Skip to main content
Log in

Preparation and antibacterial properties of curcumin-loaded cyclodextrin-grafted chitosan hydrogel

  • Original Paper: Sol–gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The chitosan hydrogel has been widely appraised for drug delivery systems. However, its long gel formation time, poor drug release effect, and low drug loading capacity for hydrophobic drugs limited its wide application. Herein, the β-cyclodextrin-grafted chitosan (CD-g-CS) with different degrees of substitution (DS) was successfully synthesized from O-p-toluenesulfonyl-β-cyclodextrin (Ts-CD) and chitosan (CS). The novel thermosensitive β-cyclodextrin-grafted chitosan/glycerophosphate (CD-g-CS/GP) hydrogels were prepared in the presence of αβ-glycerophosphate (GP). The CD-g-CS/GP hydrogels had a gel time of less than 6 min and performed great injection performance. In vitro release studies revealed that the hydrogels not only had a sustained release but also enhanced the solubility and bioavailability of curcumin (CUR). And the CD-g-CS/GP hydrogel had suitable swelling behavior, porosity, and degradation rate. In addition, the hydrogels exhibited good hemocompatibility. The evaluation of the antibacterial activity indicated that CUR@CD-g-CS/GP hydrogels were effective antibacterial materials for Staphylococcus aureus and Escherichia coli. In summary, the results suggested that the CD-g-CS/GP hydrogel might be used as a potential biodegradable smart drug-sustained release system for the controlled release of hydrophobic drugs, which has broad application prospects in the field of biomedicine.

Graphical Abstract

Preparation of CUR@CD-g-CS/GP hydrogel. First, the prepared CD-g-CS was dissolved in 0.1 M HAc solution. The GP powder was dissolved in distilled water to prepare a GP solution of 50% (w/v). Next, the GP solution was added dropwise to the CD-g-CS solution and stirred in an ice bath. Finally, the CD-g-CS/GP hydrogel was obtained. The hydrogel-loaded CUR (CUR@CD-g-CS/GP) was prepared by adding CUR to the CD-g-CS solution. After incubation at 37 °C, the system changed from a sol to a gel state. The gel was placed in a release medium and the drug molecules were released from the system.

Highlights

  • CD-g-CS with different DS was synthesized via a covalent grafting method.

  • Novel biodegradable and biocompatible CD-g-CS/GP hydrogels were prepared.

  • The expected controlled release effect and enhancement solubility for CUR was achieved by the prepared hydrogel.

  • CUR@CD-g-CS/GP hydrogels were effective antibacterial materials for S. aureus and E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jain M, Nowak BP, Ravoo BJ (2022) Supramolecular hydrogels based on cyclodextrins: progress and perspectives. ChemNanoMat 8:e202200077. https://doi.org/10.1002/cnma.202200077

    Article  CAS  Google Scholar 

  2. Yang Y, Xu L, Wang J, Meng Q, Zhong S, Gao Y, Cui X (2022) Recent advances in polysaccharide-based self-healing hydrogels for biomedical applications. Carbohydr Polym 283:119161. https://doi.org/10.1016/j.carbpol.2022.119161

    Article  CAS  Google Scholar 

  3. Mazaheri M, Akhavan O, Simchi A (2014) Flexible bactericidal graphene oxide–chitosan layers for stem cell proliferation. Appl Surf Sci 301:456–462. https://doi.org/10.1016/j.apsusc.2014.02.099

    Article  CAS  Google Scholar 

  4. Kong M, Chen X (2018) The novel medical thermoresponsive hydrogel derived from chitosan. Curr Org Chem 22:620–627. https://doi.org/10.2174/1385272821666170811111651

    Article  CAS  Google Scholar 

  5. Saravanan S, Vimalraj S, Thanikaivelan P, Banudevi S, Manivasagam G (2019) A review on injectable chitosan/beta glycerophosphate hydrogels for bone tissue regeneration. Int J Biol Macromol 121:38–54. https://doi.org/10.1016/j.ijbiomac.2018.10.014

    Article  CAS  Google Scholar 

  6. Yuan H, Li W, Song CW, Huang RZ (2022) An injectable supramolecular nanofiber-reinforced chitosan hydrogel with antibacterial and anti-inflammatory properties as potential carriers for drug delivery. Int J Biol Macromol 205:563–573. https://doi.org/10.1016/j.ijbiomac.2022.02.015

    Article  CAS  Google Scholar 

  7. Soriano-Ruiz JL, Calpena-Campmany AC, Silva-Abreu M, Halbout-Bellowa L, Bozal-de Febrer N, Rodriguez-Lagunas MJ, Clares-Naveros B (2020) Design and evaluation of a multifunctional thermosensitive poloxamer-chitosan-hyaluronic acid gel for the treatment of skin burns. Int J Biol Macromol 142:412–422. https://doi.org/10.1016/j.ijbiomac.2019.09.113

    Article  CAS  Google Scholar 

  8. Rahimnejad M, Nasrollahi Boroujeni N, Jahangiri S, Rabiee N, Rabiee M, Makvandi P, Akhavan O, Varma RS (2021) Prevascularized micro-/nano-sized spheroid/bead aggregates for vascular tissue engineering. Nanomicro Lett 13:182. https://doi.org/10.1007/s40820-021-00697-1

    Article  CAS  Google Scholar 

  9. Tang B, Shan J, Yuan T, Xiao Y, Liang J, Fan Y, Zhang X (2019) Hydroxypropylcellulose enhanced high viscosity endoscopic mucosal dissection intraoperative chitosan thermosensitive hydrogel. Carbohydr Polym 209:198–206. https://doi.org/10.1016/j.carbpol.2018.12.103

    Article  CAS  Google Scholar 

  10. Saeedi M, Vahidi O, Moghbeli MR, Ahmadi S, Asadnia M, Akhavan O, Seidi F, Rabiee M, Saeb MR, Webster TJ, Varma RS, Sharifi E, Zarrabi A, Rabiee N (2022) Customizing nano-chitosan for sustainable drug delivery. J Control Release 350:175–192. https://doi.org/10.1016/j.jconrel.2022.07.038

    Article  CAS  Google Scholar 

  11. Sajomsang W, Nuchuchua O, Gonil P, Saesoo S, Sramala I, Soottitantawat A, Puttipipatkhachorn S, Ruktanonchai UR (2012) Water-soluble beta-cyclodextrin grafted with chitosan and its inclusion complex as a mucoadhesive eugenol carrier. Carbohydr Polym 89:623–631. https://doi.org/10.1016/j.carbpol.2012.03.060

    Article  CAS  Google Scholar 

  12. Zhou Z, Xiao J, Guan S, Geng Z, Zhao R, Gao B (2022) A hydrogen-bonded antibacterial curdlan-tannic acid hydrogel with an antioxidant and hemostatic function for wound healing. Carbohydr Polym 285:119235. https://doi.org/10.1016/j.carbpol.2022.119235

    Article  CAS  Google Scholar 

  13. Qu C, Bao Z, Zhang X, Wang Z, Ren J, Zhou Z, Tian M, Cheng X, Chen X, Feng C (2019) A thermosensitive RGD-modified hydroxybutyl chitosan hydrogel as a 3D scaffold for BMSCs culture on keloid treatment. Int J Biol Macromol 125:78–86. https://doi.org/10.1016/j.ijbiomac.2018.12.058

    Article  CAS  Google Scholar 

  14. Wang W, Meng Q, Li Q, Liu J, Zhou M, Jin Z, Zhao K (2020) Chitosan derivatives and their application in biomedicine. Int J Mol Sci 21:31940963. https://doi.org/10.3390/ijms21020487

    Article  CAS  Google Scholar 

  15. Tian B, Hua S, Tian Y, Liu J (2020) Chemical and physical chitosan hydrogels as prospective carriers for drug delivery: a review. J Mater Chem B 8:10050–10064. https://doi.org/10.1039/d0tb01869d

    Article  CAS  Google Scholar 

  16. Zhou HY, Jiang LJ, Cao PP, Li JB, Chen XG (2015) Glycerophosphate-based chitosan thermosensitive hydrogels and their biomedical applications. Carbohydr Polym 117:524–536. https://doi.org/10.1016/j.carbpol.2014.09.094

    Article  CAS  Google Scholar 

  17. Zhou HY, Wang ZY, Duan XY, Jiang LJ, Cao PP, Li JX, Li JB (2016) Design and evaluation of chitosan-β-cyclodextrin based thermosensitive hydrogel. Biochem Eng J 111:100–107. https://doi.org/10.1016/j.bej.2016.03.011

    Article  CAS  Google Scholar 

  18. Tong JA, Zhou HY, Zhou JJ, Chen YW, Shi J, Zhang JK, Liang XY, Du TY (2022) Design and evaluation of chitosan-amino acid thermosensitive hydrogel. Mar Life Sci Technol 4:74–87. https://doi.org/10.1007/s42995-021-00116-9

    Article  CAS  Google Scholar 

  19. Zhou HY, Tong JN, Ren LJ, Hao PY, Zheng HJ, Guo XM, Chen YW, Li JB, Park HJ (2022) Preparation and performance of chitosan/cyclodextrin-g-glutamic acid thermosensitive hydrogel. J Drug Deliv Sci Technol 74:103504. https://doi.org/10.1016/j.jddst.2022.103504

    Article  CAS  Google Scholar 

  20. Motiei M, Kashanian S, Taherpour A (2017) Hydrophobic amino acids grafted onto chitosan: a novel amphiphilic chitosan nanocarrier for hydrophobic drugs. Drug Dev Ind Pharm 43:1–11. https://doi.org/10.1080/03639045.2016.1254240

    Article  CAS  Google Scholar 

  21. Liu Y, Shen X, Zhou H, Wang Y, Deng L (2016) Chemical modification of chitosan film via surface grafting of citric acid molecular to promote the biomineralization. Appl Surf Sci 370:270–278. https://doi.org/10.1016/j.apsusc.2016.02.124

    Article  CAS  Google Scholar 

  22. Carneiro SB, Costa Duarte FI, Heimfarth L, Siqueira Quintans JS, Quintans-Junior LJ, Veiga Junior VFD, Neves de Lima AA (2019) Cyclodextrin(-)drug inclusion complexes: in vivo and in vitro approaches. Int J Mol Sci 20:30717337. https://doi.org/10.3390/ijms20030642

    Article  CAS  Google Scholar 

  23. Dhiman P, Bhatia M (2020) Pharmaceutical applications of cyclodextrins and their derivatives. J Incl Phenom Macrocycl Chem 98:171–186. https://doi.org/10.1007/s10847-020-01029-3

    Article  CAS  Google Scholar 

  24. Singh P, Chen Y, Tyagi D, Wu L, Ren X, Feng J, Carrier A, Luan T, Tang Y, Zhang J, Zhang X (2021) beta-Cyclodextrin-grafted hyaluronic acid as a supramolecular polysaccharide carrier for cell-targeted drug delivery. Int J Pharm 602:120602. https://doi.org/10.1016/j.ijpharm.2021.120602

    Article  CAS  Google Scholar 

  25. Ding W-Y, Zheng S-D, Qin Y, Yu F, Bai J-W, Cui W-Q, Yu T, Chen X-R, Bello-Onaghise GS, Li Y-H (2019) Chitosan grafted with β-cyclodextrin: synthesis, characterization, antimicrobial activity, and role as absorbefacient and solubilizer. Front Chem 6:657. https://doi.org/10.3389/fchem.2018.00657

    Article  CAS  Google Scholar 

  26. Song M, Li L, Zhang Y, Chen K, Wang H, Gong R (2017) Carboxymethyl-β-cyclodextrin grafted chitosan nanoparticles as oral delivery carrier of protein drugs. React Funct Polym 117:10–15. https://doi.org/10.1016/j.reactfunctpolym.2017.05.008

    Article  CAS  Google Scholar 

  27. Tan M, Liu F, Liao LG, Feng JF, Zhang FZ, Fan ST, Wang JX, Guo K, Li BJ, Zhang S (2023) Poly beta-cyclodextrin/quaternary ammoniated chitosan cryogel with a porous structure for effective hemostasis. ACS Biomater Sci Eng 9(2):1077–1088. https://doi.org/10.1021/acsbiomaterials.2c01363

  28. Izui S, Sekine S, Maeda K, Kuboniwa M, Takada A, Amano A, Nagata H (2016) Antibacterial activity of curcumin against periodontopathic bacteria. J Periodontol 87:83–90. https://doi.org/10.1902/jop.2015.150260

    Article  CAS  Google Scholar 

  29. Hatamie S, Akhavan O, Sadrnezhaad SK, Ahadian MM, Shirolkar MM, Wang HQ (2015) Curcumin-reduced graphene oxide sheets and their effects on human breast cancer cells. Mater Sci Eng C Mater Biol Appl 55:482–489. https://doi.org/10.1016/j.msec.2015.05.077

    Article  CAS  Google Scholar 

  30. Ak T, Gulcin I (2008) Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact 174:27–37. https://doi.org/10.1016/j.cbi.2008.05.003

    Article  CAS  Google Scholar 

  31. Farhood B, Mortezaee K, Goradel NH, Khanlarkhani N, Salehi E, Nashtaei MS, Najafi M, Sahebkar A (2019) Curcumin as an anti-inflammatory agent: implications to radiotherapy and chemotherapy. J Cell Physiol 234:5728–5740. https://doi.org/10.1002/jcp.27442

    Article  CAS  Google Scholar 

  32. Zhang Q, Wang H, Feng Z, Lu Z, Su C, Zhao Y, Yu J, Dushkin AV, Su W (2021) Preparation of pectin-tannic acid coated core-shell nanoparticle for enhanced bioavailability and antihyperlipidemic activity of curcumin. Food Hydrocoll 119:106858. https://doi.org/10.1016/j.foodhyd.2021.106858

    Article  CAS  Google Scholar 

  33. Hussain Y, Alam W, Ullah H, Dacrema M, Daglia M, Khan H, Arciola CR (2022) Antimicrobial potential of curcumin: therapeutic potential and challenges to clinical applications. Antibiotics (Basel) 11:322. https://doi.org/10.3390/antibiotics11030322

    Article  CAS  Google Scholar 

  34. Yang X, Sha D, Jiang H, Shi K, Xu JD, Yu C, Wei H, Wang BL, Ji XL (2019) Preparation of antibacterial poly(sulfobetaine methacrylate) grafted on poly(vinyl alcohol)-formaldehyde sponges and their properties. J Appl Polym Sci 136:47047. https://doi.org/10.1002/app.47047

    Article  CAS  Google Scholar 

  35. Yu N, Li G, Gao Y, Liu X, Ma S (2016) Stimuli-sensitive hollow spheres from chitosan-graft-beta-cyclodextrin for controlled drug release. Int J Biol Macromol 93:971–977. https://doi.org/10.1016/j.ijbiomac.2016.09.068

    Article  CAS  Google Scholar 

  36. Gao Y, Li G, Zhou Z, Gao L, Tao Q (2017) Sensitive complex micelles based on host-guest recognition from chitosan-graft-beta-cyclodextrin for drug release. Int J Biol Macromol 105:74–80. https://doi.org/10.1016/j.ijbiomac.2017.06.120

    Article  CAS  Google Scholar 

  37. Gonil P, Sajomsang W, Ruktanonchai UR, Pimpha N, Sramala I, Nuchuchua O, Saesoo S, Chaleawlert-umpon S, Puttipipatkhachorn S (2011) Novel quaternized chitosan containing β-cyclodextrin moiety: synthesis, characterization and antimicrobial activity. Carbohydr Polym 83:905–913. https://doi.org/10.1016/j.carbpol.2010.08.080

    Article  CAS  Google Scholar 

  38. Zang S, Mu R, Chen F, Wei X, Zhu L, Han B, Yu H, Bi B, Chen B, Wang Q, Jin L (2019) Injectable chitosan/beta-glycerophosphate hydrogels with sustained release of BMP-7 and ornidazole in periodontal wound healing of class III furcation defects. Mater Sci Eng C Mater Biol Appl 99:919–928. https://doi.org/10.1016/j.msec.2019.02.024

    Article  CAS  Google Scholar 

  39. Deng P, Yao L, Chen J, Tang Z, Zhou J (2022) Chitosan-based hydrogels with injectable, self-healing and antibacterial properties for wound healing. Carbohydr Polym 276:118718. https://doi.org/10.1016/j.carbpol.2021.118718

    Article  CAS  Google Scholar 

  40. Deng L, Kang X, Liu Y, Feng F, Zhang H (2017) Effects of surfactants on the formation of gelatin nanofibres for controlled release of curcumin. Food Chem 231:70–77. https://doi.org/10.1016/j.foodchem.2017.03.027

    Article  CAS  Google Scholar 

  41. Lopatina Y, Filippova A (2020) Research of composition porosity based on 3d-printed frames and impregnated with epoxy resin. IOP Conf Ser Mater Sci Eng 963:012031. https://doi.org/10.1088/1757-899x/963/1/012031

    Article  CAS  Google Scholar 

  42. Do NHN, Pham TH, Le PK, Ha AC (2022) Thermo-responsive Chitosan/β-glycerophosphate hydrogels directly post-loading anti-inflammatory diclofenac sodium. J Solgel Sci Technol. https://doi.org/10.1007/s10971-022-06020-7

  43. Gami P, Kundu D, Seera SDK, Banerjee T (2020) Chemically crosslinked xylan-beta-Cyclodextrin hydrogel for the in vitro delivery of curcumin and 5-Fluorouracil. Int J Biol Macromol 158:18–31. https://doi.org/10.1016/j.ijbiomac.2020.04.237

    Article  CAS  Google Scholar 

  44. Yang Y, Liu Y, Chen S, Cheong KL, Teng B (2020) Carboxymethyl beta-cyclodextrin grafted carboxymethyl chitosan hydrogel-based microparticles for oral insulin delivery. Carbohydr Polym 246:116617. https://doi.org/10.1016/j.carbpol.2020.116617

    Article  CAS  Google Scholar 

  45. Zhang X, Pan Y, Li S, Xing L, Du S, Yuan G, Li J, Zhou T, Xiong D, Tan H, Ling Z, Chen Y, Hu X, Niu X (2020) Doubly crosslinked biodegradable hydrogels based on gellan gum and chitosan for drug delivery and wound dressing. Int J Biol Macromol 164:2204–2214. https://doi.org/10.1016/j.ijbiomac.2020.08.093

    Article  CAS  Google Scholar 

  46. Thangavelu S, Dhandapani R, Arulprakasam A, Paramasivam R, Chinnathambi A, Ali Alharbi S, Durairaj K, Shrestha A (2022) Isolation, identification, characterization, and plasmid profile of urinary tract infectious Escherichia coli from clinical samples. Evid Based Complement Altern Med 2022:7234586. https://doi.org/10.1155/2022/7234586

    Article  Google Scholar 

  47. Shin M, Mun D, Choi HJ, Kim S, Payne SM, Kim Y (2021) Identification of a new antimicrobial agent against bovine mastitis-causing Staphylococcus aureus. J Agric Food Chem 69:9968–9978. https://doi.org/10.1021/acs.jafc.1c02738

    Article  CAS  Google Scholar 

  48. Sattari S, Dadkhah Tehrani A, Adeli M (2018) pH-Responsive hybrid hydrogels as antibacterial and drug delivery systems. Polymers (Basel) 10:660. https://doi.org/10.3390/polym10060660

    Article  CAS  Google Scholar 

  49. Ge Y, Chen X, Wang X, Yuan L, Wu J, Yao J (2022) Preparation, characterisation and antibacterial activity evaluation of N-acetylneuraminic acid-crosslinked chitosan hydrogels. Polym Test 106:107457. https://doi.org/10.1016/j.polymertesting.2021.107457

    Article  CAS  Google Scholar 

  50. Durairaj K, Velmurugan P, Park J-H, Chang W-S, Park Y-J, Senthilkumar P, Choi K-M, Lee J-H, Oh B-T (2017) Potential for plant biocontrol activity of isolated Pseudomonas aeruginosa and Bacillus stratosphericus strains against bacterial pathogens acting through both induced plant resistance and direct antagonism. FEMS Microbiol Lett 364:fnx225. https://doi.org/10.1093/femsle/fnx225

    Article  CAS  Google Scholar 

  51. Sampath Udeni Gunathilake TM, Ching YC, Chuah CH, Illias HA, Ching KY, Singh R, Nai-Shang L (2018) Influence of a nonionic surfactant on curcumin delivery of nanocellulose reinforced chitosan hydrogel. Int J Biol Macromol 118:1055–1064. https://doi.org/10.1016/j.ijbiomac.2018.06.147

    Article  CAS  Google Scholar 

  52. Li YH, Wang YS, Zhao JS, Li ZY, Chen HH (2021) A pH-sensitive curcumin loaded microemulsion-filled alginate and porous starch composite gels: characterization, in vitro release kinetics and biological activity. Int J Biol Macromol 182:1863–1873. https://doi.org/10.1016/j.ijbiomac.2021.05.174

    Article  CAS  Google Scholar 

  53. Kiti K, Suwantong O (2020) Bilayer wound dressing based on sodium alginate incorporated with curcumin-beta-cyclodextrin inclusion complex/chitosan hydrogel. Int J Biol Macromol 164:4113–4124. https://doi.org/10.1016/j.ijbiomac.2020.09.013

    Article  CAS  Google Scholar 

  54. Zhou X, Luo Z, Baidya A, Kim HJ, Wang C, Jiang X, Qu M, Zhu J, Ren L, Vajhadin F, Tebon P, Zhang N, Xue Y, Feng Y, Xue C, Chen Y, Lee K, Lee J, Zhang S, Xu C, Ashammakhi N, Ahadian S, Dokmeci MR, Gu Z, Sun W, Khademhosseini A (2020) Biodegradable beta-Cyclodextrin conjugated gelatin methacryloyl microneedle for delivery of water-insoluble drug. Adv Healthc Mater 9:e2000527. https://doi.org/10.1002/adhm.202000527

    Article  CAS  Google Scholar 

  55. Hu T, Wu G-P, Bu H, Zhang H, Li W-X, Song K, Jiang G-B (2022) An injectable, adhesive, and self-healable composite hydrogel wound dressing with excellent antibacterial activity. Chem Eng J 450:138201. https://doi.org/10.1016/j.cej.2022.138201

    Article  CAS  Google Scholar 

  56. Ragab TIM, Nada AA, Ali EA, Shalaby ASG, Soliman AAF, Emam M, El Raey MA (2019) Soft hydrogel based on modified chitosan containing P. granatum peel extract and its nano-forms: multiparticulate study on chronic wounds treatment. Int J Biol Macromol 135:407–421. https://doi.org/10.1016/j.ijbiomac.2019.05.156

    Article  CAS  Google Scholar 

  57. Anirudhan TS, Divya PL, Nima J (2016) Synthesis and characterization of novel drug delivery system using modified chitosan based hydrogel grafted with cyclodextrin. Chem Eng J 284:1259–1269. https://doi.org/10.1016/j.cej.2015.09.057

    Article  CAS  Google Scholar 

  58. Iftime MM, Mititelu Tartau L, Marin L (2020) New formulations based on salicyl-imine-chitosan hydrogels for prolonged drug release. Int J Biol Macromol 160:398–408. https://doi.org/10.1016/j.ijbiomac.2020.05.207

    Article  CAS  Google Scholar 

  59. Tavakoli S, Kharaziha M, Nemati S, Kalateh A (2021) Nanocomposite hydrogel based on carrageenan-coated starch/cellulose nanofibers as a hemorrhage control material. Carbohydr Polym 251:117013. https://doi.org/10.1016/j.carbpol.2020.117013

    Article  CAS  Google Scholar 

  60. Ahmed ME, Mohamed HM, Mohamed MI, Kandile NG (2020) Sustainable antimicrobial modified chitosan and its nanoparticles hydrogels: synthesis and characterization. Int J Biol Macromol 162:1388–1397. https://doi.org/10.1016/j.ijbiomac.2020.08.048

    Article  CAS  Google Scholar 

  61. Dang LH, Nguyen TH, Tran HLB, Doan VN, Tran NQ (2018) Injectable nanocurcumin-formulated chitosan-g-pluronic hydrogel exhibiting a great potential for burn treatment. J Health Eng 2018:5754890. https://doi.org/10.1155/2018/5754890

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the financial assistance from the Natural Science Foundation of Henan Province (No. 182300410213), the National Natural Science Foundation of China (No.51103035), and the young backbone teachers funding project of Henan Province (2021GGJS047).

Author information

Authors and Affiliations

Authors

Contributions

HYZ identified the research topic and designed the study. PYH participated in the topic selection design, finished the experiment, and wrote the manuscript. LJR, HJZ, and JNT completed the concrete analysis of the data and carried out the experimental verification. YWC provided research materials and equipment and discussed the results, and HJP reviewed and revised the manuscript. All authors examined and accredited the ultimate version of the manuscript.

Corresponding author

Correspondence to Hui Yun Zhou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, P.Y., Zhou, H.Y., Ren, L.J. et al. Preparation and antibacterial properties of curcumin-loaded cyclodextrin-grafted chitosan hydrogel. J Sol-Gel Sci Technol 106, 877–894 (2023). https://doi.org/10.1007/s10971-023-06097-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06097-8

Keywords

Navigation