Skip to main content

Advertisement

Log in

Facile fabrication and antifogging test of a calcination-free SiO2 superhydrophilic coating

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The low cost, accessibility, and ease of implementation of SiO2 hydrophilic coatings should encourage further promotion as practical surface treatments. The calcination process, however, poses an obstacle to convenience. Herein, a calcination-free, antifogging SiO2 superhydrophilic coating was prepared at room temperature by sol–gel method with the guidance of particle gradation theory, which was used to regulate the size and concentration of colloid nanoparticles. The surface micromorphology, roughness, and water contact angle (WCA) of coatings were characterized and measured using scanning electron microscope (SEM), atomic force microscope (AFM), and contact angle measuring equipment. The antifogging capability of superhydrophilic coating was also examined. It has been found that hydrophilicity of coatings can be significantly improved by reasonable particle gradation design. The closer the particle packing pattern is to the hexagonal close-packing model, the better the hydrophilicity of coatings. When the concentration ratio of particle diameter 60.29, 9.26, and 3.68 nm is 15:4:1, the coating exhibits exceptional hydrophilicity (WCA, 2.3°) and outstanding anti-fogging performance. An implication of this study is that a versatile and easily manipulated strategy is presented here for designing surface microstructures that are sensitive to roughness.

Graphical Abstract

Highlights

  • The calcination-free SiO2 superhydrophilic coating was successfully prepared by the sol-gel method.

  • Reasonable matching of colloidal silica particle size can effectively improve the coating hydrophilic performance.

  • The silica coating exhibits exceptional hydrophilicity (WCA, 2.3°) and outstanding anti-fogging performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Otitoju TA, Ahmad AL, Ooi BS (2017) Superhydrophilic (superwetting) surfaces: a review on fabrication and application. J Ind Eng Chem 47:19–40. https://doi.org/10.1016/j.jiec.2016.12.016

    Article  CAS  Google Scholar 

  2. Zheng S, Wang D, Tian Y, Jiang L (2016) Superhydrophilic coating induced temporary conductivity for low-cost coating and patterning of insulating surfaces. Adv Funct Mater 26(48):9018–9025. https://doi.org/10.1002/adfm.201602843

    Article  CAS  Google Scholar 

  3. Yao L, He J (2014) Recent progress in antireflection and self-cleaning technology—from surface engineering to functional surfaces. Prog Mater Sci 61:94–143. https://doi.org/10.1016/j.pmatsci.2013.12.003

    Article  Google Scholar 

  4. Lu X, Wang Z, Yang X, Xu X, Zhang L, Zhao N, Xu J (2011) Antifogging and antireflective silica film and its application on solar modules. Surf Coat Technol 206(6):1490–1494. https://doi.org/10.1016/j.surfcoat.2011.09.031

    Article  CAS  Google Scholar 

  5. Kim K, Dhungel SK, Jung S, Mangalaraj D, Yi J (2008) Texturing of large area multi-crystalline silicon wafers through different chemical approaches for solar cell fabrication. Sol Energy Mater Sol Cells 92(8):960–968. https://doi.org/10.1016/j.solmat.2008.02.036

    Article  CAS  Google Scholar 

  6. Lobo AO, Corat MA, Ramos SC, Matsushima JT, Granato AE, Pacheco-Soares C, Corat EJ (2010) Fast preparation of hydroxyapatite/superhydrophilic vertically aligned multiwalled carbon nanotube composites for bioactive application. Langmuir 26(23):18308–18314. https://doi.org/10.1021/la1034646

    Article  CAS  Google Scholar 

  7. Weng X, Ji Y, Ma R, Zhao F, An Q, Gao C (2016) Superhydrophilic and antibacterial zwitterionic polyamide nanofiltration membranes for antibiotics separation. J Membr Sci 510:122–130. https://doi.org/10.1016/j.memsci.2016.02.070

    Article  CAS  Google Scholar 

  8. Lu T, Xu X, Liu X, Sun T (2017) Super hydrophilic PVDF based composite membrane for efficient separation of tetracycline. Chem Eng J 308:151–159. https://doi.org/10.1016/j.cej.2016.09.009

    Article  CAS  Google Scholar 

  9. Liang S, Kang Y, Tiraferri A, Giannelis EP, Huang X, Elimelech M (2013) Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes via postfabrication grafting of surface-tailored silica nanoparticles. ACS Appl Mater Inter 5(14):6694–6703. https://doi.org/10.1021/am401462e

    Article  CAS  Google Scholar 

  10. Hancock MJ, Piraino F, Camci-Unal G, Rasponi M, Khademhosseini A (2011) Anisotropic material synthesis by capillary flow in a fluid stripe. Biomaterials 32(27):6493–6504. https://doi.org/10.1016/j.biomaterials.2011.05.057

    Article  CAS  Google Scholar 

  11. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Light-induced amphiphilic surfaces. Nature 388(6641):431–432. https://doi.org/10.1038/41233

    Article  CAS  Google Scholar 

  12. Wang J, Wang D, Wang J, Zhao W, Wang C (2011) High transmittance and superhydrophilicity of porous TiO2/SiO2 bi-layer films without UV irradiation. Surf Coat Technol 205(12):3596–3599. https://doi.org/10.1016/j.surfcoat.2010.12.033

    Article  CAS  Google Scholar 

  13. Tricoli A, Righettoni M, Pratsinis SE (2009) Anti-fogging nanofibrous SiO2 and nanostructured SiO2-TiO2 films made by rapid flame deposition and in situ annealing. Langmuir 25(21):12578–12584. https://doi.org/10.1021/la901759p

    Article  CAS  Google Scholar 

  14. Wang X, Ding H, Lv G, Zhou R, Ma R, Hou X, Zhang J, Li W (2022) Fabrication of superhydrophilic self-cleaning SiO2–TiO2 coating and its photocatalytic performance. Ceram Int 48(14):20033–20040. https://doi.org/10.1016/j.ceramint.2022.03.278

    Article  CAS  Google Scholar 

  15. Li X, He J (2013) Synthesis of raspberry-like SiO2-TiO2 nanoparticles toward antireflective and self-cleaning coatings. ACS Appl Mater Inter 5(11):5282–5290. https://doi.org/10.1021/am401124j

    Article  CAS  Google Scholar 

  16. Chen Y, Zhang C, Huang W, Yang C, Huang T, Situ Y, Huang H (2014) Synthesis of porous ZnO/TiO2 thin films with superhydrophilicity and photocatalytic activity via a template-free sol–gel method. Surf Coat Technol 258:531–538. https://doi.org/10.1016/j.surfcoat.2014.08.042

    Article  CAS  Google Scholar 

  17. Wu J, Xia J, Lei W, Wang B-p (2011) A one-step method to fabricate lotus leaves-like ZnO film. Mater Lett 65(3):477–479. https://doi.org/10.1016/j.matlet.2010.10.029

    Article  CAS  Google Scholar 

  18. Chen H, Li X, Li D (2022) Superhydrophilic–superhydrophobic patterned surfaces: from simplified fabrication to emerging applications. Nanotechnol Precis Eng 5 (3). https://doi.org/10.1063/10.0013222

  19. Ye L, Zhang Y, Song C, Li Y, Jiang B (2017) A simple sol–gel method to prepare superhydrophilic silica coatings. Mater Lett 188:316–318. https://doi.org/10.1016/j.matlet.2016.09.043

    Article  CAS  Google Scholar 

  20. Du X, Li X, He J (2010) Facile fabrication of hierarchically structured silica coatings from hierarchically mesoporous silica nanoparticles and their excellent superhydrophilicity and superhydrophobicity. ACS Appl Mater Interfaces 2(8):2365–2372. https://doi.org/10.1021/am1003766

    Article  CAS  Google Scholar 

  21. Liu X, He J (2007) Hierarchically structured superhydrophilic coatings fabricated by self-assembling raspberry-like silica nanospheres. J Colloid Interface Sci 314(1):341–345. https://doi.org/10.1016/j.jcis.2007.05.011

    Article  CAS  Google Scholar 

  22. Liu X, He J (2009) Superhydrophilic and antireflective properties of silica nanoparticle coatings fabricated via layer-by-layer assembly and postcalcination. J Phys Chem C 113(1):148–152. https://doi.org/10.1021/jp808324c

    Article  CAS  Google Scholar 

  23. Li X, He J (2012) In situ assembly of raspberry- and mulberry-like silica nanospheres toward antireflective and antifogging coatings. ACS Appl Mater Inter 4(4):2204–2211. https://doi.org/10.1021/am3002082

    Article  CAS  Google Scholar 

  24. Lai Y, Lin C, Wang H, Huang J, Zhuang H, Sun L (2008) Superhydrophilic–superhydrophobic micropattern on TiO2 nanotube films by photocatalytic lithography. Electrochem Commun 10(3):387–391. https://doi.org/10.1016/j.elecom.2007.12.020

    Article  CAS  Google Scholar 

  25. Liu H, Feng L, Zhai J, Jiang L, Zhu D (2004) Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity. Langmuir 20(14):5659–5661. https://doi.org/10.1021/la036280o

    Article  CAS  Google Scholar 

  26. Çağlar A, Cengiz U, Yıldırım M, Kaya İ (2015) Effect of deposition charges on the wettability performance of electrochromic polymers. Appl Surf Sci 331:262–270. https://doi.org/10.1016/j.apsusc.2015.01.103

    Article  CAS  Google Scholar 

  27. Godeau G, Darmanin T, Guittard F (2016) Switchable surfaces from highly hydrophobic to highly hydrophilic using covalent imine bonds. J Appl Polym Sci 133 (11). https://doi.org/10.1002/app.43130

  28. Topçu Kaya AS, Cengiz U (2019) Fabrication and application of superhydrophilic antifog surface by sol–gel method. Prog Org Coat 126:75–82. https://doi.org/10.1016/j.porgcoat.2018.10.021

    Article  CAS  Google Scholar 

  29. Cebeci FÇ, Wu Z, Zhai L, Cohen RE, Rubner MF (2006) Nanoporosity-driven superhydrophilicity: a means to create multifunctional antifogging coatings. Langmuir 22(6):2856–2862. https://doi.org/10.1021/la053182p

    Article  CAS  Google Scholar 

  30. Lin X, Hwangbo S, Jeong H, Cho Y-A, Ahn H-W, Hong J (2016) Organosilicate based superhydrophilic nanofilm with enhanced durability for dentistry application. J Ind Eng Chem 36:30–34. https://doi.org/10.1016/j.jiec.2016.02.017

    Article  CAS  Google Scholar 

  31. Moazzam P, Tavassoli H, Razmjou A, Warkiani ME, Asadnia M (2018) Mist harvesting using bioinspired polydopamine coating and microfabrication technology. Desalination 429:111–118. https://doi.org/10.1016/j.desal.2017.12.023

    Article  CAS  Google Scholar 

  32. Kim JH, Shim TS, Kim S-H (2016) Lithographic design of overhanging microdisk arrays toward omniphobic surfaces. Adv Mater 28(2):291–298. https://doi.org/10.1002/adma.201503643

    Article  CAS  Google Scholar 

  33. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69. https://doi.org/10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the science foundation of the National Key Laboratory Foundation of Science and Technology on Advanced Composites in the Special Environments and Shenzhen Science and Technology Program (Grant No. KQTD2016112814303055).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingwei Li or Xiaodong He.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Sun, Y., Zeng, G. et al. Facile fabrication and antifogging test of a calcination-free SiO2 superhydrophilic coating. J Sol-Gel Sci Technol 105, 662–672 (2023). https://doi.org/10.1007/s10971-023-06042-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06042-9

Keywords

Navigation