Skip to main content
Log in

Controllable synthesis by hydrothermal method and optical properties of 2D MoS2/rGO nanocomposites

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this research, 2D-MoS2/rGO nanocomposites were successfully synthesized by a facile hydrothermal method using graphene oxide (GO), sodium molybdate (Na2MoO4) and thiourea (CH4N2S) as the reactants. The effect of hydrothermal temperature (180–240 °C) on structure and optical properties of the MoS2/rGO have been systematically investigated. The study of chemical composition, structural and morphological properties was performed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS) and Raman spectroscopy, while the optical properties were measured using photoluminescence spectroscopy. The FESEM and HRTEM results revealed that the ultrathin MoS2 nanosheets with thickness in the range of ~6–13 nm (~6–8 layers) and average lateral size of ~130–330 nm were uniformly dispersed on the GO surface. Both the XRD and Raman analyses confirm that the MoS2 sheets in all prepared samples have a hexagonal phase structure (2H-MoS2). By increasing hydrothermal temperature, the characteristic diffraction peak (002) of 2H-MoS2 phase (at 2θ ≈ 14.2–14.5o) becomes sharper and its intensity gradually increases, thereby showing a very strong preferential orientation and better crystal quality. The estimated optical band gap for MoS2/rGO is achieved in the range of ~1.56–2.38 eV and it seems to be controlled by adjusting the synthesis temperature. Our work underscores the principle that controlling hydrothermal reaction temperature may constitute a generic strategy for modifying microstructure and engineering the optical bandgap of these semiconductor 2D nanocrystals, which opens the possibility of its use in electronic applications.

Graphical Abstract

Highlights

  • The 2D-MoS2/rGO nanocomposite was synthesized hydrothermally using graphene oxide, sodium molybdate and thiourea as the reactants.

  • The effect of hydrothermal temperature on structure and optical property of the MoS2/GO have been systematically investigated by FESEM, HRTEM, XRD, Raman, EDS, XPS and PL spectroscopy.

  • The results indicated that the ultrathin MoS2 nanosheets with thickness in the range of ~6–13 nm (~6–8 layers) and average lateral size of ~130–330 nm were uniformly dispersed on the rGO surface.

  • The estimated optical band gap for 2D-MoS2/rGO is achieved in the range of ~1.56–2.38 eV and it is found to be controlled by adjusting the synthesis temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Geim AK (2011) Random Walk to Graphene (Nobel Lecture). Angew Chem Int Ed 50:6966–6985. https://doi.org/10.1002/anie.201101174

    Article  CAS  Google Scholar 

  2. Geim AK, Novoselov K (2007) The rise of graphene. Nat Mater 6:183–191. https://doi.org/10.1038/nmat1849

    Article  CAS  Google Scholar 

  3. Yan J, Huang Y, Zhang L, Zhou M, Yang P, Chen W, Deng X, Yang H (2020) Preparation of MoS2-Graphene-NiO@Ni foam composite by sol coating for (photo)electrocatalytic hydrogen evolution reaction. J Sol-Gel Sci Technol 93:462–470. https://doi.org/10.1007/s10971-019-05195-w

    Article  CAS  Google Scholar 

  4. Bai L, Wang Y, Li F, An D, Zhang Z, Liu Y (2017) Enhanced electromagnetic wave absorption properties of MoS2-graphene hybrid nanosheets prepared by a hydrothermal method. J Sol-Gel Sci Technol 84:104–109. https://doi.org/10.1007/s10971-017-4478-9

    Article  CAS  Google Scholar 

  5. Ali GAM, Thalji MR, Soh WC, Algarni H, Chong KF (2020) One-step electrochemical synthesis of MoS2/graphene composite for supercapacitor application. J Solid State Electrochem 24:25–34. https://doi.org/10.1007/s10008-019-04449-5

    Article  CAS  Google Scholar 

  6. Chang K, Chen W (2011) In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem Commun 47:4252–4254. https://doi.org/10.1039/C1CC10631G

    Article  CAS  Google Scholar 

  7. Chang K, Mei Z, Wang T, Kang Q, Ouyang S, Ye J (2014) MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano 8:7078–7087. https://doi.org/10.1021/nn5019945

    Article  CAS  Google Scholar 

  8. Du L, Yu H, Liao M, Wang S, Xie L, Lu X, Zhu J, Li N, Shen C, Chen P, Yang R, Shi D, Zhang G (2017) Modulating PL and electronic structures of MoS2/graphene heterostructures via interlayer twisting angle. Appl Phys Lett 111:263106. https://doi.org/10.1063/1.5011120

    Article  CAS  Google Scholar 

  9. Jiang Y, Miao L, Jiang G, Chen Y, Qi X, Jiang XF, Wen S (2015) Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications. Sci Rep. 5:16372. https://doi.org/10.1038/srep16372

    Article  CAS  Google Scholar 

  10. Kwak JY, Hwang J, Calderon B, Alsalman H, Munoz N, Schutter B, Spencer MG (2014) Electrical characteristics of multilayer MoS2 FET’s with MoS2/graphene heterojunction contacts. Nano Lett 14:4511–4516. https://doi.org/10.1021/nl5015316

    Article  CAS  Google Scholar 

  11. Larentis S, Tolsma JR, Fallahazad B, Dillen DC, Kim K, MacDonald AH, Tutuc E (2014) Band Offset and Negative Compressibility in Graphene-MoS2 Heterostructures. Nano Lett 14:2039–2045. https://doi.org/10.1021/nl500212s

    Article  CAS  Google Scholar 

  12. Ma Y, Dai Y, Guo M, Niu C, Huang B (2011) Graphene adhesion on MoS2 monolayer: An ab initio study. Nanoscale 3:3883–3887. https://doi.org/10.1039/c1nr10577a

    Article  CAS  Google Scholar 

  13. Bertolazzi S, Krasnozhon D, Kis A (2013) Nonvolatile Memory Cells Based on MoS2/Graphene Heterostructures. ACS Nano 7:3246–3252. https://doi.org/10.1021/nn3059136

    Article  CAS  Google Scholar 

  14. Zhang W, Chuu CP, Huang JK, Chen CH, Tsai ML, Chang YH, Liang CT, Chen YZ, Chueh YL, He JH, Chou MY, Li LJ (2015) Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures. Sci Rep. 4:3826. https://doi.org/10.1038/srep03826

    Article  CAS  Google Scholar 

  15. Wang LF, Ma TB, Hu YZ, Zheng Q, Wang H, Luo J (2014) Superlubricity of two-dimensional fluorographene/MoS2 heterostructure: A first-principles study. Nanotechnology 25:385701. https://doi.org/10.1088/0957-4484/25/38/385701

    Article  CAS  Google Scholar 

  16. Britnell L, Ribeiro RM, Eckmann A, Jalil R, Belle BD, Mishchenko A, Kim YJ, Gorbachev RV, Georgiou T, Morozov SV, Grigorenko AN, Geim AK, Casiraghi C, Neto AHC, Novoselov KS (2013) Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. Science 340:1311–1314. https://doi.org/10.1126/science.1235547

    Article  CAS  Google Scholar 

  17. Roy K, Padmanabhan M, Goswami S, Sai TP, Kaushal S, Ghosh A (2013) Optically active heterostructures of graphene and ultrathin MoS2. Solid State Commun 175:35–42. https://doi.org/10.1016/j.ssc.2013.09.021

    Article  CAS  Google Scholar 

  18. David L, Bhandavat R, Singh G (2014) MoS2/Graphene Composite Paper for Sodium-Ion Battery Electrodes. ACS Nano 8:1759–1770. https://doi.org/10.1021/nn406156b

    Article  CAS  Google Scholar 

  19. Khai TV, Long LN, Phong MT, Kien PT, Thang LV, Lam TD (2019) Synthesis and Optical Properties of MoS2/Graphene Nanocomposite. J Electron Mater 49:969–979. https://doi.org/10.1007/s11664-019-07670-0

    Article  CAS  Google Scholar 

  20. Baugher BW, Churchill HO, Yang Y, Jarillo-Herrero P (2014) Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat Nanotechnol 9:262–267. https://doi.org/10.1038/nnano.2014.25

    Article  CAS  Google Scholar 

  21. Furchi MM, Polyushkin DK, Pospischil A, Mueller T (2014) Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett 14:6165–6170. https://doi.org/10.1021/nl502339q

    Article  CAS  Google Scholar 

  22. Vaqueiro-Contreras M, Bartlam C, Bonilla RS, Markevich VP, Halsall MP, Vijayaraghavan A, Peaker AR (2018) Graphene oxide films for field effect surface passivation of silicon for solar cells. Sol Energy Mater Sol Cells 187:189–193. https://doi.org/10.1016/j.solmat.2018.08.002

    Article  CAS  Google Scholar 

  23. Jing P, Yi H, Xue S, Chai Y, Yuan R, Xu W (2015) A sensitive electrochemical aptasensor based on palladium nanoparticles decorated graphene–molybdenum disulfide flower-like nanocomposites and enzymatic signal amplification. Anal Chim Acta 853:234–241. https://doi.org/10.1016/j.aca.2014.10.003

    Article  CAS  Google Scholar 

  24. Ye J, Yu Z, Chen W, Chen Q, Ma L (2016) Ionic-liquid mediated synthesis of molybdenum disulfide/graphene composites: An enhanced electrochemical hydrogen evolution catalyst. Int J Hydrog Energy 41:12049–12061. https://doi.org/10.1016/j.ijhydene.2016.05.186

    Article  CAS  Google Scholar 

  25. Huang KJ, Wang L, Liu YJ, Liu YM, Wang HB, Gan T, Wang LL (2013) Layered MoS2–graphene composites for supercapacitor applications with enhanced capacitive performance. Int J Hydrog Energy 38:14027–14034. https://doi.org/10.1016/j.ijhydene.2013.08.112

    Article  CAS  Google Scholar 

  26. Konstantinou K, Mocanu FC, Lee TH, Elliott SR (2019) Revealing the intrinsic nature of the mid-gap defects in amorphous Ge2Sb2Te5. Nat Commun 10:3065. https://doi.org/10.1038/s41467-019-10980-w

    Article  CAS  Google Scholar 

  27. Nagpal P, Klimov VI (2011) Role of mid-gap states in charge transport and photoconductivity in semiconductor nanocrystal films. Nat Commun 2:486. https://doi.org/10.1038/ncomms1492

    Article  CAS  Google Scholar 

  28. Shu H, Li Y, Niu X, Wang J (2016) Greatly Enhanced Optical Absorption of a Defective MoS2 Monolayer through Oxygen Passivation. ACS Appl Mater Interfaces 8:13150–13156. https://doi.org/10.1021/acsami.6b03242

    Article  CAS  Google Scholar 

  29. Chen YH, Tamming RR, Chen K, Zhang Z, Liu F, Zhang Y, Hodgkiss MJ, Blaikie RJ, Ding B, Qiu M (2021) Bandgap control in two-dimensional semiconductors via coherent doping of plasmonic hot electrons. Nat Commun 12:4332. https://doi.org/10.1038/s41467-021-24667-8

    Article  CAS  Google Scholar 

  30. Yan J, Kim MH, Elle JA, Sushkov AB, Jenkins GS, Milchberg HM, Fuhrer MS, Drew HD (2012) Dual-gated bilayer graphene hot-electron bolometer. Nat Nanotechnol 7:472–478. https://doi.org/10.1038/nnano.2012.88

    Article  CAS  Google Scholar 

  31. Xia F, Mueller T, Lin YM, Valdes-Garcia A, Avouris P (2009) Ultrafast graphene photodetector. Nat Nanotechnol 4:839–843. https://doi.org/10.1038/nnano.2009.292

    Article  CAS  Google Scholar 

  32. Al Balushi ZY, Wang K, Ghosh RK, Vila RA, Eichfeld SM, Caldwell JD, Qin X, Lin Y-C, DeSairo PA, Stone G, Subramanian S, Paul DF, Wallace RM, Datta S, Redwing JM, Robinson JA (2016) Two-dimensional gallium nitride realized via graphene encapsulation. Nat Mater 15:1166–1171. https://doi.org/10.1038/nmat4742

    Article  CAS  Google Scholar 

  33. Gan X, Shiue RJ, Gao Y, Meric I, Heinz TF, Shepard K, Hone J, Assefa S, Englun D (2013) Chip-integrated ultrafast graphene photodetector with high responsivity. Nat Photonics 7:883–887. https://doi.org/10.1038/nphoton.2013.253

    Article  CAS  Google Scholar 

  34. Frindt RF (1966) Single Crystals of MoS2 Several Molecular Layers Thick. J Appl Phys 37:1928. https://doi.org/10.1063/1.1708627

    Article  CAS  Google Scholar 

  35. Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: A new direct-gap semiconductor. Phys Rev Lett 105:136805. https://doi.org/10.1103/physrevlett.105.136805

    Article  Google Scholar 

  36. Lee C, Yan H, Brus LE, Heinz TF, Hone J, Ryu S (2010) Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano 4:2695–2700. https://doi.org/10.1021/nn1003937

    Article  CAS  Google Scholar 

  37. Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M (2011) Photoluminescence from chemically exfoliated MoS2. Nano Lett 11:5111–5116. https://doi.org/10.1021/nl201874w

    Article  CAS  Google Scholar 

  38. Hu Y, Li X, Lushington A, Cai M, Geng D, Banis MN, Li R, Sun X (2013) Fabrication of MoS2-Graphene Nanocomposites by Layer-by-Layer Manipulation for High-Performance Lithium Ion Battery Anodes. ECS J Solid State Sci Technol 2:M3034–M3039. https://doi.org/10.1149/2.007310jss

    Article  CAS  Google Scholar 

  39. Smith RJ, King PJ, Lotya M, Wirtz C, Khan U, De S, O’Neill A, Duesberg GS, Grunlan JC, Moriarty G, Chen J, Wang J, Minett AI, Nicolosi V, Coleman JN (2011) Large-Scale Exfoliation of Inorganic Layered Compounds in Aqueous Surfactant Solutions. Adv Mater 23:3944–3948. https://doi.org/10.1002/adma.201102584

    Article  CAS  Google Scholar 

  40. Muñoz R, López-Elvira E, Munuera C, Frisenda R, Sánchez-Sánchez C, Martín-Gago JA, García-Hernández M (2022) Direct growth of graphene-MoS2 heterostructure: Tailored interface for advanced devices. Appl Surf Sci 581:151858. https://doi.org/10.1016/j.apsusc.2021.151858

    Article  CAS  Google Scholar 

  41. Gnanasekar P, Periyanagounder D, Kulandaivel J (2019) Vertically aligned MoS2 nanosheets on graphene for highly stable electrocatalytic hydrogen evolution reactions. Nanoscale 11:2439–2446. https://doi.org/10.1039/c8nr10092f

    Article  CAS  Google Scholar 

  42. Long LN, Kien PT, Khai TV (2019) Synthesis of MoS2/graphene nanocomposite by facile ultrasonic-assisted hydrothermal method. Vietnam J Sci Technol 57:703–713. https://doi.org/10.15625/2525-2518/57/6/13955

    Article  Google Scholar 

  43. Long LN, Thi PT, Kien TP, Trung PT, Ohtani M, Kumabe Y, Tanaka H, Ueda S, Lee H, Thang PB (2020) Controllable synthesis of MoS2/graphene low-dimensional nanocomposites and their electrical properties. Appl Surf Sci 504:144193. https://doi.org/10.1016/j.apsusc.2019.144193

    Article  CAS  Google Scholar 

  44. Huang G, Chen T, Chen W, Wang Z, Chang K, Ma L, Huang F, Chen D, Lee JY (2013) Graphene-Like MoS2/Graphene Composites: Cationic Surfactant-Assisted Hydrothermal Synthesis and Electrochemical Reversible Storage of Lithium. Small 9:3693–3703. https://doi.org/10.1002/smll.201300415

    Article  CAS  Google Scholar 

  45. Xu Y, Sheng K, Li C, Shi G (2010) Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process. ACS Nano 4:4324–4330. https://doi.org/10.1021/nn101187z

    Article  CAS  Google Scholar 

  46. Liu P, Liu Y, Ye W, Ma J, Gao D (2016) Flower-like N-doped MoS2 for photocatalytic degradation of RhB by visible light irradiation. Nanotechnology 27:225403. https://doi.org/10.1088/0957-4484/27/22/225403

    Article  CAS  Google Scholar 

  47. Ma L, Xu L-M, Xu X-Y, Luo Y-L, Chen W-X (2009) Synthesis and characterization of flower-like MoS2 microspheres by a facile hydrothermal route. Mater Lett 63:2022–2024. https://doi.org/10.1016/j.matlet.2009.06.039

    Article  CAS  Google Scholar 

  48. Xuan TT, Long LN, Khai TV (2020) Effect of reaction temperature and reaction time on the structure and properties of MoS2 synthesized by hydrothermal method. Vietnam J Chem 58:92–100. https://doi.org/10.1002/vjch.2019000144

    Article  CAS  Google Scholar 

  49. Khai TV, Lam TD, Thu LV, Kim HW (2015) A two-step method for the preparation of highly conductive graphene film and its gas-sensing property. Mater Sci Appl 6:963–977. https://doi.org/10.4236/msa.2015.611097

    Article  CAS  Google Scholar 

  50. Khai TV, Kwak DS, Kwon YJ, Kim SS, Shim KB, Kim HW (2013) High-quality graphene thin films synthesized by H2 ambient-annealing of reduced graphene oxide sheets. J Ceram Process Res 14:355–362

    Google Scholar 

  51. Hummers WS, Offeman RE (1957) Preparation of graphitic oxide. J Am Chem Soc 208(1937):1937. https://doi.org/10.1021/ja01539a017

    Article  Google Scholar 

  52. Cullity BD (2001) Elements of X-RAY DIFFRACTION. 3rd ed. Boston, Addison-Wesley Publishing Company, Inc.

  53. Yunus RM, Endo H, Tsuji M, Ago H (2015) Vertical heterostructures of MoS2 and graphene nanoribbons grown by two-step chemical vapor deposition for high-gain photodetectors. Phys Chem Chem Phys 17:25210–25215. https://doi.org/10.1039/C5CP03958D

    Article  CAS  Google Scholar 

  54. Zhao B, Wang Z, Gao Y, Chen L, Lu M, Jiao Z, Jiang Y, Ding Y, Cheng L (2016) Hydrothermal synthesis of layer-controlled MoS2/graphene composite aerogels for lithium-ion battery anode materials. Appl Surf Sci 390:209–215. https://doi.org/10.1016/j.apsusc.2016.08.078

    Article  CAS  Google Scholar 

  55. Li H, Yu K, Li C, Tang Z, Guo B, Lei X, Fu H, Zhu Z (2015) Charge-Transfer Induced High Efficient Hydrogen Evolution of MoS2/graphene Cocatalyst. Sci Rep. 5:18730. https://doi.org/10.1038/srep18730

    Article  CAS  Google Scholar 

  56. Li S, Min H, Xu F, Tong L, Chen J, Zhu C, Sun L (2016) All electrochemical fabrication of MoS2/graphene counter electrodes for efficient dye-sensitized solar cells. RSC Adv 6:34546–34552. https://doi.org/10.1039/C6RA02494G

    Article  CAS  Google Scholar 

  57. Yang M, Jeong J-M, Huh YS, Choi BG (2015) High-performance supercapacitor based on three-dimensional MoS2/graphene aerogel composites. Compos Sci Technol 121:123–128. https://doi.org/10.1016/j.compscitech.2015.11.004

    Article  CAS  Google Scholar 

  58. Zhou W, Zhou K, Hou D, Liu X, Li G, Sang Y, Liu H, Li L, Chen S (2014) Three-dimensional hierarchical frameworks based on MoS2 nanosheets self-assembled on graphene oxide for efficient electrocatalytic hydrogen evolution. ACS Appl Mater Interfaces 6:21534–21540. https://doi.org/10.1021/am506545g

    Article  CAS  Google Scholar 

  59. Scherrer P (1918) Bestimmung der Gröss Kolloidteilchen Mittels Nachrichten von der Gesellschaft der Wissenschaften, Göttingen. Mathematisch-Physikalische Kl 2(1918):98–100

    Google Scholar 

  60. Langford JI, Wilson AJC (1978) Seherrer after Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size. J Appl Cryst 11:102–113. https://doi.org/10.1107/S0021889878012844

    Article  CAS  Google Scholar 

  61. Fei L, Lei S, Zhang WB, Lu W, Lin Z, Lam CH, Chai Y, Yu W (2016) Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes. Nat Commun 7:12206. https://doi.org/10.1038/ncomms12206

    Article  CAS  Google Scholar 

  62. Yang L, Cui X, Zhang J, Wang K, Shen M, Zeng S, Dayeh SA, Feng L, Xiang B (2014) Lattice strain effects on the optical properties of MoS2 nanosheets. Sci Rep. 4:5649. https://doi.org/10.1038/srep05649

    Article  CAS  Google Scholar 

  63. Galhenage RP, Yan H, Rawal TB, Le D, Brandt AJ, Maddumapatabandi TD, Nguyen N, Rahman TS, Chen DA (2019) MoS2 Nanoclusters Grown on TiO2: Evidence for New Adsorption Sites at Edges and Sulfur Vacancies. J Phys Chem C 123(12):7185–7201. https://doi.org/10.1021/acs.jpcc.9b00076

    Article  CAS  Google Scholar 

  64. Li Z, Zhan X, Qi S (2019) A Facile Alkali Metal Hydroxide-Assisted Controlled and Targeted Synthesis of 1T MoS2 Single-Crystal Nanosheets for Lithium Ion Battery Anodes. Nanoscale 11:14857–14862. https://doi.org/10.1039/C9NR04537F

    Article  CAS  Google Scholar 

  65. Tang Y, Zhao Z, Wang Y, Dong Y, Liu Y, Wang X, Qiu J (2017) Ultrasmall MoS2 Nanosheets Mosaiced into Mitrogen-Doped Hierarchical Porous Carbon Matrix for Enhanced Sodium Storage Performance. Electrochim Acta 225:369–377. https://doi.org/10.1016/j.electacta.2016.12.176

    Article  CAS  Google Scholar 

  66. Wang Y, Sun S, Liu Y, Zhang Y, Xia J, Yang Q (2020) TiO2 coupled to predominantly metallic MoS2 for photocatalytic degradation of rhodamine B. J Mater Sci 55:12274–12286. https://doi.org/10.1007/s10853-020-04906-x

    Article  CAS  Google Scholar 

  67. Wang Z, Dong Y, Li H, Zhao Z, Bin WH, Hao C, Liu S, Qiu J, Lou XW (2014) Enhancing Lithium−Sulphur Battery Performance by Strongly Binding the Discharge Products on Amino-Functionalized Reduced Graphene Oxide. Nat Commun 5:5002. https://doi.org/10.1038/ncomms6002

    Article  CAS  Google Scholar 

  68. Huang Y, Sun Y, Zheng X, Aoki T, Pattengale B, Huang J, He X, Bian W, Younan S, Williams N, Hu J, Ge J, Pu N, Yan X, Pan X, Zhang L, Wei Y, Gu J (2019) Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution. Nat Commun 10:982. https://doi.org/10.1038/s41467-019-08877-9

    Article  CAS  Google Scholar 

  69. Shao A, Zhang Z, Xiong DG, Yu J, Cai JX, Yang ZY (2020) Facile Synthesis of a “Two-in-One” Sulfur Host Featuring MetallicCobalt-Embedded N-Doped Carbon Nanotubes for Effiffifficient LithiumSulfur Batteries. ACS Appl Mater Interfaces 12:5968–5978. https://doi.org/10.1021/acsami.9b20943

    Article  CAS  Google Scholar 

  70. Lu W, Yuan Z, Xu C, Ning J, Zhong Y, Zhang Z, Hu Y (2019) Construction of Mesoporous Cu-Doped Co9S8 Rectangular Nanotube Arrays for High Energy Density All-Solid-State Asymmetric Supercapacitors. J Mater Chem A 7:5333–5343. https://doi.org/10.1039/C8TA10998B

    Article  CAS  Google Scholar 

  71. Wei ZQ, Dai XC, Hou S, Li YB, Huang MH, Li T, Xu S, Xiao FX (2020) Branched Polymer-Incorporated Multi-Layered Heterostructured Photoanode: Precisely Tuning Directional Charge Transfer toward Solar Water Oxidation. J Mater Chem A 8:177–189. https://doi.org/10.1039/C9TA11579J

    Article  CAS  Google Scholar 

  72. Chao Y, Jalili R, Ge Y, Wang C, Zheng T, Shu K, Wallace GG (2017) Self-Assembly of Flexible Free-Standing 3D Porous MoS2-Reduced Graphene Oxide Structure for High-Performance Lithium-Ion Batteries. Adv Funct Mater 27:1700234. https://doi.org/10.1002/adfm.201700234

    Article  CAS  Google Scholar 

  73. Xuyen NT, Ting JM (2017) Hybridized 1T/2H MoS2 Having Controlled 1T Concentrations and its Use in Supercapacitors. Chem Eur J 23:17348–17355. https://doi.org/10.1002/chem.201703690

    Article  CAS  Google Scholar 

  74. Gao Z, Li M, Wang J, Zhu J, Zhao X, Huang H, Zhang J, Wu Y, Fu Y, Wang X (2018) Pt Nanocrystals Grown on Three Dimensional Architectures Made from Graphene and MoS2 Nanosheets: Highly Efficient Multifunctional Electrocatalysts toward Hydrogen Evolution and Methanol Oxidation Reactions. Carbon 139:369–377. https://doi.org/10.1016/j.carbon.2018.07.006

    Article  CAS  Google Scholar 

  75. Wang JG, Liu H, Zhou R, Liu X, Wei B (2019) Onion-like Nanospheres Organized by Carbon Encapsulated Few-Layer MoS2 Nanosheets with Enhanced Lithium Storage Performance. J Power Sources 413:327–333. https://doi.org/10.1016/j.jpowsour.2018.12.055

    Article  CAS  Google Scholar 

  76. Gao J, Li BC, Tan JW, Chow P, Lu TM, Koratkar N (2016) Aging of Transition Metal Dichalcogenide Monolayers. ACS Nano 10:2628. https://doi.org/10.1021/acsnano.5b07677

    Article  CAS  Google Scholar 

  77. Lu Q, YangY, Feng J, Wang X (2019) Oxygen-Defected Molybdenum Oxides Hierarchical Nanostructure Constructed by Atomic-Level Thickness Nanosheets as an Efficient Absorber for Solar Steam Generation. Sol RRL 3:1800277. https://doi.org/10.1002/solr.201800277

    Article  CAS  Google Scholar 

  78. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim K (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401. https://doi.org/10.1103/PhysRevLett.97.187401

    Article  CAS  Google Scholar 

  79. Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L (2007) Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett 7:238–242. https://doi.org/10.1021/nl061702a

    Article  CAS  Google Scholar 

  80. Buscema M, Steele GA, van der Zant HSJ, Castellanos-Gomez A (2014) The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Res 7:561–571. https://doi.org/10.1007/s12274-014-0424-0

    Article  CAS  Google Scholar 

  81. Gołasa K, Grzeszczyk M, Bożek R, Leszczyński P, Wysmołek A, Potemski M, Babinski A (2014) Resonant Raman scattering in MoS2–From bulk to monolayer. Solid State Commun 197:53–56. https://doi.org/10.1016/j.ssc.2014.08.009

    Article  CAS  Google Scholar 

  82. Jimenez Sandoval S, Yang D, Frindt RF, Irwin JC (1991) Raman study and lattice dynamics of single molecular layers of MoS2. Phys Rev B Condens Matter 44:3955–3962. https://link.aps.org/doi/10.1103/PhysRevB.44.3955

    Article  CAS  Google Scholar 

  83. Saito R, Tatsumi Y, Huang S, Ling X, Dresselhaus MS (2016) Raman spectroscopy of transition metal dichalcogenides. J Phys Condens Matter 28:353002. https://doi.org/10.1088/0953-8984/28/35/353002

    Article  CAS  Google Scholar 

  84. Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund PC (2006) Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett 6:2667–2673. https://doi.org/10.1021/nl061420a

    Article  CAS  Google Scholar 

  85. Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R (2008) Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets. Nano Lett 8:36–41. https://doi.org/10.1021/nl071822y

    Article  CAS  Google Scholar 

  86. Lee JU, Kim K, Han S, Ryu GH, Lee Z, Cheong H (2016) Raman Signatures of Polytypism in Molybdenum Disulfide. ACS Nano 10:1948–1953. https://doi.org/10.1021/acsnano.5b05831

    Article  CAS  Google Scholar 

  87. Lee JU, Park J, Son YW, Cheong H (2015) Anomalous excitonic resonance Raman effects in few-layered MoS2. Nanoscale 7:3229. https://doi.org/10.1039/C4NR05785F

    Article  CAS  Google Scholar 

  88. Marcel P, Mirjana D, Victor IR, Xavier F, Andres CG, Amador PT, Narcis M, Moises ER, Simon LM, Markus N, Veronica B, Anatoliy Y, Alejandro PR (2015) Multiwavelength excitation Raman scattering analysis of bulk and two-dimensional MoS2: vibrational properties of atomically thin MoS2 layers. 2D Mater 2(3):035006. https://doi.org/10.1088/2053-1583/2/3/035006

    Article  CAS  Google Scholar 

  89. Li F, Yan Y, Han B, Li L, Huang X, Yao M, Gong Y, Jin X, Liu B, Zhu C, Zhou Q, Cui T (2015) Pressure confinement effect in MoS2 monolayers. Nanoscale 7(19):9075–9082. https://doi.org/10.1039/C5NR00580A

    Article  CAS  Google Scholar 

  90. Park M, Choi JS, Yang L, Lee H (2019) Raman Spectra Shift of Few-Layer IV-VI 2D Materials. Sci Rep. 9:19826. https://doi.org/10.1038/s41598-019-55577-x

    Article  CAS  Google Scholar 

  91. Zhang X, Qiao XF, Shi W, Wu JB, Jiang DS, Ta PH (2015) Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem Soc Rev 44(9):2757–2785. https://doi.org/10.1039/C4CS00282B

    Article  CAS  Google Scholar 

  92. Li SL, Miyazaki H, Song H, Kuramochi H, Nakaharai S, Tsukagoshi K (2012) Quantitative Raman Spectrum and Reliable Thickness Identification for Atomic Layers on Insulating Substrates. ACS Nano 6(8):7381–7388. https://doi.org/10.1021/nn3025173

    Article  CAS  Google Scholar 

  93. Molina-Sánchez A, Wirtz L (2011) Phonons in single-layer and few-layer MoS2 and WS2. Phys Rev B 84(15):155413, https://link.aps.org/doi/10.1103/PhysRevB.84.155413

    Article  Google Scholar 

  94. Li H, Zhang Q, Yap CCR, Tay BK, Edwin THT, Olivier A, Baillargeat D (2012) From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Adv Funct Mater 22:1385–1390. https://doi.org/10.1002/adfm.201102111

    Article  CAS  Google Scholar 

  95. Plechinger G, Heydrich S, Eroms J, Weiss D, Schüller C, Korn T (2012) Raman spectroscopy of the interlayer shear mode in few-layer MoS2 flakes. Appl Phys Lett 101:101906. https://doi.org/10.1063/1.4751266

    Article  CAS  Google Scholar 

  96. Wang L, Zhao J, Sun YY, Zhang SB (2011) Characteristics of Raman spectra for graphene oxide from ab initio simulations. J Chem Phys 135:184503. https://doi.org/10.1063/1.3658859

    Article  CAS  Google Scholar 

  97. Shroder RE, Nemanich RJ, Glass JT (1990) Analysis of the composite structures in diamond thin films by Raman spectroscopy. Phys Rev B 41:3738. https://doi.org/10.1103/PhysRevB.41.3738

    Article  CAS  Google Scholar 

  98. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 63(121405):2000. https://doi.org/10.1103/PhysRevB.61.14095

    Article  Google Scholar 

  99. Maquelin K, Kirschner C, Choo-Smith LP, van den Braak N, Endtz HPH, Naumann D, Puppels GJ (2002) Identification of medically relevant microorganisms by vibrational spectroscopy. J Microbiol Methods 51:255–271. https://doi.org/10.1016/S0167-7012(02)00127-6

    Article  CAS  Google Scholar 

  100. Cancado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, Jorio A, Coelho LN, Magalhaes-Paniago R, Pimenta MA (2006) General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl Phys Lett 88:163106. https://doi.org/10.1063/1.2196057

    Article  CAS  Google Scholar 

  101. Sato K, Saito R, Oyama Y, Jiang J, Cançado LG, Pimenta MA, Jorio A, Samsonidze GG, Dresselhaus G, Dresselhaus MS (2006) D-band Raman intensity of graphitic materials as a function of laser energy and crystallite size. Chem Phys Lett 427:117–121. https://doi.org/10.1016/j.cplett.2006.05.107

    Article  CAS  Google Scholar 

  102. McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Pruïhomme RK, Askey IA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404. https://doi.org/10.1021/cm0630800

    Article  CAS  Google Scholar 

  103. Yoon D, Moon H, Cheong H, Choi JS, Choi JA, Park BH (2009) Variations in the Raman spectrum as a function of the number of graphene layers. J Korean Phys Soc 55(3):1299–1303. https://doi.org/10.3938/jkps.55.1299

    Article  CAS  Google Scholar 

  104. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun 143(1–2):47–57. https://doi.org/10.1016/j.ssc.2007.03.052

    Article  CAS  Google Scholar 

  105. Akhavan O annd Ghaderi E (2013) Graphene nanomesh promises extremely efficient in vivo photothermal therapy. Small 9:3593–3601. https://doi.org/10.1002/smll.201203106

    Article  CAS  Google Scholar 

  106. Akhavan O (2015) Bacteriorhodopsin as a superior substitute for hydrazine in chemical reduction of single-layer graphene oxide sheets. Carbon 81:158–166. https://doi.org/10.1016/j.carbon.2014.09.044

    Article  CAS  Google Scholar 

  107. Liu L, Ryu S, Tomasik MR, Stolyarova E, Jung N, Hybertsen MS, Steigerwald ML, Brus LE, Flynn GW (2008) Graphene Oxidation: thickness-dependent etching and strong chemical doping. Nano Lett 8(7):1965–1970. https://doi.org/10.1021/nl0808684

    Article  CAS  Google Scholar 

  108. Calizo I, Balandin AA, Bao W, Miao F, Lau CN (2007) Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett 7:2645–2649. https://doi.org/10.1021/nl071033g

    Article  CAS  Google Scholar 

  109. Hanh LTD, Tuan HNA, Son TK, Khai TV (2022) Enhanced antibacterial property of zinc oxide nanoparticles by incorporation of graphene oxide. J Solgel Sci Technol 104:246–257. https://doi.org/10.1007/s10971-022-05923-9

    Article  CAS  Google Scholar 

  110. Liang J, Cai Z, Tian Y, Li L, Geng J, Guo L (2013) Deposition SnO2/Nitrogen-doped graphene nanocomposites on the separator: a new type of flexible electrode for energy storage Devices. ACS Appl Mater Interfaces 5(22):12148–12155. https://doi.org/10.1021/am404072k

    Article  CAS  Google Scholar 

  111. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007 45:1558–1565. https://doi.org/10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  112. Cao Y, Wang Z, Bian Q, Cheng Z, Shao Z, Zhang Z, Sun H, Zhang X, Li S, Gedoen H, Liu L, Wang X, Yuan H, Pan M (2019) Phonon modes and photonic excitation transitions of MoS2 induced by top-deposited graphene revealed by Raman spectroscopy and photoluminescence. Appl Phys Lett 114:133103. https://doi.org/10.1063/1.5083104

    Article  CAS  Google Scholar 

  113. Zhou KG, Withers F, Cao Y, Hu S, Yu G, Casiraghi C (2014) Raman Modes of MoS2 Used as Fingerprint of van der Waals Interactions in 2-D Crystal-Based Heterostructures. ACS Nano 8(10):9914. https://doi.org/10.1021/nn5042703

    Article  CAS  Google Scholar 

  114. Wan W, Li X, Li X, Xu B, Zhan L, Zhao Z, Zhang P, Wu SQ, Zhu ZZ, Huang H, Zhou Y, Cai W (2013) Interlayer coupling of a direct van der Waals epitaxial MoS2/graphene heterostructure. RSC Adv 6:323–330. https://doi.org/10.1039/C5RA22768B

    Article  CAS  Google Scholar 

  115. Amani M, Lien DH, Kiriya D, Xiao J, Azcatl A, Noh J, Madhvapathy SR, Addou R, KC S, Dubey M, Cho K, Wallace RM, Lee SC, He JH, Ager III JW, Zhang X, Yablonovitch E, Javey A (2015) Near-unity photoluminescence quantum yield in MoS2. Sci 350:1065–1068. https://doi.org/10.1126/science.aad2114

    Article  CAS  Google Scholar 

  116. Backes C, Smith RJ, McEvoy N, Berner NC, McCloskey D, Nerl HC, O’Neill A, King PJ, Higgins T, Hanlon D, Scheuschner N, Maultzsch J, Houben L, Duesberg GS, Donegan JF, Nicolosi V, Coleman JN (2014) Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets. Nat Commun 5:4576. https://doi.org/10.1038/ncomms5576

    Article  CAS  Google Scholar 

  117. Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim CY, Galli G, Wang F (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10:1271–1275. https://doi.org/10.1021/nl903868w

    Article  CAS  Google Scholar 

  118. Ahmad RTM, Hong SH, Shen TZ, Song JK (2016) Water-assisted stable dispersal of graphene oxide in non-dispersible solvents and skin formation on the GO dispersion. Carbon 98:188–194. https://doi.org/10.1016/j.carbon.2015.11.007

    Article  CAS  Google Scholar 

  119. Mattson EC, Johns JE, Pande K, Bosch RA, Cui S, Gajdardziska-Josifovska M, Weinert M, Chen JH, Hersam MC, Hirschmugl CJ (2014) Vibrational Excitations and Low-Energy Electronic Structure of Epoxide-Decorated Graphene. J Phys Chem Lett 5:212–219. https://doi.org/10.1021/jz4025386

    Article  CAS  Google Scholar 

  120. Liang H (2014) Mid-infrared response of reduced graphene oxide and its high-temperature coefficient of resistance. AIP Adv 4:107131. https://doi.org/10.1063/1.4898786

    Article  CAS  Google Scholar 

  121. Abid, Sehrawat P, Islam SS, Mishra P, Ahmad S (2018) Reduced graphene oxide (rGO) based wideband optical sensor and the role of Temperature, Defect States and Quantum Efficiency. Sci Rep. 8:3537. https://doi.org/10.1038/s41598-018-21686-2

    Article  CAS  Google Scholar 

  122. Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL (2007) Electromechanical resonators from graphene sheets. Sci 315:490–493. https://doi.org/10.1126/science.1136836

    Article  CAS  Google Scholar 

  123. Casaluci S, Gemmi M, Pellegrini V, Di Carlo A, Bonaccorso F (2016) Graphene-based large area dye-sensitized solar cell modules. Nanoscale 8:5368–5378. https://doi.org/10.1039/C5NR07971C

    Article  CAS  Google Scholar 

  124. Singh RK, Kumar R, Singh DP (2016) Graphene oxide: strategies for synthesis, reduction and frontier applications. RSC Adv 6:64993–65011. https://doi.org/10.1039/C6RA07626B

    Article  CAS  Google Scholar 

  125. Bhanu U, Islam MR, Tetard L, Khondaker SI (2014) Photoluminescence quenching in gold-MoS2 hybrid nanoflakes. Sci Rep. 4:5575. https://doi.org/10.1038/srep05575

    Article  CAS  Google Scholar 

  126. Chow PK, Jacobs-Gedrim RB, Gao J, Lu T-M, Yu B, Terrones H, Koratkar N (2015) Defect-Induced Photoluminescence in Monolayer Semiconducting Transition Metal Dichalcogenides. ACS Nano 9:1520–1527. https://doi.org/10.1021/nn5073495

    Article  CAS  Google Scholar 

  127. Conley HJ, Wang B, Ziegler JI, Haglund Jr RF, Pantelides ST, Bolotin KI (2013) Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett 13:3626–2630. https://doi.org/10.1021/nl4014748

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 104.03-2019.42. We acknowledge the support of time and facilities from Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nguyen Hoc Thang or Tran Van Khai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, L.N., Quang, N.T., Khuong, T.T. et al. Controllable synthesis by hydrothermal method and optical properties of 2D MoS2/rGO nanocomposites. J Sol-Gel Sci Technol 106, 699–714 (2023). https://doi.org/10.1007/s10971-023-06072-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06072-3

Keywords

Navigation