Skip to main content
Log in

Multifunctional Aerogels: A comprehensive review on types, synthesis and applications of aerogels

  • Review Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Aerogels are lightweight solid materials that are prepared from organic or inorganic materials or as composites and are explored as advanced materials for various applications. They have shown a varied range of properties with excellent performances. However, their use in daily applications is limited due to their high cost and complicated method of preparation. The drying of aerogels is a tedious task by itself require high energy and resources input. Aerogels when prepared as composites can synergistically enhance certain properties and make them even better materials from their existing counterparts. This review attempts to classify the various aerogels on the basis of their appearance, preparatory and drying methods, microstructures and chemical origin. Further, the paper discusses about organic aerogels prepared from various biological sources followed by the applications of aerogels in biomedical research and clinical uses, packaging, environmental remediation and in thermal insulation.

Graphical Abstract

Classification of aerogels on the basis of their appearance, preparation methods, microstructures, chemical structure and origin

Highlights

  • Micro-porous ultralight solid having gas as dispersed phase.

  • Synthesized using sol-gel method.

  • Drying conditions/method effects the porosity of gels.

  • Can be made of various chemical compositions ranging from organic, inorganic or even a hybrid of organic and inorganic materials Used for multiple applications such as medical, packaging, environmental remediation etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zubair NA, Abouzari-Lotf E, Mahmoud Nasef M, Abdullah EC (2019) Aerogel-based materials for adsorbent applications in material domains. E3S Web Conf 90:1003. https://doi.org/10.1051/e3sconf/20199001003

    Article  CAS  Google Scholar 

  2. Riffat SB, Qiu G (2013) A review of state-of-the-art aerogel applications in buildings. Int J Low-Carbon Technol 8:1–6. https://doi.org/10.1093/ijlct/cts001

    Article  CAS  Google Scholar 

  3. (2008) aerogel. In: The IUPAC Compendium of Chemical Terminology. International Union of Pure and Applied Chemistry (IUPAC), Research Triangle Park, NC

  4. Karadagli I, Schulz B, Schestakow M et al. (2015) Production of porous cellulose aerogel fibers by an extrusion process. J Supercrit Fluids 106:105–114. https://doi.org/10.1016/j.supflu.2015.06.011

    Article  CAS  Google Scholar 

  5. Leventis N, Sadekar A, Chandrasekaran N, Sotiriou-Leventis C (2010) Click synthesis of monolithic silicon carbide aerogels from polyacrylonitrile-coated 3D silica networks. Chem Mater 22:2790–2803. https://doi.org/10.1021/cm903662a

    Article  CAS  Google Scholar 

  6. Kistler SS (1931) Coherent expanded aerogels and jellies. Nature 127:741. https://doi.org/10.1038/127741a0

    Article  CAS  Google Scholar 

  7. Dervin S, Pillai SC (2017) An Introduction to Sol-Gel Processing for Aerogels. In: Pillai SC, Hehir S (eds) Sol-Gel Materials for Energy, Environment and Electronic Applications. Springer International Publishing, Cham, pp 1–22

  8. Ziegler C, Wolf A, Liu W et al. (2017) Modern inorganic aerogels. Angew Chem Int Ed 56:13200–13221. https://doi.org/10.1002/anie.201611552

    Article  CAS  Google Scholar 

  9. Teichner SJ, Nicolaon GA, Vicarini MA, Gardes GEE (1976) Inorganic oxide aerogels. Adv Colloid Interface Sci 5:245–273. https://doi.org/10.1016/0001-8686(76)80004-8

    Article  CAS  Google Scholar 

  10. Poelz G, Riethmüller R (1982) Preparation of silica aerogel for Cherenkov counters. Nucl Instrum Methods Phys Res 195:491–503. https://doi.org/10.1016/0029-554X(82)90010-6

    Article  CAS  Google Scholar 

  11. Pekala RW, Kong FM (1989) A synthetic route to organic aerogels - mechanism, structure, and properties. Le J de Phys Colloq 24:C4–33-C4-40. https://doi.org/10.1051/jphyscol:1989406

    Article  Google Scholar 

  12. Pajonk GM, Repellin-Lacroix M, Abouarnadasse S et al. (1990) From sol-gel to aerogels and cryogels. J Non Cryst Solids 121:66–67. https://doi.org/10.1016/0022-3093(90)90106-V

    Article  CAS  Google Scholar 

  13. Itoh H, Tabata T, Kokitsu M et al. (1993) Preparation of SiO2-Al2O3 gels from tetraethoxysilane and aluminum chloride. J Ceram Soc Jpn 101:1081–1083. https://doi.org/10.2109/jcersj.101.1081

    Article  CAS  Google Scholar 

  14. Tillotson TM, Sunderland WE, Thomas IM, Hrubesh LW (1994) Synthesis of lanthanide and lanthanide-silicate aerogels. J Solgel Sci Technol 1:241–249. https://doi.org/10.1007/BF00486167

    Article  CAS  Google Scholar 

  15. Gash AE, Satcher JH, Simpson RL (2004) Monolithic nickel (II)-based aerogels using an organic epoxide: the importance of the counterion. J Non Cryst Solids 350:145–151. https://doi.org/10.1016/j.jnoncrysol.2004.06.030

    Article  CAS  Google Scholar 

  16. Prakash SS, Brinker CJ, Hurd AJ (1995) Silica aerogel films at ambient pressure. J Non Cryst Solids 190:264–275. https://doi.org/10.1016/0022-3093(95)00024-0

    Article  CAS  Google Scholar 

  17. Derflinger C, Kamm B, Paulik C (2021) Sustainable aerogels derived from bio-based 2,5-diformylfuran and depolymerization products of lignin. Int J Biobased Plast 3:29–39. https://doi.org/10.1080/24759651.2021.1877025

    Article  Google Scholar 

  18. Biesmans G, Randall D, Francais E, Perrut M (1998) Polyurethane-based organic aerogels’ thermal performance. J Non Cryst Solids 225:36–40. https://doi.org/10.1016/S0022-3093(98)00103-3

    Article  CAS  Google Scholar 

  19. Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose−NaOH aqueous solutions. Biomacromolecules 9:269–277. https://doi.org/10.1021/bm700972k

    Article  CAS  Google Scholar 

  20. Quignard F, Valentin R, di Renzo F (2008) Aerogel materials from marine polysaccharides. N. J Chem 32:1300–1310. https://doi.org/10.1039/B808218A

    Article  CAS  Google Scholar 

  21. Peydayesh M, Suter MK, Bolisetty S et al. (2020) Amyloid fibrils aerogel for sustainable removal of organic contaminants from water. Adv Mater 32:1907932. https://doi.org/10.1002/adma.201907932

    Article  CAS  Google Scholar 

  22. Wang B, Li G, Xu L et al. (2020) Nanoporous boron nitride aerogel film and its smart composite with phase change materials. ACS Nano 14:16590–16599. https://doi.org/10.1021/acsnano.0c05931

    Article  CAS  Google Scholar 

  23. Upadhyay A, Narula A, Rao CP (2020) Copper-based metallogel of bovine serum albumin and its derived hybrid biomaterials as aerogel and sheet: comparative study of the adsorption and reduction of dyes and nitroaromatics. ACS Appl Bio Mater 3:8619–8626. https://doi.org/10.1021/acsabm.0c01028

    Article  CAS  Google Scholar 

  24. Baudron V, Taboada M, Gurikov P et al. (2020) Production of starch aerogel in form of monoliths and microparticles. Colloid Polym Sci 298:477–494. https://doi.org/10.1007/s00396-020-04616-5

    Article  CAS  Google Scholar 

  25. Rizzo C, Carati A, Tagliabue M, Perego C (2000) Synthesis and textural properties of amorphous silica-aluminas. In: Unger KK, Kreysa G, Baselt JP (eds) Studies in Surface Science and Catalysis. Elsevier, pp 613–622

  26. Guerrero-Alburquerque N, Zhao S, Adilien N et al. (2020) Strong, machinable, and insulating chitosan–urea aerogels: toward ambient pressure drying of biopolymer aerogel monoliths. ACS Appl Mater Interfaces 12:22037–22049. https://doi.org/10.1021/acsami.0c03047

    Article  CAS  Google Scholar 

  27. Thapliyal PC, Singh K (2014) Aerogels as promising thermal insulating materials: an overview. J Mater 2014:1–10. https://doi.org/10.1155/2014/127049

    Article  CAS  Google Scholar 

  28. He X, Tang B, Cheng X et al. (2021) Preparation of the methyltriethoxysilane based aerogel monolith with an ultra-low density and excellent mechanical properties by ambient pressure drying. J Colloid Interface Sci 600:764–774. https://doi.org/10.1016/j.jcis.2021.05.059

    Article  CAS  Google Scholar 

  29. Wu H, Wang Z-M, Kumagai A, Endo T (2019) Amphiphilic cellulose nanofiber-interwoven graphene aerogel monolith for dyes and silicon oil removal. Compos Sci Technol 171:190–198. https://doi.org/10.1016/j.compscitech.2018.12.017

    Article  CAS  Google Scholar 

  30. Saadatnia Z, Mosanenzadeh SG, Esmailzadeh E, Naguib HE (2019) A high performance triboelectric nanogenerator using porous polyimide aerogel film. Sci Rep. 9:1370. https://doi.org/10.1038/s41598-018-38121-1

    Article  CAS  Google Scholar 

  31. Wei H, Li A, Kong D et al. (2021) Polypyrrole/reduced graphene aerogel film for wearable piezoresisitic sensors with high sensing performances. Adv Compos Hybrid Mater 4:86–95. https://doi.org/10.1007/s42114-020-00201-0

    Article  CAS  Google Scholar 

  32. Zhou B, Han G, Zhang Z et al. (2021) Aramid nanofiber-derived carbon aerogel film with skin-core structure for high electromagnetic interference shielding and solar-thermal conversion. Carbon N. Y 184:562–570. https://doi.org/10.1016/j.carbon.2021.08.067

    Article  CAS  Google Scholar 

  33. Zhao C, Li Y, Ye W et al. (2021) Performance regulation of silica aerogel powder synthesized by a two-step Sol-gel process with a fast ambient pressure drying route. J Non Cryst Solids 567:120923. https://doi.org/10.1016/j.jnoncrysol.2021.120923

    Article  CAS  Google Scholar 

  34. Chen H, Zhang Y, Zhong T et al. (2020) Thermal insulation and hydrophobization of wood impregnated with silica aerogel powder. J Wood Sci 66:81. https://doi.org/10.1186/s10086-020-01927-7

    Article  CAS  Google Scholar 

  35. Tafreshi OA, Mosanenzadeh SG, Karamikamkar S et al. (2022) A review on multifunctional aerogel fibers: processing, fabrication, functionalization, and applications. Mater Today Chem 23:100736. https://doi.org/10.1016/j.mtchem.2021.100736

    Article  CAS  Google Scholar 

  36. Li X, Dong G, Liu Z, Zhang X (2021) Polyimide aerogel fibers with superior flame resistance, strength, hydrophobicity, and flexibility made via a universal sol–gel confined transition strategy. ACS Nano 15:4759–4768. https://doi.org/10.1021/acsnano.0c09391

    Article  CAS  Google Scholar 

  37. Aegerter MA, Leventis N, Koebel MM (2011) Aerogels Handbook. Springer New York, New York, NY

  38. Moheman A, Bhawani SA, Tariq A (2021) Chapter 7 - Aerogels for waterborne pollutants purification. In: Khan AAP, Ansari MO, Khan A, Asiri AM (eds) Advances in Aerogel Composites for Environmental Remediation. Elsevier, pp 109–124

  39. Chowdhury AH, Salam N, Debnath R, et al. (2019) Chapter 8 - Design and Fabrication of Porous Nanostructures and Their Applications. In: Beeran Pottathara Y, Thomas S, Kalarikkal N, et al. (eds) Nanomaterials Synthesis. Elsevier, pp 265–294

  40. Cui YQ, Riffat S (2011) Review of latest developments in microporous aerogel for building applications. Appl Mech Mater 71–78:1967–1970

    Article  Google Scholar 

  41. Xu Y, He Q, Chen Y (2018) A rational design of microporous aerogel for excellent CO2 capture and selectivities via co-synergistic effects of electrostatic in-plane and π–π stacking interactions. Polym Sci, Ser B 60:317–323. https://doi.org/10.1134/S1560090418030193

    Article  CAS  Google Scholar 

  42. Jin L, Kuo C, Suib SL (2013) Chapter 11 - Heterogeneous Catalysts for Biomass Conversion. In: Suib SL (ed) New and Future Developments in Catalysis. Elsevier, Amsterdam, pp 253–270

  43. Kang K-K, Rhee H-K (2002) Synthesis and characterization of hexagonal mesoporous materials using hydrothermal restructuring method. In: Sayari A, Jaroniec M (eds) Studies in Surface Science and Catalysis. Elsevier, pp 101–108

  44. Liu G, Wang Y, Zhu B et al. (2018) A porous metal–organic aerogel based on dirhodium paddle-wheels as an efficient and stable heterogeneous catalyst towards the reduction reaction of aldehydes and ketones. N. J Chem 42:11358–11363. https://doi.org/10.1039/C8NJ01784K

    Article  CAS  Google Scholar 

  45. Vallet-Regí M, Colilla M, Izquierdo-Barba I, Manzano M (2018) Mesoporous Silica Nanoparticles for Drug Delivery: Current Insights. Molecules 23. https://doi.org/10.3390/molecules23010047

  46. Rankin JM, Baker S, Klabunde KJ (2014) Mesoporous aerogel titanium oxide–silicon oxide combinations as adsorbents for an azo-dye. Microporous Mesoporous Mater 190:105–108. https://doi.org/10.1016/j.micromeso.2014.01.027

    Article  CAS  Google Scholar 

  47. Bangi UKH, Lee K-Y, Maldar NMN, Park H-H (2019) Synthesis and properties of metal oxide aerogels via ambient pressure drying. J Nanosci Nanotechnol 19:1217–1227. https://doi.org/10.1166/jnn.2019.16240

    Article  CAS  Google Scholar 

  48. Qiu J, Cao H, Liao J et al. (2022) 3D porous coral-like Co1.29Ni1.71O4 microspheres embedded into reduced graphene oxide aerogels with lightweight and broadband microwave absorption. J Colloid Interface Sci 609:12–22. https://doi.org/10.1016/j.jcis.2021.11.176

    Article  CAS  Google Scholar 

  49. Xiong T, Li Q, Li K et al. (2022) Construction of novel magnesium oxide aerogel for highly efficient separation of uranium (VI) from wastewater. Sep Purif Technol 295:121296. https://doi.org/10.1016/j.seppur.2022.121296

    Article  CAS  Google Scholar 

  50. Lee K-J, Kang Y, Kim YH, et al. (2020) Synthesis of silicon carbide powders from methyl-modified silica aerogels. Applied Sciences 10. https://doi.org/10.3390/app10186161

  51. Oschatz M, Boukhalfa S, Nickel W et al. (2017) Carbide-derived carbon aerogels with tunable pore structure as versatile electrode material in high power supercapacitors. Carbon N. Y 113:283–291. https://doi.org/10.1016/j.carbon.2016.11.050

    Article  CAS  Google Scholar 

  52. Pu Z, Amiinu IS, Kou Z et al. (2017) RuP 2 -based catalysts with platinum-like activity and higher durability for the hydrogen evolution reaction at All pH values. Angew Chem Int Ed 56:11559–11564. https://doi.org/10.1002/anie.201704911

    Article  CAS  Google Scholar 

  53. Krishna Kumar AS, Warchol J, Matusik J et al. (2022) Heavy metal and organic dye removal via a hybrid porous hexagonal boron nitride-based magnetic aerogel. NPJ Clean Water 5:24. https://doi.org/10.1038/s41545-022-00175-0

    Article  CAS  Google Scholar 

  54. Jiang W, Ruan Q, Xie J et al. (2018) Oxygen-doped carbon nitride aerogel: A self-supported photocatalyst for solar-to-chemical energy conversion. Appl Catal B 236:428–435. https://doi.org/10.1016/j.apcatb.2018.05.050

    Article  CAS  Google Scholar 

  55. Tang J, Feng Y, Feng W (2021) Photothermal storage and controllable release of a phase-change azobenzene/aluminum nitride aerogel composite. Compos Commun 23:100575. https://doi.org/10.1016/j.coco.2020.100575

    Article  Google Scholar 

  56. Jiang X, Du R, Hübner R et al. (2021) A roadmap for 3D metal aerogels: materials design and application attempts. Matter 4:54–94. https://doi.org/10.1016/j.matt.2020.10.001

    Article  CAS  Google Scholar 

  57. Nita LE, Ghilan A, Rusu AG, et al. (2020) New trends in bio-based aerogels. Pharmaceutics 12. https://doi.org/10.3390/pharmaceutics12050449

  58. Ganesan K, Budtova T, Ratke L, et al. (2018) Review on the Production of Polysaccharide Aerogel Particles. Materials 11. https://doi.org/10.3390/ma11112144

  59. Wu K, Dong W, Pan Y et al. (2021) Lightweight and flexible phenolic aerogels with three-dimensional foam reinforcement for acoustic and thermal insulation. Ind Eng Chem Res 60:1241–1249. https://doi.org/10.1021/acs.iecr.0c05010

    Article  CAS  Google Scholar 

  60. Leventis N (2022) Polyurea Aerogels: Synthesis, Material Properties, and Applications. Polymers (Basel) 14. https://doi.org/10.3390/polym14050969

  61. Merillas B, Martín-de León J, Villafañe F, Rodríguez-Pérez MA (2021) Transparent polyisocyanurate-polyurethane-based aerogels: key aspects on the synthesis and their porous structures. ACS Appl Polym Mater 3:4607–4615. https://doi.org/10.1021/acsapm.1c00712

    Article  CAS  Google Scholar 

  62. Betz M, García-González CA, Subrahmanyam RP et al. (2012) Preparation of novel whey protein-based aerogels as drug carriers for life science applications. J Supercrit Fluids 72:111–119. https://doi.org/10.1016/j.supflu.2012.08.019

    Article  CAS  Google Scholar 

  63. Selmer I, Kleemann C, Kulozik U et al. (2015) Development of egg white protein aerogels as new matrix material for microencapsulation in food. J Supercrit Fluids 106:42–49. https://doi.org/10.1016/j.supflu.2015.05.023

    Article  CAS  Google Scholar 

  64. Selvasekaran P, Chidambaram R (2021) Food-grade aerogels obtained from polysaccharides, proteins, and seed mucilages: Role as a carrier matrix of functional food ingredients. Trends Food Sci Technol 112:455–470. https://doi.org/10.1016/j.tifs.2021.04.021

    Article  CAS  Google Scholar 

  65. Kaushik J, Kumar V, Garg AK et al. (2021) Bio-mass derived functionalized graphene aerogel: a sustainable approach for the removal of multiple organic dyes and their mixtures. N. J Chem 45:9073–9083. https://doi.org/10.1039/D1NJ00470K

    Article  CAS  Google Scholar 

  66. Zhang T, Yuan D, Guo Q et al. (2019) Preparation of a renewable biomass carbon aerogel reinforced with sisal for oil spillage clean-up: Inspired by green leaves to green Tofu. Food Bioprod Process 114:154–162. https://doi.org/10.1016/j.fbp.2018.12.007

    Article  CAS  Google Scholar 

  67. Zhu W, Li Y, Yu Y et al. (2018) Environment-friendly bio-materials based on cotton-carbon aerogel for strontium removal from aqueous solution. J Radioanal Nucl Chem 316:553–560. https://doi.org/10.1007/s10967-018-5782-8

    Article  CAS  Google Scholar 

  68. Comin LM, Temelli F, Saldaña MDA (2015) Flax mucilage and barley beta-glucan aerogels obtained using supercritical carbon dioxide: Application as flax lignan carriers. Innovative Food Sci Emerg Technol 28:40–46. https://doi.org/10.1016/j.ifset.2015.01.008

    Article  CAS  Google Scholar 

  69. Felisberto MHF, Wahanik AL, Gomes-Ruffi CR et al. (2015) Use of chia (Salvia hispanica L.) mucilage gel to reduce fat in pound cakes. LWT - Food Sci Technol 63:1049–1055. https://doi.org/10.1016/j.lwt.2015.03.114

    Article  CAS  Google Scholar 

  70. Ubeyitogullari A, Ciftci ON (2020) Fabrication of bioaerogels from camelina seed mucilage for food applications. Food Hydrocoll 102:105597. https://doi.org/10.1016/j.foodhyd.2019.105597

    Article  CAS  Google Scholar 

  71. Mandin S, Moreau S, Talantikite M, et al. (2021) Cellulose Nanofibrils/Xyloglucan Bio-Based Aerogels with Shape Recovery. Gels 7. https://doi.org/10.3390/gels7010005

  72. Jaafar Z, Quelennec B, Moreau C et al. (2020) Plant cell wall inspired xyloglucan/cellulose nanocrystals aerogels produced by freeze-casting. Carbohydr Polym 247:116642. https://doi.org/10.1016/j.carbpol.2020.116642

    Article  CAS  Google Scholar 

  73. Wu W, Wu Y, Lin Y, Shao P (2022) Facile fabrication of multifunctional citrus pectin aerogel fortified with cellulose nanofiber as controlled packaging of edible fungi. Food Chem 374:131763. https://doi.org/10.1016/j.foodchem.2021.131763

    Article  CAS  Google Scholar 

  74. Groult S, Buwalda S, Budtova T (2021) Tuning bio-aerogel properties for controlling theophylline delivery. Part 1: Pectin aerogels. Mater Sci Eng: C 126:112148. https://doi.org/10.1016/j.msec.2021.112148

    Article  CAS  Google Scholar 

  75. Groult S, Buwalda S, Budtova T (2022) Tuning bio-aerogel properties for controlling drug delivery. Part 2: Cellulose-pectin composite aerogels. Biomater Adv 135:212732. https://doi.org/10.1016/j.bioadv.2022.212732

    Article  CAS  Google Scholar 

  76. Wang R, Li Y, Shuai X, et al. (2021) Development of pectin-based aerogels with several excellent properties for the adsorption of Pb2+. Foods 10. https://doi.org/10.3390/foods10123127

  77. Wang J, Zhao D, Shang K et al. (2016) Ultrasoft gelatin aerogels for oil contaminant removal. J Mater Chem A Mater 4:9381–9389. https://doi.org/10.1039/C6TA03146C

    Article  CAS  Google Scholar 

  78. Wang Q, Qin Y, Xue C et al. (2020) Facile fabrication of bubbles-enhanced flexible bioaerogels for efficient and recyclable oil adsorption. Chem Eng J 402:126240. https://doi.org/10.1016/j.cej.2020.126240

    Article  CAS  Google Scholar 

  79. Takeshita S, Zhao S, Malfait WJ (2021) Transparent, aldehyde-free chitosan aerogel. Carbohydr Polym 251:117089. https://doi.org/10.1016/j.carbpol.2020.117089

    Article  CAS  Google Scholar 

  80. Lei C, Wen F, Chen J et al. (2021) Mussel-inspired synthesis of magnetic carboxymethyl chitosan aerogel for removal cationic and anionic dyes from aqueous solution. Polym (Guildf) 213:123316. https://doi.org/10.1016/j.polymer.2020.123316

    Article  CAS  Google Scholar 

  81. Wan C, Lu Y, Jiao Y et al. (2015) Preparation of mechanically strong and lightweight cellulose aerogels from cellulose-NaOH/PEG solution. J Solgel Sci Technol 74:256–259. https://doi.org/10.1007/s10971-015-3633-4

    Article  CAS  Google Scholar 

  82. Mazlan NSN, Zakaria S, Gan S et al. (2019) Comparison of regenerated cellulose membrane coagulated in sulphate based coagulant. CERNE 25:18–24. https://doi.org/10.1590/01047760201925012586

    Article  Google Scholar 

  83. Zhang L, Mao Y, Zhou J, Cai J (2005) Effects of coagulation conditions on the properties of regenerated cellulose films prepared in NaOH/Urea aqueous solution. Ind Eng Chem Res 44:522–529. https://doi.org/10.1021/ie0491802

    Article  CAS  Google Scholar 

  84. Lopes JM, Mustapa AN, Pantić M et al. (2017) Preparation of cellulose aerogels from ionic liquid solutions for supercritical impregnation of phytol. J Supercrit Fluids 130:17–22. https://doi.org/10.1016/j.supflu.2017.07.018

    Article  CAS  Google Scholar 

  85. Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phys Chem 2:1–8. https://doi.org/10.12691/jmpc-2-1-1

    Article  CAS  Google Scholar 

  86. Song K, Zhu X, Zhu W, Li X (2019) Preparation and characterization of cellulose nanocrystal extracted from Calotropis procera biomass. Bioresour Bioprocess 6:45. https://doi.org/10.1186/s40643-019-0279-z

    Article  Google Scholar 

  87. Ibrahim IK, Hussin SM, Al-Obaidi YM (2015) Extraction of Cellulose Nano Crystalline from Cotton by Ultrasonic and Its Morphological and Structural Characterization. Int J Mater ChemPhys 1:99–109

  88. Ciftci D, Ubeyitogullari A, Huerta RR et al. (2017) Lupin hull cellulose nanofiber aerogel preparation by supercritical CO2 and freeze drying. J Supercrit Fluids 127:137–145. https://doi.org/10.1016/j.supflu.2017.04.002

    Article  CAS  Google Scholar 

  89. Deze EG, Papageorgiou SK, Favvas EP, Katsaros FK (2012) Porous alginate aerogel beads for effective and rapid heavy metal sorption from aqueous solutions: Effect of porosity in Cu2+ and Cd2+ ion sorption. Chem Eng J 209:537–546. https://doi.org/10.1016/j.cej.2012.07.133

    Article  CAS  Google Scholar 

  90. Meng X, Tian X, Xia Y, Xiong Z (2022) Multifunctional alginate-based carbon aerogels for oil–water mixture and emulsion separation. J Dispers Sci Technol 43:1983–1990. https://doi.org/10.1080/01932691.2021.1884090

    Article  CAS  Google Scholar 

  91. Plazzotta S, Jung I, Schroeter B, et al. (2021) Conversion of whey protein aerogel particles into oleogels: effect of oil type on structural features. Polymers (Basel) 13. https://doi.org/10.3390/polym13234063

  92. Zheng L, Zhang S, Ying Z et al. (2020) Engineering of aerogel-based biomaterials for biomedical applications. Int J Nanomed ume 15:2363–2378. https://doi.org/10.2147/IJN.S238005

    Article  Google Scholar 

  93. Zhang K, Jiao X, Zhou L et al. (2021) Nanofibrous composite aerogel with multi-bioactive and fluid gating characteristics for promoting diabetic wound healing. Biomaterials 276:121040. https://doi.org/10.1016/j.biomaterials.2021.121040

    Article  CAS  Google Scholar 

  94. Zheng Y, Ma W, Yang Z et al. (2022) An ultralong hydroxyapatite nanowire aerogel for rapid hemostasis and wound healing. Chem Eng J 430:132912. https://doi.org/10.1016/j.cej.2021.132912

    Article  CAS  Google Scholar 

  95. Lovskaya D, Menshutina N, Mochalova M, et al. (2020) Chitosan-based aerogel particles as highly effective local hemostatic agents. Production Process and In Vivo Evaluations. Polymers (Basel) 12. https://doi.org/10.3390/polym12092055

  96. Athamneh T, Amin A, Benke E et al. (2019) Alginate and hybrid alginate-hyaluronic acid aerogel microspheres as potential carrier for pulmonary drug delivery. J Supercrit Fluids 150:49–55. https://doi.org/10.1016/j.supflu.2019.04.013

    Article  CAS  Google Scholar 

  97. Ubeyitogullari A, Brahma S, Rose DJ, Ciftci ON (2018) In vitro digestibility of nanoporous wheat starch aerogels. J Agric Food Chem 66:9490–9497. https://doi.org/10.1021/acs.jafc.8b03231

    Article  CAS  Google Scholar 

  98. Paris JL, Román J, Manzano M et al. (2015) Tuning dual-drug release from composite scaffolds for bone regeneration. Int J Pharm 486:30–37. https://doi.org/10.1016/j.ijpharm.2015.03.048

    Article  CAS  Google Scholar 

  99. Cao M, Liu B-W, Zhang L et al. (2021) Fully biomass-based aerogels with ultrahigh mechanical modulus, enhanced flame retardancy, and great thermal insulation applications. Compos B Eng 225:109309. https://doi.org/10.1016/j.compositesb.2021.109309

    Article  CAS  Google Scholar 

  100. Illera D, Mesa J, Gomez H, Maury H (2018) Cellulose Aerogels for Thermal Insulation in Buildings: Trends and Challenges. Coatings 8:. https://doi.org/10.3390/coatings8100345

  101. Wang D, Peng H, Yu B et al. (2020) Biomimetic structural cellulose nanofiber aerogels with exceptional mechanical, flame-retardant and thermal-insulating properties. Chem Eng J 389:124449. https://doi.org/10.1016/j.cej.2020.124449

    Article  CAS  Google Scholar 

  102. Zhu J, Xiong R, Zhao F et al. (2020) Lightweight, high-strength, and anisotropic structure composite aerogel based on hydroxyapatite nanocrystal and chitosan with thermal insulation and flame retardant properties. ACS Sustain Chem Eng 8:71–83. https://doi.org/10.1021/acssuschemeng.9b03953

    Article  CAS  Google Scholar 

  103. Zou F, Budtova T (2021) Polysaccharide-based aerogels for thermal insulation and superinsulation: An overview. Carbohydr Polym 266:118130. https://doi.org/10.1016/j.carbpol.2021.118130

    Article  CAS  Google Scholar 

  104. Yang W-J, Yuen ACY, Li A et al. (2019) Recent progress in bio-based aerogel absorbents for oil/water separation. Cellulose 26:6449–6476. https://doi.org/10.1007/s10570-019-02559-x

    Article  CAS  Google Scholar 

  105. Liu Y, Liu J, Song P (2021) Recent advances in polysaccharide-based carbon aerogels for environmental remediation and sustainable energy. Sustain Mater Technol 27:e00240. https://doi.org/10.1016/j.susmat.2020.e00240

    Article  CAS  Google Scholar 

  106. Zhang Y, Zuo L, Zhang L et al. (2016) Cotton wool derived carbon fiber aerogel supported few-layered MoSe2 nanosheets as efficient electrocatalysts for hydrogen evolution. ACS Appl Mater Interfaces 8:7077–7085. https://doi.org/10.1021/acsami.5b12772

    Article  CAS  Google Scholar 

  107. Aragón-Gutierrez A, Arrieta MP, López-González M, et al. (2020) Hybrid biocomposites based on Poly(Lactic Acid) and silica aerogel for food packaging applications. Materials 13. https://doi.org/10.3390/ma13214910

  108. Manzocco L, Mikkonen KS, García-González CA (2021) Aerogels as porous structures for food applications: Smart ingredients and novel packaging materials. Food Struct 28:100188. https://doi.org/10.1016/j.foostr.2021.100188

    Article  CAS  Google Scholar 

  109. Cardea S, Sessa M, Reverchon E (2011) Supercritical Co2 processing of drug loaded membranes based on nanoporous PVDF-HFP aerogels. Soft Mater 9:264–279. https://doi.org/10.1080/1539445X.2011.552702

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author acknowledges Ministry of Education, Govt. of India for providing financial support and Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Punjab, India for supporting this work.

Author information

Authors and Affiliations

Authors

Contributions

The first draft of the manuscript was written by [Sonu SS], and all authors commented and reviewed on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Indu Chauhan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

S, S.S., Rai, N. & Chauhan, I. Multifunctional Aerogels: A comprehensive review on types, synthesis and applications of aerogels. J Sol-Gel Sci Technol 105, 324–336 (2023). https://doi.org/10.1007/s10971-022-06026-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-06026-1

Keywords

Navigation