Skip to main content

Advertisement

Log in

Construction of bimetallic co-doped ordered mesoporous MxCey/(TiO2)z@SiO2 aerogel composite material and its photocatalytic performance under visible light

  • Original Paper: Sol-gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Dye (such as Rhodamine B) is an organic pollutant, which has become a serious environmental pollution problem due to its pollution of soil, groundwater, aquatic ecosystem and biological health. In this study, bimetallic co-doped ordered mesoporous MxCey/(TiO2)z@SiO2 aerogel composites were prepared by sol-gel combined with atmospheric pressure drying method. The synthesized catalysts were characterized by scanning electron microscope, energy dispersive spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, N2 adsorption techniques, fluorescence spectra, transmission electronic microscope and ultraviolet visible diffuse reflectance spectroscopy. Rhodamine B was used as a simulated organic pollutant, and the photocatalytic degradation activity of aerogel catalysts was evaluated under visible light. The results show that all the catalysts have good adsorption capacity, and the adsorption rate is up to 30–50% due to the large specific surface area of SiO2 aerogel carrier. When the metal ion is 5 mol%, the optimum doping concentration of titanium is 60 mol%. The catalysts containing Y and Zn showed the best catalytic performance, and the degradation rate reached about 98% after 180 min of photoreaction. The doping of appropriate amount of rare earth elements and transition metal elements not only contributes to light absorption and matrix adsorption, promotes the formation of hydroxyl radicals, but also reduces the band gap of the catalyst and has high photogenerated carrier transfer efficiency. Therefore, the visible light degradation performance of the catalyst is obviously improved.

Graphical abstract

The picture consists of three parts: first, the preparation of the catalysts (various raw materials are stirred continuously and adjusted pH, and then the catalyst is obtained by solvent exchange, drying and roasting); second, the catalytic process (catalysis is carried out in a dark box with a visible light source); third, the possible mechanism of catalysis.

Highlights

  • MxCey/(TiO2)z@SiO2 aerogel composites were prepared by sol–gel combined with atmospheric pressure drying method.

  • The specific surface area of the catalysts is mainly between 200 and 300 m2/g, and the pollutant adsorption rate can reach 30–50%.

  • When the metal ion is 5 mol%, the optimum doping concentration of titanium is 60 mol%.

  • The catalyst containing Y and Zn showed the best catalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Da Silva WL, Leal BC, Ziulkoski AL, Van Leeuwen PW, Dos Santos JHZ, Schrekker HS (2019) Petrochemical residue-derived silica-supported titania-magnesium catalysts for the photocatalytic degradation of imidazolium ionic liquids in water. Sep Purif Technol 218:191–199. https://doi.org/10.1016/j.seppur.2019.01.066

    Article  CAS  Google Scholar 

  2. Muraro PCL, Pinheiro LDSM, Chuy G, Vizzotto BS, Pavoski G, Espinosa DCR, Da Silva WL (2022) Silver nanoparticles from residual biomass: Biosynthesis, characterization and antimicrobial activity. J Biotechnol 343:47–51. https://doi.org/10.1016/j.jbiotec.2021.11.003

    Article  CAS  Google Scholar 

  3. Oviedo LR, Muraro PCL, Pavoski G, Espinosa DCR, Ruiz YPM, Galembeck A, Da Silva WL (2022) Synthesis and characterization of nanozeolite from (agro) industrial waste for application in heterogeneous photocatalysis. Environ Sci Pollut Res 29(3):3794–3807. https://doi.org/10.1007/s11356-021-15815-0

    Article  CAS  Google Scholar 

  4. Da Silva WL, Hamilton JWJ, Sharma PK, Dunlop PSM, Byrne JA, Dos Santos JHZ (2021) Agro and industrial residues: Potential raw materials for photocatalyst development. J Photochem Photobio A 411:113184. https://doi.org/10.1016/j.jphotochem.2021.113184

    Article  CAS  Google Scholar 

  5. Wang J, Li R, Zhang Z, Sun W, Xie Y, Xu R, Xing Z, Zhang X (2008) Solar photocat-alytic degradation of dye wastewater in the presence of heat-treated anatase TiO2 powder. Environ Prog 27:242–249. https://doi.org/10.1002/ep.10256

    Article  CAS  Google Scholar 

  6. Galinado C, Jacques P, Kalt A (2001) Photooxidation of the phenylazonaphthol AO20 on TiO2: kinetic and mechanistic investigations. Chemosphere 45:997–1005. https://doi.org/10.1016/S0045-6535(01)00118-7

    Article  Google Scholar 

  7. Vautier M, Guillard C, Herrmann JM (2001) Photocatalytic degradation of dyes in water: case study of indigo and of indigo Carmine. J Catal 201:46–59. https://doi.org/10.1006/jcat.2001.3232

    Article  CAS  Google Scholar 

  8. Lachheb H, Puzenat E, Houas A, Ksibi M, Elaloui E, Guillard C, Herrmann JM (2002) Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl J Catal B: Environ 39:75–90. https://doi.org/10.1016/S0926-3373(02)00078-4

    Article  CAS  Google Scholar 

  9. Sauer T, Neto GC, José HJ, Moreira RFPM (2002) Kinetics of photocatalytic degra-dation of reactive dyes in a TiO2. slurry React J Photochem Photobio A 149:147–154. https://doi.org/10.1016/S1010-6030(02)00015-1

    Article  CAS  Google Scholar 

  10. Li X, Yin P, Zhao L (2016) Phthalate esters in water and surface sediments of the Pearl River Estuary: distribution, ecological, and human health risks. Environ Sci Pollut Res 23(19):19341–19349. https://doi.org/10.1007/s11356-016-7143-x

    Article  CAS  Google Scholar 

  11. Mittal A, Malviya A, Kaur D, Mittal J, Kurup L (2007) Studies on the adsorption kinetics and isotherms for the removal and recovery of Methyl Orange from wastewaters using waste materials. J Hazard Mater 148:229–240. https://doi.org/10.1016/j.jhazmat.2007.02.028

    Article  CAS  Google Scholar 

  12. Kornbrust D, Barfknecht T (1985) Testing of 24 food, drug, cosmetic, and fabric dyes in the in vitro and the in vivo/in vitro rat hepatocyte primary culture DNA repair assays. Environ Mutagen 7:101–120. https://doi.org/10.1002/em.2860070106

    Article  CAS  Google Scholar 

  13. Zhang N, Yang MQ, Liu S, Sun Y, Xu YJ (2015) Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem Rev 115(18):10307–10377. https://doi.org/10.1021/acs.chemrev.5b00267

    Article  CAS  Google Scholar 

  14. Da Silva WL, Dos Santos JH (2017) Ecotechnological strategies in the development of alternative photocatalysts. Curr Opin Green Sustain Chem 6:63–68. https://doi.org/10.1016/j.cogsc.2017.06.001

    Article  Google Scholar 

  15. Kansal SK, Singh M, Sud D (2007) Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. J Hazard Mater 141(3):581–590

    Article  CAS  Google Scholar 

  16. Da Silva WL, Lansarin MA, Dos Santos JHZ (2016) Industrial and agroindustrial wastes: An echotechnological approach to the production of supported photocatalysts. Water Sci Technol 73(1):28–38. https://doi.org/10.1016/j.jhazmat.2006.07.035

    Article  CAS  Google Scholar 

  17. Silva WLD, Lansarin MA, Moro CC (2013) Síntese, caracterização e atividade fotocatalítica de catalisadores nanoestruturados de TiO2 dopados com metais. Quim Nova 36:382–386. https://doi.org/10.1590/S0100-40422013000300006

    Article  Google Scholar 

  18. Zhang N, Yang MQ, Liu S, Sun Y, Xu YJ (2015) Titanium dioxide (TiO2) mesocrystals: Synthesis, growth mechanisms and photocatalytic properties. Catalysts 9(1):91. https://doi.org/10.3390/catal9010091

    Article  CAS  Google Scholar 

  19. Bai H, Zhou J, Zhang H, Tang G (2017) Enhanced adsorbability and photocatalytic activity of TiO2-graphene composite for polycyclic aromatic hydrocarbons removal in aqueous phase. Colloids Surf B 150:68–77. https://doi.org/10.1016/j.colsurfb.2016.11.017

    Article  CAS  Google Scholar 

  20. Ohno T (2006) Development of visible light sensitive TiO2 photocatalysts and their sensitization using Fe3+ ions. J Jpn Pet Inst 49(4):168–176. https://doi.org/10.1627/jpi.49.168

    Article  CAS  Google Scholar 

  21. Inturi SNR, Boningari T, Suidan M, Smirniotis PG (2014) Visible-light-induced photodegradation of gas phase acetonitrile using aerosol-made transition metal (V, Cr, Fe, Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) doped TiO2. Appl Catal B 144:333–342. https://doi.org/10.1016/j.apcatb.2013.07.032

    Article  CAS  Google Scholar 

  22. Sun M, Lei Y, Cheng H, Ma J, Qin Y, Kong Y, Komarneni S (2020) Mg doped CuO-Fe2O3 composites activated by persulfate as highly active heterogeneous catalysts for the degradation of organic pollutants. J Alloy Compd 825:154036–154044. https://doi.org/10.1016/j.jallcom.2020.154036

    Article  CAS  Google Scholar 

  23. Wang S, Tian J, Wang Q, Xiao F, Gao S, Shi W, Cui F (2019) Development of CuO coated ceramic hollow fiber membrane for peroxymonosulfate activation: a highly efficient singlet oxygen-dominated oxidation process for bisphenol a degradation. Appl Catal B 256:117783. https://doi.org/10.1016/j.apcatb.2019.117783

    Article  CAS  Google Scholar 

  24. Zhou F, Jing W, Liu P, Han D, Jiang Z, Wei Z (2017) Doping Ag in ZnO nanorods to improve the performance of related enzymatic glucose sensors. Sensors 17.10:214. https://doi.org/10.3390/s17102214

    Article  CAS  Google Scholar 

  25. Zhang H, Liu B (2021) Preparation, characterization, and photocatalytic properties of self-standing pure and Cu-doped TiO2 nanobelt membranes. ACS omega 6(7):4534–4541. https://doi.org/10.1021/acsomega.0c03873

    Article  CAS  Google Scholar 

  26. Zhang C, Guo C, Li T, Ren X, Mao Y, Wei Y, Hou L (2017) Doping Ni: an effective strategy enhancing electrochemical performance of MnCO3 electrode materials for supercapacitors. J Mater Sci 52:1477–1485. https://doi.org/10.1007/s10853-016-0443-1

    Article  CAS  Google Scholar 

  27. Chen WF, Chen H, Bahmanrokh G, Koshy P, Nakaruk A, Sorrell CC (2020) Synergistic effect of Co + Mo codoping on the photocatalytic performance of titania thin films. Int J Hydrog Energy 45(46):24558–24566. https://doi.org/10.1016/j.ijhydene.2020.06.017

    Article  CAS  Google Scholar 

  28. Oh WD, Lua SK, Dong Z, Lim TT (2014) High surface area DPA-hematite for efficient detoxification of bisphenol A via peroxymonosulfate activation. J Mater 2.38:15836–15845. https://doi.org/10.1039/c4ta02758b

    Article  Google Scholar 

  29. Zhou YB, Zhang YL, Hu XM (2020) Synergistic couplingCo3Fe7 alloy and Co Fe2O4 spinel for highly efficient removal of 2, 4-dichlorophenol by activating peroxymonosulfate. Chemosphere 242:125244–125256. https://doi.org/10.1016/j.chemosphere.2019.125244

    Article  CAS  Google Scholar 

  30. Dong CD, Huang CP, Nguyen TB, Hsiung CF, Wu CH, Lin YL, Hung CM (2019) The degradation of phthalate esters in marine sediments by persulfate over iron-cerium oxide catalyst. Sci Total Environ 696:133973–133982. https://doi.org/10.1016/j.scitotenv.2019.133973

    Article  CAS  Google Scholar 

  31. Liang Y, Sun S, Deng T, Ding H, Chen W, Chen Y (2018) The preparation of TiO2 film by the sol-gel method and evaluation of its self-cleaning property. Materials 11.3:450. https://doi.org/10.3390/ma11030450

    Article  CAS  Google Scholar 

  32. Das A, Patra M, Bhagavathiachari M, Nair RG (2021) Defect-induced visible-light-driven photocatalytic and photoelectrochemical performance of ZnO–CeO2 nanoheterojunctions. J Alloy Compd 858:157730. https://doi.org/10.1016/j.jallcom.2020.157730

    Article  CAS  Google Scholar 

  33. Kubacka A, Muñoz-Batista MJ, Fernández-García M, Obregón S, Colón G (2015) Evolution of H2 photoproduction with Cu content on CuOx-TiO2 composite catalysts prepared by a microemulsion method. Appl Catal B 163:214–222. https://doi.org/10.1016/j.apcatb.2014.08.005

    Article  CAS  Google Scholar 

  34. Zeng G, Zhang Q, Liu Y, Zhang S, Guo J (2019) Preparation of TiO2 and Fe-TiO2 with an impinging stream-rotating packed bed by the precipitation method for the photodegradation of gaseous toluene. Nanomaterials 9.8:1173. https://doi.org/10.3390/nano9081173

    Article  CAS  Google Scholar 

  35. Rasoulnezhad H, Hosseinzadeh G, Hosseinzadeh R, Ghasemian N (2018) Preparation of transparent nanostructured N-doped TiO2 thin films by combination of sonochemical and CVD methods with visible light photocatalytic activity. J Adv Ceram 7.3:185–196. https://doi.org/10.1007/s40145-018-0270-8

    Article  CAS  Google Scholar 

  36. Kadam AN, Dhabbe RS, Kokate MR, Gaikwad YB, Garadkar KM (2014) Preparation of N doped TiO2 via microwave-assisted method and its photocatalytic activity for degradation of Malathion. Spectrochim Acta A Mol Biomol Spectrosc 133:669–676. https://doi.org/10.1016/j.saa.2014.06.020

    Article  CAS  Google Scholar 

  37. Mißfeldt F, Gurikov P, Lölsberg W, Weinrich D, Lied F, Fricke M, Smirnova I (2020) Continuous supercritical drying of aerogel particles: proof of concept. Ind Eng Chem Res 59.24:11284–11295. https://doi.org/10.1021/acs.iecr.0c01356

    Article  CAS  Google Scholar 

  38. Li Y, Grishkewich N, Liu L, Wang C, Tam KC, Liu S, Sui X (2019) Construction of functional cellulose aerogels via atmospheric drying chemically cross-linked and solvent exchanged cellulose nanofibrils. Chem Eng J 366:531–538. https://doi.org/10.1016/j.cej.2019.02.111

    Article  CAS  Google Scholar 

  39. Zhang X, Zhao X, Xue T, Yang F, Fan W, Liu T (2020) Bidirectional anisotropic polyimide/bacterial cellulose aerogels by freeze-drying for super-thermal insulation. Chem Eng J 85:123963. https://doi.org/10.1016/j.cej.2019.123963

    Article  Google Scholar 

  40. Hwang SW, Jung HH, Hyun SH, Ahn YS (2007) Effective preparation of crack-free silica aerogels via ambient drying. J Solgel Sci Technol 41(2):139–146. https://doi.org/10.1007/s10971-006-0513-y

    Article  CAS  Google Scholar 

  41. Maleki H, Duraes L, Portugal A (2015) Development of mechanically strong ambient pressure dried silica aerogels with optimized properties. J Phys Chem C 119(14):7689–7703. https://doi.org/10.1021/jp5116004

    Article  CAS  Google Scholar 

  42. Bickley RI, Gonzalez-Carreno T, Lees JS, Palmisano L, Tilley RJ (1991) A structural investigation of titanium dioxide photocatalysts. J Solid State Chem 92(1):178–190. https://doi.org/10.1016/0022-4596(91)90255-G

    Article  CAS  Google Scholar 

  43. Reeves P, Ohlhausen R, Sloan D, Pamplin K, Scoggins T, Clark C, Green D (1992) Photocatalytic destruction of organic dyes in aqueous TiO2 suspensions using concentrated simulated and natural solar energy. Sol Energy 48(6):413–420. https://doi.org/10.1016/0038-092X(92)90050-K

    Article  CAS  Google Scholar 

  44. Vo TG, Chiang CY (2021) Highly efficient amorphous binary cobalt-cerium metal oxides for selective oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran. J Catal 404:560–569. https://doi.org/10.1016/j.jcat.2021.10.032

    Article  CAS  Google Scholar 

  45. Carnera A, Mazzoldi P, Boscolo-Boscoletto A, Caccavale F, Bertoncello R, Granozzi G, Battaglin G (1990) On the formation of silicon oxynitride by ion implantation in fused silica. J Non Cryst Solids 125(3):293–301. https://doi.org/10.1016/0022-3093(90)90861-F

    Article  CAS  Google Scholar 

  46. Larsson PO, Andersson A, Wallenberg LR, Svensson B (1996) Combustion of CO and toluene; characterisation of copper oxide supported on titania and activity comparisons with supported cobalt, iron, and manganese oxide. J Catal 163(2):279–293. https://doi.org/10.1006/jcat.1996.0329

    Article  CAS  Google Scholar 

  47. Asiltürk M, Sayılkan F, Erdemoğlu S, Akarsu M, Sayılkan H, Erdemoğlu M, Arpaç E (2006) Characterization of the hydrothermally synthesized nano-TiO2 crystallite and the photocatalytic degradation of Rhodamine B. J Hazard Mater 129(1-3):164–170. https://doi.org/10.1016/j.jhazmat.2005.08.027

    Article  CAS  Google Scholar 

  48. Natarajan TS, Thomas M, Natarajan K, Bajaj HC, Tayade RJ (2011) Study on UV-LED/TiO2 process for degradation of Rhodamine B dye. Chem Eng J 169(1-3):126–134. https://doi.org/10.1016/j.cej.2011.02.066

    Article  CAS  Google Scholar 

  49. Zhang J, Song YAN, Lu FU, Fei WANG, Mengqiong YUAN, Genxiang LUO, Can LI (2011) Photocatalytic degradation of rhodamine B on anatase, rutile, and brookite TiO2. Chin J Catal 32(6-8):983–991. https://doi.org/10.1016/S1872-2067(10)60222-7

    Article  CAS  Google Scholar 

  50. Pol R, Guerrero M, García-Lecina E, Altube A, Rossinyol E, Garroni S, Pellicer E (2016) Ni, Pt-and (Ni/Pt)-doped TiO-2 nanophotocatalysts: a smart approach for sustainable degradation of Rhodamine B dye. Appl Catal B 181:270–278. https://doi.org/10.1016/j.apcatb.2015.08.006

    Article  CAS  Google Scholar 

  51. Wang F, Zhang K (2011) Reduced graphene oxide-TiO2 nanocomposite with high photocatalystic activity for the degradation of rhodamine B. J Mol Catal A Chem 345(1-2):101–107. https://doi.org/10.1016/j.molcata.2011.05.026

    Article  CAS  Google Scholar 

  52. Ruíz-Santoyo V, Marañon-Ruiz VF, Romero-Toledo R, González Vargas OA, Pérez-Larios A (2021) Photocatalytic degradation of rhodamine B and methylene orange using TiO2-ZrO2 as nanocomposite. Catalysts 11(9):1035. https://doi.org/10.3390/catal11091035

    Article  CAS  Google Scholar 

  53. Isari AA, Payan A, Fattahi M, Jorfi S, Kakavandi B (2018) Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO2 anchored on reduced graphene oxide (Fe-TiO2/rGO): Characterization and feasibility, mechanism and pathway studies. Appl Surf Sci 462:549–564. https://doi.org/10.1016/j.apsusc.2018.08.133

    Article  CAS  Google Scholar 

  54. Wang B, Zhang G, Sun Z, Zheng S, Frost RL (2015) A comparative study about the influence of metal ions (Ce, La and V) doping on the solar-light-induced photodegradation toward rhodamine B. J Environ Chem Eng 3(3):1444–1451. https://doi.org/10.1016/j.jece.2015.05.007

    Article  CAS  Google Scholar 

  55. Mahlambi MM, Mishra AK, Mishra SB, Krause RW, Mamba BB, Raichur AM (2013) Metal doped nanosized titania used for the photocatalytic degradation of rhodamine B dye under visible-light. J Nanosci Nanotechnol 13(7):4934–4942. https://doi.org/10.1166/jnn.2013.7587

    Article  CAS  Google Scholar 

  56. Li J, Liu Y, Zhou Y, Liu S, Liang Y, Luo T, Dai G (2018) Enhanced visible-light photocatalytic activity of Bi2O2CO3 nanoplates by Fe-doping in the degradation of rhodamine B. Mater Res Bull 107:438–445. https://doi.org/10.1016/j.materresbull.2018.08.018

    Article  CAS  Google Scholar 

  57. Wang JC, Lou HH, Xu ZH, Cui CX, Li ZJ, Jiang K, Shi W (2018) Natural sunlight driven highly efficient photocatalysis for simultaneous degradation of rhodamine B and methyl orange using I/C codoped TiO2 photocatalyst. J Hazard Mater 360:356–363. https://doi.org/10.1016/j.jhazmat.2018.08.008

    Article  CAS  Google Scholar 

  58. Sundararajan M, Sailaja V, Kennedy LJ, Vijaya JJ (2017) Photocatalytic degradation of rhodamine B under visible light using nanostructured zinc doped cobalt ferrite: kinetics and mechanism. Ceram Int 43(1):540–548. https://doi.org/10.1016/j.ceramint.2016.09.191

    Article  CAS  Google Scholar 

  59. Zhang L, Meng Y, Shen H, Li J, Yang C, Xie B, Xia S (2021) Photocatalytic degradation of rhodamine B by Bi2O3@ LDHs S–scheme heterojunction: Performance, kinetics and mechanism. Appl Surf Sci 567:150760. https://doi.org/10.1016/j.apsusc.2021.150760

    Article  CAS  Google Scholar 

  60. Zheng RR, Li TT, Yu H (2018) Construction of indium and cerium codoped ordered mesoporous TiO2 aerogel composite material and its high photocatalytic activity. Glob Chall 2(5-6):1700118. https://doi.org/10.1002/gch2.201700118

    Article  Google Scholar 

  61. Yan N, Zhu Z, Zhang J, Zhao Z, Liu Q (2012) Preparation and properties of ce-doped TiO2 photocatalyst. Mater Res Bull 47(8):1869–1873. https://doi.org/10.1016/j.materresbull.2012.04.077

    Article  CAS  Google Scholar 

  62. Wang C, Bahnemann DW, Dohrmann JK (2000) A novel preparation of iron-doped TiO2 nanoparticles with enhanced photocatalytic activity. ChemComm 16:1539–1540. https://doi.org/10.1039/B002988M

    Article  Google Scholar 

  63. Anwer H, Mahmood A, Lee J, Kim KH, Park JW, Yip ACK (2019) Photocatalysts for degradation of dyes in industrial effluents: opportunities and challenges. Nano Res 12:955–972. https://doi.org/10.1007/s12274-019-2287-0

    Article  CAS  Google Scholar 

  64. Tudisco C, Pulvirenti L, Cool P, Condorelli GG (2020) Porphyrin functionalized bismuth ferrite for enhanced solar light photocatalysis. Dalton Trans 49(25):8652–8660. https://doi.org/10.1039/C9DT04514G

    Article  CAS  Google Scholar 

  65. Lim J, Monllor-Satoca D, Jang JS, Lee S, Choi W (2014) Visible light photocatalysis of fullerol-complexed TiO2 enhanced by Nb doping. Appl Catal B 152:233–240. https://doi.org/10.1016/j.apcatb.2014.01.026

    Article  CAS  Google Scholar 

  66. Yu JG, Yu HG, Cheng B, Zhao XJ, Yu JC, Ho WK (2003) The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. J Phys Chem B 107(50):13871–13879. https://doi.org/10.1021/jp036158y

    Article  CAS  Google Scholar 

  67. Kho YK, Iwase A, Teoh WY, Mädler L, Kudo A, Amal R (2010) Photocatalytic H2 evolution over TiO2 nanoparticles. The synergistic effect of anatase and rutile. J Phys Chem C 114(6):2821–2829. https://doi.org/10.1021/jp910810r

    Article  CAS  Google Scholar 

Download references

Author contributions

G.F. established the analytical method, wrote the paper, analyzed the data, wrote the first draft of the manuscript, data validation, visualization, figure captions, final draft. S.Y. conceptualization/ conceived the study idea, planned and designed the review structure, revised the article. A.J. funding acquisition. All authors have read and agreed to the published version of the manuscript.

Funding

The research was supported by Guizhou Provincial Science and Technology Projects (Qianke- hezhicheng [2021] Yiban 493), GIT Academic Seedling Training and Innovation Exploration Project (No. GZLGXM-11,GZLGXM-19), and Guizhou Education Department Youth Science and Technology Talents Growth Project (No. Qianjiaohe KY [2021]254).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjiang Tang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent to publish

All necessary permissions for publication were secured prior to submission of the paper.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Tang, S. & Tang, A. Construction of bimetallic co-doped ordered mesoporous MxCey/(TiO2)z@SiO2 aerogel composite material and its photocatalytic performance under visible light. J Sol-Gel Sci Technol 106, 265–280 (2023). https://doi.org/10.1007/s10971-022-06030-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-06030-5

Keywords

Navigation