Skip to main content
Log in

The promoting effect of Ce on Ag/ZrO2 catalyst for the total oxidation of toluene into CO2 in the presence of water vapor

  • Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The development of advanced catalysts to reduce volatile organic compounds (VOCs) is of significant environmental and economic importance. In this work, toluene was chosen as a representative of VOCs because of its high toxicity to human health. Silver-based catalysts Ag/ZrO2 and Ag/Ce-ZrO2 with 2 wt.% Ag and 10 wt.% Ce were prepared for the low temperature total oxidation of toluene (C7H8) in the presence of water vapor. The effect of cerium species on physicochemical properties and catalytic activity in the toluene oxidation of mesoporous catalysts were investigated. The new Ag/Ce-ZrO2 material possesses the highest catalytic activity in the total oxidation of toluene at low temperature in comparison to Ag/ZrO2. 100% C7H8 conversion to CO2 is achieved between 300 and 550 °C. It reveals that the oxygen species presented in Ag/Ce-ZrO2 are the key factor in toluene oxidation. Silver species increases the amount of surface lattice oxygen species and leads to the migration of lattice oxygen, which effectively facilitates the low-temperature conversion of toluene oxidation.

Graphical Abstract

The graphical abstract briefly describes the mechanism of the toluene oxidation reaction which can be explained as follows: First, toluene molecule was adsorbed on the active site (Ag species) to form the interface Ag and toluene. Ag-C7H8 species react with the activated oxygen at the surface to form CO2 and H2O. Then the gaseous oxygen reoxidates the catalyst.

Highlights

  • Ag/Ce-ZrO2 catalyst shows the highest catalytic activity in the total oxidation of toluene at low temperature compared to Ag/ZrO2.

  • Oxygen species presented in Ag/Ce-ZrO2 are the key factor in toluene oxidation.

  • Ag species facilitate the low-temperature activity of toluene oxidation over Ag/Ce-ZrO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bao L, Zhu S, Chen Y, Yang Y, Meng W, Xu S, Lin Z, Lin X, Sun M, Guo L (2022) Anionic defects engineering of Co3O4 catalyst for toluene oxidation. Fuel 314:122774

    Article  CAS  Google Scholar 

  2. Liotta LF (2010) Catalytic oxidation of volatile organic compounds on supported noble metals. Appl Catal B: Environ 100:403–412

    Article  CAS  Google Scholar 

  3. Bari MA, Kindzierski WB (2018) Ambient volatile organic compounds (VOCs) in Calgary, Alberta: sources and screening health risk assessment. Sci Total Environ 631-632:627–640

    Article  CAS  Google Scholar 

  4. Durme JV, Dewulf J, Sysmans W, Leys C, Langenhove HV (2007) Abatement and degradation pathways of toluene in indoor air by positive corona discharge. Chemosphere 68:1821–1829

    Article  Google Scholar 

  5. Shi XY, Zhang XD, Bi FK, Zheng ZH, Sheng LJ, Xu JC, Wang Z, Yang YQ (2020) Effective toluene adsorption over defective UiO-66-NH2: an experimental and computational exploration. J Mol Liq 316:113812

    Article  CAS  Google Scholar 

  6. Chang T, Lu JQ, Shen ZX, Huang Y, Lu D, Wang X, Cao JJ, Morent R (2019) Simulation and optimization of the post plasma-catalytic system for toluene degradation by a hybrid ANN and NSGA-II method. Appl Catal B: Environ 244:107–119

    Article  CAS  Google Scholar 

  7. Xu XX, Wang PT, Xu WC, Wu JL, Chen LM, Fu ML, Ye DQ (2016) Plasma-catalysis of metal loaded SBA-15 for toluene removal: comparison of continuously introduced and adsorption-discharge plasma system. Chem Eng J 283:276–284

    Article  CAS  Google Scholar 

  8. CABKB Schnelle Jr., Air Pollution Control Technology Handbook, Crc Press, 2001

  9. Jiang N, Lu N, Shang KF, Li J, Wu Y (2013) Innovative approach for benzene degradation using hybrid surface/packed-bed discharge plasmas. Environ Sci Technol 47:9898–9903

    Article  CAS  Google Scholar 

  10. Zhu XB, Zhang S, Yang Y, Zheng CH, Zhou JS, Gao X, Tu X (2017) Enhanced performance for plasma-catalytic oxidation of ethyl acetate over La1-xCexCoO3 catalysts. Appl Catal B: Environ 213:97–105

    Article  CAS  Google Scholar 

  11. Maciuca A, Batiot-Dupeyrat C, Tatibouët J-M (2012) Synergetic effect by coupling photocatalysis with plasma for low VOCs concentration removal from air. Appl Catal B: Environ 125:432–438

    Article  CAS  Google Scholar 

  12. Balzer R, Probst LFD, Drago V, Schreiner WH, Fajardo HV (2014) Catalytic oxidation of volatile organic compaounds (n-hexane, Benzene, Toluene, o-Xylene) promoted by cobalt catalysts supported on γ-Al2O3-CeO2. Braz J Chem Eng 31:757–769

    Article  Google Scholar 

  13. Zeng K, Wang YT, Huang CF, Liu HC, Liu XH, Wang Z, Yu J, Zhang CH (2021) Catalytic combustion of propane over MnNbOx composite oxides: the promotional role of niobium. Ind Eng Chem Res 60:6111–6120

    Article  CAS  Google Scholar 

  14. Zhang CH, Cao HJ, Wang C, He MX, Zhan WC, Guo YL (2021) Catalytic mechanism and pathways of 1, 2-dichloropropane oxidation over LaMnO3 perovskite: an experimental and DFT study. J Hazard Mater 402:123473

    Article  CAS  Google Scholar 

  15. Zhang KY, Dai LY, Liu YX, Deng JG, Jing L, Zhang KF, Hou ZQ, Zhang X, Wang J, Feng Y, Zhang YX, Dai HX (2020) Insights into the active sites of chlorineresistant Pt-based bimetalliccatalysts for benzene oxidation. Appl Catal B: Environ 279:119372

    Article  CAS  Google Scholar 

  16. Zhang CH, Wang YT, Li GQ, Chen L, Zhang QS, Wang D, Li XB, Wang Z (2020) Tuning smaller Co3O4 nanoparticles onto HZSM-5 zeolite via complexing agents for boosting toluene oxidation performance. Appl Surf Sci 532:147320

    Article  CAS  Google Scholar 

  17. Zhang XD, Lv XT, Bi FK, Lu G, Wang YX (2020) Highly efficient Mn2O3 catalysts derived from Mn-MOFs for toluene oxidation: the influence of MOFs precursors. Mol Catal 482:110701

    Article  CAS  Google Scholar 

  18. Zhang XD, Yang Y, Zhu Q, Ma MD, Jiang ZY, Liao X, He C (2021) Unraveling the effects of potassium incorporation routes and positions on toluene oxidation over α-MnO2 nanorods: based on experimental and density functional theory (DFT) studies. J Colloid Interf Sci 598:324–338

    Article  CAS  Google Scholar 

  19. Lin Y, Sun J, Li SJ, Wang D, Zhang CH, Wang Z, Li XB (2020) An efficient Pt/ CeyCoOx composite metal oxide for catalytic oxidation of toluene. Catal Lett 150:3206–3213

    Article  CAS  Google Scholar 

  20. Li SJ, Lin Y, Wang D, Zhang CH, Wang Z, Li XB (2021) Polyhedral cobalt oxide supported Pt nanoparticles with enhanced performance for toluene catalytic oxidation. Chemosphere 263:127870

    Article  CAS  Google Scholar 

  21. Wang Z, Li SJ, Zhang CH, Wang D, Li XB (2021) The opportunities and challenges for NH3 oxidation with 100% conversion and selectivity. Catal Surv Asia 25:103–113

    Article  Google Scholar 

  22. Hyok Ri S, Bi F, Guan A, Zhang X (2021) Manganese-cerium composite oxide pyrolyzed from metal organic framework supporting palladium nanoparticles for efficient toluene oxidation. J Colloid Interface Sci 586:836–846

    Article  CAS  Google Scholar 

  23. Li YF, Xiao LJ, Liu FF, Dou YS, Liu SM, Fan Y, Cheng G, Song W, Zhou JL (2019) Core-shell structure Ag@ Pd nanoparticles supported on layered MnO2 substrate as toluene oxidation catalyst. J Nanopart Res 21:28

    Article  Google Scholar 

  24. Wang DB, Jia FY, Wang H, Chen F, Fang Y, Dong WB, Zeng GM, Li XM, Yang Q, Yuan XZ (2018) Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs. J Colloid Interf Sci 519:273–284

    Article  CAS  Google Scholar 

  25. Dong WB, Wang DB, Wang H, Li MK, Chen F, Jia FY, Yang Q, Li XM, Gong XZ, Li HL, Ye J (2019) Facile synthesis of In2S3/UiO-66 composite with enhanced adsorption performance and photocatalytic activity for the removal of tetracycline under visible light irradiation. J Colloid Interf Sci 535:444–457

    Article  CAS  Google Scholar 

  26. Ismail R, Arfaoui J, Ksibi Z, Ghorbel A, Delahay G (2020) Ag/ZrO2 and Ag/Fe–ZrO2 catalysts for the low temperature total oxidation of toluene in the presence of water vapor. Transit Met Chem 45:501–509

    Article  CAS  Google Scholar 

  27. Ismail R, Arfaoui J, Ksibi Z, Ghorbel A, Delahay G (2020) Effect of the iron amount on the physicochemical properties of Fe–ZrO2 aerogel catalysts for the total oxidation of Toluene in the presence of water vapor. J Porous Mater 27:1847–1852

    Article  CAS  Google Scholar 

  28. Zhu JA, Zhang WR, Qi QP, Zhang HW, Zhang YQ, Sun DK, Liang P (2019) Catalytic oxidation of toluene, ethyl acetate and chlorobenzene over Ag/MnO2- cordierite molded catalyst. Sci Rep. 9:12162

    Article  Google Scholar 

  29. Chen J, Chen X, Chen X, Xu WJ, Xu Z, Jia HP, Chen J (2018) Homogeneous introduction of CeOy into MnOx-based catalyst for oxidation of aromatic VOCs. Appl Catal B: Environ 224:825–835

    Article  CAS  Google Scholar 

  30. Jiang YW, Gao JH, Zhang Q, Liu ZY, Fu ML, Wu JL, Hu Y (2019) Enhanced oxygen vacancies to improve ethyl acetate oxidation over MnOx-CeO2 catalyst derived from MOF template. Chem Eng J 371:78–87

    Article  CAS  Google Scholar 

  31. Zhang XJ, Zhao JG, Song ZX, Liu W, Zhao H, Zhao M, Xing Y, Ma ZA, Du HX (2020) The catalytic oxidation performance of toluene over the Ce-Mn-Ox catalysts: effect of synthetic routes. J Colloid Interf Sci 562:170–181

    Article  CAS  Google Scholar 

  32. Luo YJ, Lin DF, Zheng YB, Feng XS, Chen QH, Zhang K, Wang XY, Jiang LL (2020) MnO2 nanoparticles encapsuled in spheres of Ce-Mn solid solution: efficient catalyst and good water tolerance for low-temperature toluene oxidation. Appl Surf Sci 504:144481

    Article  CAS  Google Scholar 

  33. Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  34. Kruk M, Jaroniec M (2001) Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem Mater 13:3169–3183

    Article  CAS  Google Scholar 

  35. Khaodee W, Tangchupong N, Jongsomjit B, Praserthdam P, Assabumrungrat S (2009) A study on isosynthesis via CO hydrogenation over ZrO2–CeO2 mixed oxide catalysts. Catal Commun 10:494–501

    Article  CAS  Google Scholar 

  36. Guerra-Que Z, Torres-Torres G, Pérez-Vidal H, Cuauhtémoc-Lopez I, Espinosa de los Monteros A, Beltramini JN, Frias-M´arquez DM (2017) Silver nanoparticles supported on zirconia–ceria for the catalytic wet air oxidation of methyl tert-butyl ether. RSC Adv 7:3599–3610

    Article  CAS  Google Scholar 

  37. Ardizzone S, Cattania MG, Lugo P (1994) Interfacial electrostatic behaviour of oxides: correlations with structural and surface paramaters of the phase. Electrochim Acta 39:1509–1517

    Article  CAS  Google Scholar 

  38. Ardizzone S, Bianchi CL, Signoretto M (1998) Zr_(IV) surface chemical state and acid features of sulphated-zirconia samples. Appl Surf Sci 136(136):213–220

    Article  CAS  Google Scholar 

  39. Arfaoui J, Ghorbel A, Petitto C, Delahay G (2018) Novel V2O5-CeO2-TiO2-SO42- nanostructured aerogel catalyst for the low temperature selective catalytic reduction of NO by NH3 in excess O2. Appl Catal B Environ 224:264–275

    Article  CAS  Google Scholar 

  40. Piumetti M, Bensaid S, Russo N, Fino D (2015) Nanostructured ceria-based catalysts for soot combustion: investigations on the surface sensitivity. Appl Catal B Environ 165:742–751

    Article  CAS  Google Scholar 

  41. Wu S, Yang Y, Lu C, Ma Y, Yuan S, Qian G (2018) Soot oxidation over CeO2 or Ag/CeO2: influences of bulk oxygen vacancies and surface oxygen vacancies on activity and stability of catalyst. https://doi.org/10.1002/ejic.201800423

  42. Wu X, Xu L, Weng D (2004) The thermal stability and catalytic performance of Ce-Zr promoted Rh-Pd/g-Al2O3 automotive catalysts. Appl Surf Sci 221:375–383

    Article  CAS  Google Scholar 

  43. Li H, Duan X, Liu G, Liu X (2008) Photochemical synthesis and characterization of Ag/TiO2 nanotube composites. J Mater Sci 43:1669–1676

    Article  CAS  Google Scholar 

  44. Qu Z, Yu F, Zhang X, Wang Y, Gao J (2013) Support effects on the structure and catalytic activity of mesoporous Ag/CeO2 catalysts for CO oxidation. Chem Eng J 229:522–532

    Article  CAS  Google Scholar 

  45. Bethke KA, Kung HH (1997) Supported Ag catalysts for the lean reduction of NO with C3H6. J Catal 172:93–102

    Article  CAS  Google Scholar 

  46. Kundakovic L, Flytzani-Stephanopoulos M (1999) Deep oxidation of methane over zirconia supported Ag catalysts. Appl Catal A Gen 183:35–51

    Article  CAS  Google Scholar 

  47. Yan′e Z, Xing W, Zua L, Kongzhai W, Yuhao W, Yonggang (2014) Characteristic of macroporous CeO2-ZrO2 oxygen carrier for chemical-looping steam methane reforming. J Rare Earth 32:842–848

    Article  Google Scholar 

  48. Zhang J, Li L, Huang X, Li G (2012) Fabrication of Ag–CeO2 core–shell nanospheres with enhanced catalytic performance due to strengthening of the interfacial interactions. J Mater Chem 22:10480–10487

    Article  CAS  Google Scholar 

  49. Hengne AM, Malawadkar AV, Biradar NS, Rode CV (2012) Surface synergism of Ag-Ni-ZrO2 nanocomposite for catalytic transfer hydrogenation of bio-derived platform molecules. RSC Adv 4:9730–9736

    Article  Google Scholar 

  50. Zh. Todorova S, Kolev HG, Shopska MG, Kadinov GB, Holgado JP, Caballero A (2018) Silver-based catalysts for preferential CO oxidation in hydrogen-rich gases (PROX). Bulg Chem Commun 50:17–23

    Google Scholar 

  51. Sung YE, Lee WY, Rhee HK, Lee HI (1989) the effect of oxygen on the chemisorption on polycrystalline silver surface. Kor J Chem Eng 6:300–305

    Article  CAS  Google Scholar 

  52. Kongzhai L, Hua W, Yonggang W, Mingchun L (2008) Catalytic performance of cerium iron complex oxides for partial oxidation of methane to synthesis gas. J Rare Earth 26:705–710

    Article  Google Scholar 

  53. Petitto C, Mutin HP, Delahay G (2013) Hydrothermal activation of silver supported alumina catalysts prepared by sol–gel method: Application to the selective catalytic reduction (SCR) of NOx by n-decane. Appl Catal B 135:258–264

    Article  Google Scholar 

  54. Arfaoui J, Boudali LK, Ghorbel A (2010) Catalytic epoxidation of allylic alcohol (E)-2-Hexen-1-ol over vanadium supported on unsulfated and sulfated titanium pillared montmorillonite catalysts: effect of sulfate groups and vanadium loading. Appl Clay Sci 48:171–178

    Article  CAS  Google Scholar 

  55. Solsona B, Garcia T, Agouram S, Hutchings GJ, Taylor SH (2011) The effect of gold addition on the catalytic performance of copper manganese oxide catalysts for the total oxidation of propane. Appl Catal B Environ 101:388–396

    Article  CAS  Google Scholar 

  56. Yang H, Deng J, Xie S, Jiang Y, Dai H, Au CT (2015) Au/MnOx/3DOM SiO2: Highly active catalysts for toluene oxidation. Appl Catal A Gen 507:139–148

    Article  CAS  Google Scholar 

  57. Chen J, Chen X, Chen X, Xu W, Xu Z, Jia H, Chen J (2018) Homogeneous introduction of CeOy into MnOx-based catalyst for oxidation of aromatic VOCs. Appl Catal B Environ 224:825–835

    Article  CAS  Google Scholar 

  58. Yamazaki K, Kayama T, Dong F, Shinjoh H (2011) A mechanistic study on soot oxidation over CeO2–Ag catalyst with ‘rice-ball’ morphology. J Catal 282:289–298

    Article  CAS  Google Scholar 

  59. Choi K, Lee D, Kim H, Yoon Y, Park C, Kim Y (2016) Reaction characteristics of precious-metal-free ternary MnCuM (M = Ce Co, Cr, and Fe) oxide catalysts for low-temperature CO oxidation. Ind Eng Chem Res 55:4443–4450

    Article  CAS  Google Scholar 

  60. Qin Y, Wang H, Dong C, Qu ZP (2019) Evolution and enhancement of the oxygen cycle in the catalytic performance of total toluene oxidation over manganese-based catalysts. J Catal 380:21–31

    Article  CAS  Google Scholar 

  61. Zhang CG, Chu W, Chen F, Li L, Jiang RY, Yan JL (2020) Effects of cerium precursors on surface properties of mesoporous CeMnOx catalysts for toluene combustion. J Rare Earths 38:70–75

    Article  CAS  Google Scholar 

  62. Qin Y, Qu Z, Dong C, Huang N (2017) Effect of pretreatment conditions on catalytic activity of Ag/SBA-15 catalyst for toluene oxidation. Chin J Catal 38:1603–1612

    Article  CAS  Google Scholar 

  63. Li J, Qu Z, Qin Y, Wang H (2016) Effect of MnO2 morphology on the catalytic oxidation of toluene over Ag/MnO2 catalysts. Appl Surf Sci 385:234–240

    Article  CAS  Google Scholar 

  64. Dou B, Yang D, Kang T, Xu Y, Hao Q, Bin F, Xu X (2021) Morphology effects of CeO2-ZrO2 on the catalytic performance of CuO/ CeO2-ZrO2 for toluene oxidation. Carbon Resour Convers 4:55–60

    Article  CAS  Google Scholar 

  65. Ri SH, Bi F, Guan A, Zhang X (2020) Manganese-cerium composite oxide pyrolyzed from metal organic framework supporting palladium nanoparticles for efficient toluene oxidation. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2020.11.008.

  66. Ren Z, Wu Z, Song W, Xiao W, Guo Y, Ding J, Suib SL, Gao P-X (2016) Low temperature propane oxidation over Co3O4 based nano-array catalysts: Ni dopant effect, reaction mechanism and structural stability. Appl Catal B Environ 180:150–160

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the ministry of higher education and scientific research of Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rimeh Ismail.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, R., Arfaoui, J., Ksibi, Z. et al. The promoting effect of Ce on Ag/ZrO2 catalyst for the total oxidation of toluene into CO2 in the presence of water vapor. J Sol-Gel Sci Technol 105, 871–880 (2023). https://doi.org/10.1007/s10971-023-06043-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06043-8

Keywords

Navigation