Skip to main content
Log in

Adjustable emission of carbon dots and rhodamine B embedded in organic-inorganic hybrid gels for solid-state light devices

  • Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Transparent organic-inorganic SiO2-PMMA nanocomposites with different fluorescent carbon dots (CD) and rhodamine B (RB) volume ratios were obtained. Their structural and photoluminescent properties were analyzed. FT-IR characterization reveals the presence of peaks associated with Si-OH and Si-O-Si from the silica inorganic network and peaks for C=C and C=O from the organic network given by poly methyl methacrylate (PMMA) and 3-trimethoxysilylpropyl methacrylate (TMSPM) coupling agent. Deconvolution analysis of the intrinsic luminescence of the hybrid matrix and the single embedded CD and RB hybrids was performed. The nanocomposite xerogels emission spectra show two emission peaks at 440 nm and 560 nm attributed to the CD and RB, respectively. The intensity of the emission bands is related to the variation in the CD/dye concentration ratio. Also, the estimated CIE 1931 chromaticity coordinates show that the global emission tonality of nanocomposites varies from blue to yellowish-orange. The CD/dye 2:2 volume ratio sample shows an emission tonality close to the white region (x = 0.35, y = 0.33). The low manufacturing cost of these nanocomposites and the incorporation of molecules with good luminescent intensity allow their potential application as coatings in solid-state lighting devices.

Graphical Abstract

Highlights

  • Obtention of a transparent organic-inorganic nanocomposite by sol-gel process.

  • Two emission peaks changing intensity with different CD/dye concentration ratio.

  • Chromaticity coordinates near the white region (x = 0.35, y = 0.33).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Li X et al. (2022) Synthesis of carbon dots with strong luminescence in both dispersed and aggregated states by tailoring sulfur doping. J Colloid Interface Sci 609:54–64. https://doi.org/10.1016/j.jcis.2021.11.179

    Article  CAS  Google Scholar 

  2. Bhattacharya D, Mishra MK, De G (2017) Carbon dots from a single source exhibiting tunable luminescent colors through the modification of surface functional groups in ORMOSIL films. J Phys Chem C 121(50):28106–28116. https://doi.org/10.1021/acs.jpcc.7b08039

    Article  CAS  Google Scholar 

  3. Schneider J et al. (2017) Molecular fluorescence in citric acid-based carbon dots. J Phys Chem C 121(3):2014–2022. https://doi.org/10.1021/acs.jpcc.6b12519

    Article  CAS  Google Scholar 

  4. Wang Z et al. (2020) One-pot synthesis of carbon dots@ZrO2 nanoparticles with tunable solid-state fluorescence. Polym Adv Technol 31(8):1744–1751. https://doi.org/10.1002/pat.4901

    Article  CAS  Google Scholar 

  5. Malfatti L, Innocenzi P (2018) Sol-gel chemistry for carbon dots. Chem Rec 18(7):1192–1202. https://doi.org/10.1002/tcr.201700108

    Article  CAS  Google Scholar 

  6. Xiong Y, Schneider J, Ushakova EV, Rogach AL (2018) Influence of molecular fluorophores on the research field of chemically synthesized carbon dots. Nano Today 23:124–139. https://doi.org/10.1016/j.nantod.2018.10.010

    Article  CAS  Google Scholar 

  7. Stefania M et al. (2020) Integrating sol-gel and carbon dots chemistry for the fabrication of fluorescent hybrid organic- inorganic films. Sci Rep 1–12, https://doi.org/10.1038/s41598-020-61517-x

  8. Khan S, Sharma A, Ghoshal S, Jain S, Hazra MK, Nandi CK (2017) Small molecular organic nanocrystals resemble carbon nanodots in terms of their properties. Chem Sci 9(1):175–180. https://doi.org/10.1039/c7sc02528a

    Article  CAS  Google Scholar 

  9. Song Y et al. (2015) Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine. J Mater Chem C 3(23):5976–5984. https://doi.org/10.1039/c5tc00813a

    Article  CAS  Google Scholar 

  10. Zhu S et al. (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed 52(14):3953–3957. https://doi.org/10.1002/anie.201300519

    Article  CAS  Google Scholar 

  11. Zhu S, Zhao X, Song Y, Lu S, Yang B (2016) Beyond bottom-up carbon nanodots: citric-acid derived organic molecules. Nano Today 11(2):128–132. https://doi.org/10.1016/j.nantod.2015.09.002. pp

    Article  CAS  Google Scholar 

  12. Zhou D et al. (2017) Conquering aggregation-induced solid-state luminescence quenching of carbon dots through a carbon dots-triggered silica gelation process. Chem Mater 29(4):1779–1787. https://doi.org/10.1021/acs.chemmater.6b05375

    Article  CAS  Google Scholar 

  13. Ren J et al. (2018) Controllable photoluminescent and nonlinear optical properties of polymerizable carbon dots and their arbitrary copolymerized gel glasses. Adv Opt Mater 6(12):1–7. https://doi.org/10.1002/adom.201701273

    Article  CAS  Google Scholar 

  14. Suzuki K et al. (2017) Design of carbon dots photoluminescence through organo-functional silane grafting for solid-state emitting devices. Sci Rep. 7(no. 1):1–11. https://doi.org/10.1038/s41598-017-05540-5

    Article  CAS  Google Scholar 

  15. Suzuki K, Nabata H, Ueno S, Morita S, Miyamura H, Balachandran J (2022) Origin of carbon dot fluorescence in organosilica films explored experimentally by surface functionalization. J Sol Gel Sci Technol 702–710, https://doi.org/10.1007/s10971-022-05901-1

  16. Chao T et al. (2022) Defects and structural limitation-induced carbon dots-silica hybrid materials with ultralong room temperature phosphorescence. J Phys Chem Lett 13(41):9558–9563. https://doi.org/10.1021/acs.jpclett.2c02647

    Article  CAS  Google Scholar 

  17. Cheng H et al. (2022) Ultra-stable dual-color phosphorescence Carbon-Dot@Silica material for advanced anti-counterfeiting. Dye Pigment 208:110827. https://doi.org/10.1016/j.dyepig.2022.110827

    Article  CAS  Google Scholar 

  18. Fang M, Neto ANC, Fu L, Ferreira RAS, deZeaBermudez V, Carlos LD (2022) A hybrid materials approach for fabricating efficient WLEDs based on di-ureasils doped with carbon dots and a europium complex. Adv Mater Technol 7(3):1–12. https://doi.org/10.1002/admt.202100727

    Article  CAS  Google Scholar 

  19. Zhang G, Bai Y, Yu C, Xuan T (2022) Highly stable carbon nanodot-based phosphor as a color converter for WLED. J Lumin 246:118836. https://doi.org/10.1016/j.jlumin.2022.118836

  20. Zhang H, Zhang H, Pan A, Yang B, He L, Wu Y (2021) Rare earth-free luminescent materials for WLEDs: recent progress and perspectives. Adv Mater Technol 6(1):1–26. https://doi.org/10.1002/admt.202000648

    Article  CAS  Google Scholar 

  21. Davi LBO, Lima DJP, Barbosa CDAES (2021) Synthesis and modulation of multicolor fluorescent carbon dots from p-phenylenediamine and dansyl derivative for white light emitting diodes. Opt Mater 121:111502. https://doi.org/10.1016/j.optmat.2021.111502

    Article  CAS  Google Scholar 

  22. Wang Z et al. (2017) Warm-white-light-emitting diode based on a dye-loaded metal-organic framework for fast white-light communication. ACS Appl Mater Interfaces 9(40):35253–35259. https://doi.org/10.1021/acsami.7b11277

    Article  CAS  Google Scholar 

  23. Zhang Y, Ding Z, Liu Y, Zhang Y, Jiang S (2021) White-light-emitting hydrogels with self-healing properties and adjustable emission colors. J Colloid Interface Sci 582:825–833. https://doi.org/10.1016/j.jcis.2020.08.080

    Article  CAS  Google Scholar 

  24. Tilioua A (2021) Materials Science for Energy Technologies Investigation of the thermo-physical properties of poly (methyl methacrylate) -based Plexiglass to improve the performance of solar cells. Mater Sci Energy Technol 4:349–356. https://doi.org/10.1016/j.mset.2021.08.011

    Article  CAS  Google Scholar 

  25. Almaral-Sánchez JL, Rubio E, Mendoza-Galván A, Ramírez-Bon R (2005) Red colored transparent PMMA-SiO2 hybrid films. J Phys Chem Solids 66(10):1660–1667. https://doi.org/10.1016/j.jpcs.2005.06.006

    Article  CAS  Google Scholar 

  26. Avnir D (1984) The nature of the silica cage as reflected by spectral changes and enhanced photostability of trapped rhodamine 6G. J Phys Chem 5959(1982):5956–5959

    Article  Google Scholar 

  27. Costela A, García-Moreno I, Sastre R (2001) Chapter 4 - Materials for solid-state dye lasers. In Singh Nalwa, H. (ed) Handbook of Advanced Electronic and Photonic Materials and Devices 161–208. Academic Press, Los Angeles

  28. Green WH, Le KP, Grey J, Au TT, Sailor MJ (1997) White phosphors from a silicate-carboxylate sol-gel precursor that lack metal activator ions. Science 276(5320):1826–1828. https://doi.org/10.1126/science.276.5320.1826

    Article  CAS  Google Scholar 

  29. Amato F et al. (2019) Nitrogen-doped carbon nanodots/PMMA nanocomposites for solar cells applications. Chem Eng Trans 74:1105–1110. https://doi.org/10.3303/CET1974185

    Article  Google Scholar 

  30. Mondal T, Bose S, Husain A, Ghorai UK, Saha SK (2020) White light emission from single dye incorporated metal organic framework. Opt Mater 100:109706. https://doi.org/10.1016/j.optmat.2020.109706

    Article  CAS  Google Scholar 

  31. Joseph J, Anappara AA (2016) White light emission of carbon dots by creating different emissive traps. J Lumin 178:128–133. https://doi.org/10.1016/j.jlumin.2016.05.051

    Article  CAS  Google Scholar 

  32. Lu Y, Wang S, Yu K, Yu J, Zhao D, Li C (2021) Microporous and Mesoporous Materials Encapsulating carbon quantum dot and organic dye in multi-shell nanostructured MOFs for use in white light-emitting diode. Microporous Mesoporous Mater 319:111062. https://doi.org/10.1016/j.micromeso.2021.111062

    Article  CAS  Google Scholar 

  33. Chmel A, Mazurina EK, Shashkin VS (1990) Vibrational spectra and defect structure of silica prepared by non-organic sol-gel process. J Non Cryst Solids 122:285–290

    Article  CAS  Google Scholar 

  34. Fidalgo A, Ilharco LM (2004) Correlation between physical properties and structure of silica xerogels. J Non Cryst Solids 347(1–3):128–137. https://doi.org/10.1016/j.jnoncrysol.2004.07.059

    Article  CAS  Google Scholar 

  35. Gallis S, Nikas V, Kaloyeros AE (2017) Silicon oxycarbide thin films and nanostructures: synthesis, properties and applications. IntechOpen, London.

  36. Melgoza-Ramírez ML, Ramírez-Bon R (2020) Microstructural comparison between PMMA-SiO2 and PMMA-TiO2 hybrid systems using Eu3+ as ion-probe luminescence. J Non Cryst Solids 544:120167. https://doi.org/10.1016/j.jnoncrysol.2020.120167

    Article  CAS  Google Scholar 

  37. Soni G, Srivastava S, Soni P, Kalotra P, Vijay YK (2018) Optical, mechanical and structural properties of PMMA/SiO2 nanocomposite thin films. Mater Res Express 5(1), https://doi.org/10.1088/2053-1591/aaa0f7

  38. Huang ZH, Qiu KY (1997) The effects of interactions on the properties of acrylic polymers/silica hybrid materials prepared by the in situ sol-gel process. Polym 38(3):521–526. https://doi.org/10.1016/S0032-3861(96)00561-7

    Article  CAS  Google Scholar 

  39. Han YH, Taylor A, Mantle MD, Knowles KM (2007) Sol-gel-derived organic-inorganic hybrid materials. J Non Cryst Solids 353(3):313–320. https://doi.org/10.1016/j.jnoncrysol.2006.05.042

    Article  CAS  Google Scholar 

  40. Morales-Acosta MD, Alvarado-Beltrán CG, Quevedo-López MA, Gnade BE, Mendoza-Galván A, Ramírez-Bon R (2013) Adjustable structural, optical and dielectric characteristics in sol-gel PMMA-SiO2 hybrid films. J Non Cryst Solids 362(1):124–135. https://doi.org/10.1016/j.jnoncrysol.2012.11.025

    Article  CAS  Google Scholar 

  41. Melgoza-Ramírez ML, Ramírez-Bon R (2021) Europium ions as a spectroscopic probe in the study of PMMA-SiO2 hybrid microstructure with variable coupling agent. J Sol Gel Sci Technol, https://doi.org/10.1007/s10971-021-05582-2

  42. El-bashir SM (2012) Photophysical properties of fluorescent PMMA/SiO2 nanohybrids for solar energy applications. J Lumin 132(7):1786–1791. https://doi.org/10.1016/j.jlumin.2012.02.010

    Article  CAS  Google Scholar 

  43. Muthurasu A, Ganesh V (2021) Tuning optical properties of nitrogen-doped carbon dots through fluorescence resonance energy transfer using Rhodamine B for the ratiometric sensing of mercury ions. Anal Methods 13(15):1857–1865. https://doi.org/10.1039/d1ay00068c

    Article  CAS  Google Scholar 

  44. Fang Q et al. (2017) Luminescence origin of carbon based dots obtained from citric acid and amino group-containing molecules. Carbon N Y 118:319–326. https://doi.org/10.1016/j.carbon.2017.03.061

    Article  CAS  Google Scholar 

  45. Carbonaro CM et al. (2018) Carbon dots in water and mesoporous matrix: chasing the origin of their photoluminescence. J Phys Chem C 122(44):25638–25650. https://doi.org/10.1021/acs.jpcc.8b08012

    Article  CAS  Google Scholar 

  46. Zhang X et al. (2013) Color-switchable electroluminescence of carbon dot light-emitting diodes. ACS Nano 7(12):11234–11241. https://doi.org/10.1021/nn405017q

    Article  CAS  Google Scholar 

  47. Wang H et al. (2016) Nitrogen-doped carbon dots for ‘green’ quantum dot solar cells. Nanoscale Res Lett 11(1):1–6. https://doi.org/10.1186/s11671-016-1231-1

    Article  CAS  Google Scholar 

  48. Im HG, Park GU, Park HY, Jin J, Kang DJ (2017) A robust transparent protective hard-coating material using physicochemically-incorporated silica nanoparticles and organosiloxanes. Prog Org Coat 105:330–335. https://doi.org/10.1016/j.porgcoat.2017.02.004

    Article  CAS  Google Scholar 

  49. Liu H et al. (2018) Scattering enhanced quantum dots based luminescent solar concentrators by silica microparticles. Sol Energy Mater Sol Cells 179:380–385. https://doi.org/10.1016/j.solmat.2018.01.029

    Article  CAS  Google Scholar 

  50. Kadhim MA, Al-bermany E (2021) New fabricated PMMA-PVA/graphene oxide nanocomposites: structure, optical properties and application. J Composite Mater https://doi.org/10.1177/0021998321995912

  51. Skuja L (1998) Section 1. Defect studies in vitreous silica and related materials: optically active oxygen-deficiency-related centers in amorphous silicon dioxide. J Non Cryst Solids 239(1–3):16–48. https://doi.org/10.1016/s0022-3093(98)00720-0

    Article  CAS  Google Scholar 

  52. Fournier J et al. (2010) Evidence of a green luminescence band related to surface flaws in high purity silica glass. Opt Express 18(21):21557. https://doi.org/10.1364/oe.18.021557

  53. Kang KS, Kim JH (2008) Origin of blue luminescence from a hybrid sol-gel after thermal processing. J Phys Chem C 112(2):618–620. https://doi.org/10.1021/jp068970h

    Article  CAS  Google Scholar 

  54. Uchino T, Kurumoto N, Sagawa N (2006) Structure and formation mechanism of blue-light-emitting centers in silicon and silica-based nanostructured materials. Phys Rev B 73(23):1–4. https://doi.org/10.1103/PhysRevB.73.233203

    Article  CAS  Google Scholar 

  55. García JM, Mondragón MA, Téllez CS, Camper A, Castaño VM (1995) Blue emission in tetraethoxysilane and silica gels. Mater Chem Phys 41(95):15–17

  56. Brites CDS, Freitas VT, Ferreira RAS, Millán A, Palacio F, Carlos LD (2012) Metal-free highly luminescent silica nanoparticles. Langmuir 28(21):8190–8196. https://doi.org/10.1021/la300288j

    Article  CAS  Google Scholar 

  57. Carlos LD, Sá Ferreira RA, Pereira RN, Assunção M, De Zea Bermudez V (2004) White-light emission of amine-functionalized organic/inorganic hybrids: emitting centers and recombination mechanisms. J Phys Chem B 108(39):14924–14932. https://doi.org/10.1021/jp049052r

    Article  CAS  Google Scholar 

  58. Hinić I, Stanišić G, Popović Z (2003) Influence of the synthesis conditions on the photoluminescence of silica gels. J Serb Chem Soc 68(12):953–959. https://doi.org/10.2298/JSC0312953H

    Article  Google Scholar 

  59. Glinka YD, Lin SH, Chen YT (2002) Time-resolved photoluminescence study of silica nanoparticles as compared to bulk type-III fused silica. Phys Rev B Condens Matter Mater Phys 66(3):354041–3540410. https://doi.org/10.1103/PhysRevB.66.035404

    Article  CAS  Google Scholar 

  60. Molard Y et al. (2010) Red-NIR luminescent hybrid Poly(methyl methacrylate) containing covalently linked octahedral rhenium metallic clusters. Chem A Eur J 16(19):5613–5619. https://doi.org/10.1002/chem.200902131

    Article  CAS  Google Scholar 

  61. Kuzema P, Bolbukh Y, Lipke A, Majdan M, Tertykh V (2019) Luminescent sol-gel glasses from silicate–citrate–(thio)ureate precursors. Colloids Interfaces 3(1):11. https://doi.org/10.3390/colloids3010011

  62. Del Monte F, Levy D (1998) Formation of fluorescent rhodamine B J-dimers in sol-gel glasses induced by the adsorption geometry on the silica surface. J Phys Chem B 102(41):8036–8041. https://doi.org/10.1021/jp982396v

    Article  Google Scholar 

  63. Chapman M, Euler WB (2018) Rhodamine 6G structural changes in water/ethanol mixed solvent. J Fluoresc 28:1431–1437

  64. Arbeloa FL, Ojeda PR, Arbeloa IL (1988) On the aggregation of rhodamine B in ethanol. Chem Phys Lett 148(2):254–258

    Google Scholar 

  65. Liang Y et al. (2019) Hydrothermal growth of nitrogen-rich carbon dots as a precise multifunctional probe for both Fe3+ detection and cellular bio-imaging. Opt Mater 89:92–99. https://doi.org/10.1016/j.optmat.2019.01.008

    Article  CAS  Google Scholar 

  66. Gutiérrez MC, Hortigüela MJ, Ferrer ML, Del Monte F (2007) Highly fluorescent rhodamine B nanoparticles entrapped in hybrid glasses. Langmuir 23(4):2175–2179. https://doi.org/10.1021/la0621057

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank CONACyT for its support through the project Cátedra-CONACyT 1959. Itzel Arizbe Olivares-Torres gratefully acknowledges the Department of Physics, the Postgraduate in Nanotechnology of the University of Sonora, and CONACyT for the doctorate scholarship. We thank Marwan Abduljawad for his help with UV-Vis spectroscopy characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itzel Arizbe Olivares-Torres.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olivares-Torres, I.A., Alvarado-Rivera, J., Guzmán-Zamudio, R. et al. Adjustable emission of carbon dots and rhodamine B embedded in organic-inorganic hybrid gels for solid-state light devices. J Sol-Gel Sci Technol 106, 186–198 (2023). https://doi.org/10.1007/s10971-023-06048-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06048-3

Keywords

Navigation