Skip to main content
Log in

High pressure amplify the structural characteristic of calcium-doped Bi-2201 phase

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Ca-doped Bi-2201 samples obtained by optimized preparation methods increase the highest onset of superconducting transition T(c, onset) up to 77 K. Raman experiments show that Ca-doping makes the OSr peak shift from 643 to 647 cm−1, which indicates that the OSr and surrounding atoms become closer. In addition, pressure is used to amplify the effects of doping in the structural characterizations. High-pressure angle dispersive x-ray diffraction (ADXRD) results indicate that the Ca-doped Bi-2201 sample has a tighter atomic packing than the pure sample, which results in a lower Raman peak position shift rate under compression. Combining the ambient data with the high-pressure structural analysis, the apical oxygen of the CuO6 octahedron is closer to CuO2 plane and adjusts CuO2 plane distortion, resulting in the increasing of T(c, onset) in Ca-doped Bi-2201 samples.

Graphical Abstract

Pressure can confirm the structural details of the high Tc Ca-doped Bi-2201 phase by amplifying its structural characteristic.

Highlights

  • The experimental strategy of using pressure to amplify the influence of Ca-doping on the structure of Bi-2201 phase was proposed.

  • Ca-doped Bi2201 crystals have smaller lattice volume, shorter c-axis, and are less compressible than the pure phase.

  • The influence caused by the apical oxygen of the CuO6 octahedron on distortion of CuO2 plane is an important reason for increasing the Tc of the Ca-doped samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Foltyn SR, Civale L, MacManus-Driscoll JL, Jia QX, Maiorov B, Wang H, Maley M (2007) Materials science challenges for high-temperature superconducting wire. Nat Mater 6:631–642

    Article  CAS  Google Scholar 

  2. Kakeya I, Wang H (2016) Terahertz-wave emission from Bi2212 intrinsic Josephson junctions: a review on recent progress. Supercond Sci Technol 29:073001

    Article  Google Scholar 

  3. Larbalestier DC, Jiang J, Trociewitz UP, Kametani F, Scheuerlein C, Dalban-Canassy M, Matras M, Chen P, Craig NC, Lee PJ et al. (2014) Isotropic round-wire multifilament cuprate superconductor for generation of magnetic fields above 30 T. Nat Mater 13:375–381

    Article  CAS  Google Scholar 

  4. Yuan Y, Jiang J, Cai XY, Larbalestier DC, Hellstrom EE, Huang Y, Parrella R (2004) Significantly enhanced critical current density in Ag-sheathed (Bi,Pb)2Sr2Ca2Cu3Ox composite conductors prepared by overpressure processing in final heat treatment. Appl Phys Lett 84:2127–2129

    Article  CAS  Google Scholar 

  5. Kobayashi S, Kato T, Yamazaki K, Ohkura K, Fujino K, Fujikami J, Ueno E, Ayai N, Kikuchi M, Hayashi K (2005) Controlled over pressure processing of Bi2223 long length wires. IEEE T. IEEE T Appl Supercon 15:2534–2537

    Article  CAS  Google Scholar 

  6. Green DC, Boston R, Glatzel S, Lees MR, Wimbush SC, Potticary J, Hall W (2015) Ogasawara SR, on the mechanism of cuprate crystal growth: the role of mixed metal carbonates. Adv Funct Mater 25:4700–4707

    Article  CAS  Google Scholar 

  7. Arao Y, Tange M, Yokoshima M, Yoshizaki R (2005) Optimization of the Bi-2201 superconductors with Pb and La co-doping. Phys C 426–431:351–354

    Article  Google Scholar 

  8. Arao Y, Tange M, Ikeda H, Koyano T, Yoshizaki R (2006) A new aspect of superconductivity observed (Bi,Pb)2(Sr,La)2CuO6+δ single crystals. Phys C 445−448:440–442

    Article  Google Scholar 

  9. Yoshizaki R, Nakajima T, Tange M, Ikeda H (2008) Annealing effect of 80 K-class superconductivity of Ca-doped B2S2CuO6+δ in Bi-2201 phase. Appl Phys Express 1:041701

    Article  Google Scholar 

  10. Nakajima T, Tange M, Kizuka T, Ikeda H, Yoshizaki R, Sasaki S (2007) 80K superconductivity in Bi-2201 phase. Phys C 463−465:93–95.

    Article  Google Scholar 

  11. Yoshizaki R, Nakajima T, Tange M (2007) Ca substitution effect for Sr upon superconductivity of Bi2.1CaySr1.9-yCuO6+δ. Jpn J Appl Phys 46:167–169

    Article  Google Scholar 

  12. Sun BZ, Zhou SL, Wang H, Fei ZY, Lu XM, Wang TL, Qi Y (2014) Study on the site preference of Ca in superconducting oxides Bi2Sr2−xCaxCuO6+δ(0.1≤x≤1.0). Mater Charact 87:172–178

    Article  CAS  Google Scholar 

  13. Song D, Zhang X, Lian C, Liu H, Alexandrou I, Lazić I, Bosch EGT, Zhang D, Wang L, Yu R, Cheng Z, Song C, Ma X, Duan W, Xue Q, Zhu J (2019) Visualization of dopant oxygen atoms in a Bi2Sr2CaCu2O6+δ superconductor. Adv Funct Mater 29:1903843

    Article  CAS  Google Scholar 

  14. Zhou SL, Wang H, Wang Y, Fei ZY, Sun BZ, Qi Y (2014) Study on incommensurate modulation structures in Ca-Doped Bi-2201 system. J Supercond Nov Magn 27:383–388

    Article  CAS  Google Scholar 

  15. Guo J, Zhou YZ, Huang C, Cai S, Sheng YT, Gu GD, Yang CL, Lin GC, Yang K, Li AG, Wu Q, Xiang T, Sun LL (2020) Crossover from two-dimensional to three-dimensional superconducting states in bismuth-based cuprate superconductor. Nat Phys 16:295–300

    Article  CAS  Google Scholar 

  16. Zhou YZ, Guo J, Cai S, Zhao JY, Gu GD, Lin CT, Yan HT, Huang C, Yang CL, Long SJ, Gong Y, Li YC, Li XD, Wu Q, Hu JP, Zhou XJ, Xiang T, Sun LL (2022) Quantum phase transition from superconducting to insulating-like state in a pressurized cuprate superconductor. Nat Phys 18:406–410

    Article  CAS  Google Scholar 

  17. Ma ZW, Li Q, Luo JJ, Li SR, Sui LZ, Zhao DL, Yuan KJ, Xiao GJ, Tang J, Quan ZW, Zou B (2021) Pressure-driven reverse intersystem crossing: new path towards bright deep-blue emission of lead-free halide double perovskites. J Am Chem Soc 143:15176–15184

    Article  CAS  Google Scholar 

  18. Fu RJ, Zhao WY, Wang LR, Ma ZW, Xiao GJ, Zou B (2021) Pressure‐induced emission toward harvesting cold white light from warm white light. Angew Chem Int Ed 60:10082–10088

    Article  CAS  Google Scholar 

  19. Fang YY, Zhang L, Yu YH, Yang XY, Wang K, Zou B (2020) Manipulating emission enhancement and piezochromism in two-dimensional organic-inorganic halide perovskite [(HO)(CH2)2NH3)]2PbI4 by high pressure. CCS Chem 3:2203–2210

    Article  Google Scholar 

  20. Ma ZW, Li FF, Zhao DL, Xiao GJ, Zou B (2020) Whether or not emission of Cs4PbBr6 nanocrystals: high-pressure experimental evidence. CCS Chem 2:71–80

    Article  CAS  Google Scholar 

  21. Ma ZE, Liu Z, Lu SY, Wang LR, Feng XL, Yang DW, Wang K, Xiao GJ, Zhang LJ, Simon A, Redfern T, Zou B (2018) Pressure-induced emission of cesium lead halide perovskite nanocrystals. Nat Commun 9:4506

    Article  Google Scholar 

  22. Liarokapis E, Lampakis D, Siranidi E, Calamiotou M (2010) Pressure induced lattice instability and phase separation in the cuprates. J Phys Chem Solids 71:1084–1087

    Article  CAS  Google Scholar 

  23. Deng LZ, Zheng YP, Wu Z, Huyan S, Wu HC, Nie Y, Cho K, Chu CW (2019) Higher superconducting transition temperature by breaking the universal pressure relation. Proc Natl Acad Sci Usa 116:2004–2008

    Article  CAS  Google Scholar 

  24. Liarokapis E, Lampakis D, Panagopoulos C, Nishizaki T (2003) High pressure raman study of Bi-2212. High Press Res 23:111–115

    Article  CAS  Google Scholar 

  25. Tong ZB, Sun W, Li CY, Tang ZX, Huang YL, Yao C, Zhang L, Sun CQ (2022) O:H-N bond cooperativity in the energetic TATB under mechanical and thermal perturbation. J Mol Liq 358:119169

    Article  CAS  Google Scholar 

  26. Benhabib S, Gallais Y, Cazayous M, Mèasson MA, Zhong RD, Schneeloch J, Forget A, Gu GD, Colson D, Sacuto A (2015) Three energy scales in the superconducting state of hole-doped cuprates detected by electronic Raman scattering. Phys Rev B 92:134502

    Article  Google Scholar 

  27. Calamiotou M, Gantis A, Siranidi E, Lampakis D, Karpinski J, Liarokapis E (2009) Pressure-induced lattice instabilities and superconductivity in YBa2Cu4O8 and optimally doped YBa2Cu3O7-δ. Phys Rev B 80:214517

    Article  Google Scholar 

  28. Zhang JB, Ding Y, Chen CC, Cai Z, Chang J, Chen B, Hong X, Fluerasu A, Zhang Y, Ku CS et al. (2018) Evolution of a novel ribbon phase in optimally doped Bi2Sr2CaCu2O8+δ at high pressure and its implication to high-TC superconductivity. J Phys Chem Lett 9:4182–4188

    Article  CAS  Google Scholar 

  29. Zhang JB, Tang LY, Zhang J, Qin ZX, Zeng XJ, Liu J, Wen JS, Xu ZJ, Genda GU, Chen XJ (2013) Pressure-induced isostructural phase transition in Bi2Sr2CaCu2O8+δ. Chin Phys C 37:088003

    Article  CAS  Google Scholar 

  30. Yurgens A, Winkler D, Claeson T, Murayaha T, Ando Y (1999) Effect of pressure on interlayer coupling and superconducting transition temperature of Bi-2201 and Bi-2212. Int J Mod Phys B 13:3744

    Article  CAS  Google Scholar 

  31. Schrieffer JR, Brooks JS (2007) Handbook of High-Temperature Superconductivity: Theory and Experiment. Springer, New York.

  32. Adachi S, Matsumoto R, Hara H, Saito Y, Song P, Takeya H, Watanabe T, Takano Y (2019) Pressure effect in Bi-2212 and Bi-2223 cuprate superconductor. Appl Phys Express 12:043002

    Article  CAS  Google Scholar 

  33. Bozovic I, Logvenov G, Verhoeven MAJ, Caputo P, Goldobin E, Beasley MR (2004) Giant proximity effect in cuprate superconductors. Phys Rev Lett 93:157002

    Article  CAS  Google Scholar 

  34. Osada M, Kakihana M, Käll M, Börjesson L, Inoue A, Yashima M (1997) Raman-active phonons Bi2Sr2-xLaxCuO6+d: Phonon assignment and charge-redistribution effects. Phys Rev B 56:2847–2851

    Article  CAS  Google Scholar 

  35. Kakihana M, Osada M, Käll M, Börjesson L, Mazaki H, Yasuoka H, Yashima M, Yoshimura M (1996) Raman-active phonons in Bi2Sr2Ca1-xYxCu2O8+d (x=0-1): effects of hole filling and internal pressure induced by Y doping for Ca. Phys Rev B 53:11796–11806

    Article  CAS  Google Scholar 

  36. Zhong Y, Wang Y, Han S, Lv YF, Wang WL, Zhang D, Ding H, Zhang YM, Wang LL, He K et al. (2016) Nodeless pairing in superconducting copper-oxide monolayer films on Bi2Sr2CaCu2O8+δ. Sci Bull 61:1239–1247

    Article  CAS  Google Scholar 

  37. Jiang K, Wu X, Hu J, Wang Z (2018) Nodeless high-Tc superconductivity in the highly overdoped CuO2 monolayer. Phys Rev Lett 121:227002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Nos. 52103201, 61971116), the Fundamental Research Funds for the Central Universities (No. N2002003), China Postdoctoral Science Foundation (No. 2018M631801), and Postdoctoral Foundation of Northeastern University (20180301). ADXRD measurement was performed at 4W2 beamline, Beijing Synchrotron Radiation Facility (BSRF), which was supported by the Chinese Academy of Sciences (Grants KJCX2‐SW‐N20 and KJCX2‐SW‐N03). Partial ADXRD experiments were performed at the BL15U1 beamline, Shanghai Synchrotron Radiation Facility (SSRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxiang Dai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Sun, D., Zhao, X. et al. High pressure amplify the structural characteristic of calcium-doped Bi-2201 phase. J Sol-Gel Sci Technol 106, 107–113 (2023). https://doi.org/10.1007/s10971-023-06050-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06050-9

Keywords

Navigation