromagnetism of multiferroic BiFeO3 nanoparticle. Mater Res Express 6:045005

    Article  Google Scholar 

  12. Li CX, Yang B, Zhang ST, Zhang R, Sun Y, Zhang HJ, Cao WW (2014) Enhanced multiferroic and magnetocapacitive properties of (1-x)Ba0.5Ca0.3TiO3-BiFeO3 ceramics. J Am Ceram Soc 97:816–825

    Article  CAS  Google Scholar 

  13. Jang HW, Baek SH, Ortiz D (2008) Epitaxial (001) BiFeO3 membranes with substantially reduced fatigue and leakage. Appl Phys Lett 92:062910

    Article  Google Scholar 

  14. Moghtada A, Shahrouzianfar A, Ashiri R (2017) Low-temperature ultrasound synthesis of nanocrystals CoTiO3 without a calcination step: Effect of ultrasonic waves on formation of the crystal growth mechanism. Adv Powder Technol 28(4):1109–1117

    Article  CAS  Google Scholar 

  15. Leontsev SO, Eitel RE (2009) Dielectric and piezoelectric properties in Mn-modified (1-x)BiFeO3-xBaTiO3 ceramics. J Am Ceram Soc 92:2957–2961

    Article  CAS  Google Scholar 

  16. Ashiri R, Heidary Moghadam A, Ajami R (2015) Obtaining the highly pure barium titanate nanocrystals by a new approach. J Alloy Compd 648:265–268

    Article  CAS  Google Scholar 

  17. Ashiri R et al. (2014) Nanothickness films, nanostructured films, and nanocrystals of barium titanate obtained directly by a newly developed sol–gel synthesis pathway. J Mater Sci: Mater Electron 25(12):5345–5355

    CAS  Google Scholar 

  18. Buscaglia MT, Mitoseriu L, Guscaglia V, Pallecchi I, Viviani M, Nanni P, Siri AS (2006) Preparation and characterization of the magneto-electric xBiFeO3-(1-x) BaTiO3. Ceram, J Eur Ceram Soc 26:3027–3030

    Article  CAS  Google Scholar 

  19. Wang TT, Deng HM, Zhou WL, Meng XK, Yang PX, Chu JH (2017) Modified optical and magnetic properties at room-temperature across lead-free morphotropic phase boundary in (1-x)BiTi3/8Fe2/8Mg3/8O3-xCaTiO3. Ceram Int 43:6453–6459

    Article  CAS  Google Scholar 

  20. Zheng T, Jiang ZG, Wu JG (2016) Enhanced piezoelectricity in (1-x)Bi1.05Fe1−yAyO3- xBaTiO3 lead-free ceramics: site engineering and wide phase boundary region. Dalton Trans 45:11277–11285

    Article  CAS  Google Scholar 

  21. Ashiri R (2014) A mechanistic study of nanoscale structure development, phase transition, morphology evolution, and growth of ultrathin barium titanate nanostructured films. Metall Mater Trans A: Phys Metall Mater Sci 45(9):4138–4154

    Article  CAS  Google Scholar 

  22. Ashiri R (2014) Development and investigation of novel nanoparticle embedded solutions with enhanced optical transparency. J Mater Res 29(24):2949–56

    Article  CAS  Google Scholar 

  23. Liu H, Liu Z, Yao K (2007) Improved electric properties in BiFeO3 films by the doping of Ti. J Sol-Gel Sci Technol 41:123–128

    Article  CAS  Google Scholar 

  24. Ashiri R (2014) Analysis and characterization of relationships between the processing and optical responses of amorphous BaTiO3 nanothin films obtained by an improved wet chemical process. Metall Mater Trans B: Process Metall Mater Process Sci 45(4):1472–1483

    Article  CAS  Google Scholar 

  25. Ashiri R, Moghtada A, Shahrouzianfar A (2015) Processing and characterization of carbonate-free BaTiO3 nanoscale particles obtained by a rapid ultrasound-assisted wet chemical approach. Metall Mater Trans B: Process Metall Mater Process Sci 46(4):1912–1923

    Article  CAS  Google Scholar 

  26. Yin RQ, Dai BW, Zheng P, Zhou JJ, Bai WF, Wen F, Deng JX, Zheng L, Du J, Qin HB (2017) Pure-phase BiFeO3 ceramics with enhanced electrical properties prepared by two-step sintering. Ceram Int 43:6467–6471

    Article  CAS  Google Scholar 

  27. Yang H, Zhou C, Liu X, Zhou Q, Chen G, Li W, Wang H (2013) Piezoelectric properties and temperature stability of Mn- and Cu-modified BiFeO3–BaTiO3 high-temperature ceramics. J Eur Ceram Soc 33:1177–1183

    Article  CAS  Google Scholar 

  28. Brahma F et al. (2022) Investigation of impedance and leakage feature in BFO-BTO perovskite system. Mater Today: Proc 67:1175–1179

    CAS  Google Scholar 

  29. Xu XL, Xie D, Yin C, Feng TT, Zhang XW, Zhao HM, Li G, Ren T-L, Guan YJ, Gao XS, Pan W (2014) Mg-doped Bi0.8Ca0.2FeO3 with enhanced ferromagnetic properties. Mater Lett 122:139–142

    Article  CAS  Google Scholar 

  30. Yang RP, Lin SX, Fang XG, Gao XS, Zeng M, Liu JM (2013) First-principles study on the magnetic properties in Mg-doped BiFeO3 with and without oxygen vacancies. J Appl Phys 114:233912

    Article  Google Scholar 

  31. He P, Hou Z-L, Wang C-Y, Lia Z-J, Jing J, Bi S (2017) Mutual promotion effect of Pr and Mg co-substitution on structure and multiferroic properties of BiFeO3 ceramic. Ceram Int 43:262–267

    Article  CAS  Google Scholar 

  32. Xi XJ, Wang SY, Liu WF, Wang HJ, Guo F, Wang X, Gao J, Li DJ (2014) Modulation of electric conduction in La–Mg codoped multiferroic BiFeO3 ceramics. J Alloy Compd 603:224–229

    Article  CAS  Google Scholar 

  33. Lu YS, Dai JQ (2022) Enhanced electrical properties of (Zn, Mn)-modified BiFeO3–BaTiO3 lead-free ceramics prepared via sol–gel method and two-step sintering. J Alloys Compd 899.

  34. Lu YS, Dai JQ, Zhang GY (2021) Electrical properties of (1-x)BiFe0.94Zn0.03Ti0.03O3-xBaTiO3 lead-free ceramics obtained via sol-gel route and two-step sintering process. Ceram Int 47:26383–26390

    Article  CAS  Google Scholar 

  35. Gao W, Lv J, Lou X (2018) Large electric‐field‐induced strain and enhanced piezoelectric constant in CuO-modified BiFeO3-BaTiO3. Ceram, J Am Ceram Soc 101(8):3383–3392

    Article  CAS  Google Scholar 

  36. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst E A32:751–767

    Article  CAS  Google Scholar 

  37. Riaz S, Shah SMH, Akbar A, Atiq S, Naseem S (2015) Effect of Mn doping on structural, dielectric and magnetic properties of BiFeO3 thin films. J Sol-Gel Sci Technol 74:329–339

    Article  CAS  Google Scholar 

  38. Kim DJ, Lee MH, Song TK (2019) Comparison of multi-valent manganese oxides (Mn4+, Mn3+, and Mn2+) doping in BiFeO3-BaTiO3 piezoelectric ceramics. J Eur Ceram Soc 39:4697–4704

    Article  CAS  Google Scholar 

  39. Guo Y, Xiao P, Wen R, Wan Y, Zheng Q, Shi D, Lam KH, Liu M, Lin D (2015) Critical roles of Mn-ions in enhancing the insulation, piezoelectricity and multiferroicity of BiFeO3-based lead-free high temperature ceramics. J Mater Chem C 3(22):5811–5824

    Article  CAS  Google Scholar 

  40. Sun HN, Wang XJ, Sun QZ, Zhang XX, Ma Z, Guo MY, Sun BW, Zhu XP, Liu QD, Lou XJ (2020) Large energy storage density in BiFeO3-BaTiO3-AgNbO3 lead-free relaxor ceramics. J Eur Ceram Soc 40:2929–2935

    Article  CAS  Google Scholar 

  41. Bai H, Li J, Hong Y, Xu TT, Zhou ZX (2020) Modulation of the electric and magnetic properties by Ti non-stoichiometry in 0.70BiFeO3-0.30BaTixO3 ceramics. Appl Phys Lett 117:042904

    Article  CAS  Google Scholar 

  42. Yue ZW, Tan GQ, Yang W, Ren HJ, Xia A (2016) Enhanced multiferroic properties in Pr-doped BiFe0.97Mn0.03O3 films. Ceram Int 42:18692–18699

    Article  CAS  Google Scholar 

  43. Zhu HH, Yang YL, Ren W, Niu MM, Hu W, Ma HF, Jun O (2020) Rhombohedral BiFeO3 thick films integrated on Si with a giant electric polarization and prominent piezoelectricity Acta Mater 200:305–314

    Article  CAS  Google Scholar 

  44. Haumont R, Kreisel J, Bouvier P, Hippert F (2006) Phonon anomalies and the ferroelectric phase transition in multiferroic BiFeO3. Phys Rev B 73:132101

    Article  Google Scholar 

  45. Choi KY, Do SH, Lemmens P, Wulferding D, Woo CS, Lee JH, Chu K, Yang CH (2011) Anomalous low-energy phonons in nearly tetragonal BiFeO3 thin films. Phys Rev B 84:132408

    Article  Google Scholar 

  46. Kossa S, Rafiudeen A, Rasool A, Giridharan NV, Kumar MCS (2020) Ferroelectric polarization induced memristive behavior in bismuth ferrite (BiFeO3) based memory devices. Superlattice Microst 148:106726

    Article  Google Scholar 

  47. Qian Z, Xiao D, Zhu J, Li Z, Zuo C (1993) X‐ray photoelectron spectroscopy and Auger electron spectroscopy studies of ferroelectric (Pb, La)TiO3 thin films prepared by a multi‐ion‐beam reactive co-sputtering technique. J Appl Phys 74:224

    Article  CAS  Google Scholar 

  48. Wang F, Chen D, Zhang N, Wang S, Qin L, Sun X, Huang Y (2017) Oxygen vacancies induced by zirconium doping in bismuth ferrite nanoparticles for enhanced photocatalytic performance. J Colloid Interf Sci 508:237–247

    Article  CAS  Google Scholar 

  49. Qin Y, Yang J, Xiong P, Huang W, Song J, Yin L, Tong P, Zhu X, Sun Y (2018) The effects of quenching on electrical properties, and leakage behaviors of 0.67BiFeO3–0.33BaTiO3 solid solute. J Mater Sci Mater Electron 29:7311–7317

    Article  CAS  Google Scholar 

  50. Lee MH, KIM DJ, Choi HI, Kim M-H, Song TK, Kim W-J, Do D (2019) Thermal quenching effects on the ferroelectric and piezoelectric properties of BiFeO3-BaTiO3 ceramics. ACS Appl Electron Mater 1:1772–1780

    Article  CAS  Google Scholar 

  51. Ryu GH, Hussain A, Lee MH et al. (2018) Lead-free high-performance Bi(Zn0.5Ti0.5) O3-modified BiFeO3-BaTiO3 piezoceramics. J Eur Ceram Soc 38:4414–4421

    Article  CAS  Google Scholar 

  52. Rojac T, Kosec M, Budic B, Setter N, Damjanovic D (2010) Strong ferroelectric domain‐wall pinning in BiFeO3 ceramics. J Appl Phys 108:074107

    Article  Google Scholar 

  53. Yan X, Tan GQ, Liu WL, Ren HJ, Xia A (2015) Structural, electric and magnetic properties of Dy and Mn co-doped BiFeO3 thin films. Ceram Int 41:3202–3207

    Article  CAS  Google Scholar 

  54. Lei TY, Cai W, Fu CL, Ren H, Zhang Y, Sun YY, Li GD (2015) The effects of grain size on electrical properties and domain structure of BiFeO3 thin films by sol-gel method. J Mater Sci Mater Electron 26:9495–9506

    Article  CAS  Google Scholar 

  55. Lee XH, Kim DJ, Park JS, Kim SW, Song TK, Kim M-H, Kim W-J, Do D, Jeong IK (2015) High-performance lead-free piezoceramics with high curie temperatures. Adv Mater 27:6976–6982

    Article  CAS  Google Scholar 

  56. Shan X, Zhou C, Cena Z, Yang H, Zhou Q, Li W (2013) Bi(Zn1/2Ti1/2)O3 modified BiFeO3-BaTiO3 lead-free piezoelectric ceramics with high-temperature stability. Ceram Int 39:6707–6712

    Article  CAS  Google Scholar 

  57. Zuo RZ, He Q, Xie AW, Zheng DG (2018) Anomalously large lattice strain contributions from rhombohedral phases in BiFeO3-based high-temperature piezoceramics estimated by means of in-situ synchrotron X-ray diffraction. J Eur Ceram Soc 38:4653–4658

    Article  CAS  Google Scholar 

  58. Rojac T, Kosec M, Damjanovic D (2011) Large electric-field induced strain in BiFeO3 ceramics. J Am Ceram Soc 94:4108–4111

    Article  CAS  Google Scholar 

  59. Zhang YC, Li J-F (2019) Review of chemical modification on potassium sodium niobate lead-free piezoelectrics. J Mater Chem C 7:4284–4303

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant nos. 52073129 and 51762030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Qing Dai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Dai, JQ. & Lu, YS. Effect of Mg and Mn co-doping on the high electrical properties of BiFe1-2xMgxMnxO3−BaTiO3 lead-free ceramics prepared by sol–gel method and two-step sintering method. J Sol-Gel Sci Technol 106, 804–815 (2023). https://doi.org/10.1007/s10971-023-06115-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06115-9

Keywords

Navigation