Skip to main content
Log in

Preparation of urea- and isocyanurate-containing polysilsesquioxane membranes for CO2 separation

  • Original Paper: Sol–gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Urea- and isocyanurate-containing polysilsesquioxane (PSQ) membranes were prepared and their CO2 separation performance was investigated. Applying the sol–gel process to N,N’-bis(triethoxysilylpropyl)urea (BTESPU) gave a urea-containing PSQ membrane on an inorganic support, which showed good CO2/N2 permselectivity of 12 with CO2 permeance of 3.8 × 10−9 mol/(m2 s Pa). The copolymerization of BTESPU with bis(triethoxysilyl)alkanes (EtO)3Si(CH2)xSi(OEt)3 (x = 1–3) produced membranes with improved performance, and the membrane prepared with bis(triethoxysilyl)ethane (BTESE, x = 2) showed CO2/N2 permselectivity of 13 and CO2 permeance of 2.2 × 10−7 mol/(m2 s Pa). The homopolymerization of isocyanurate-containing precursors, tris(triethoxysilylpropyl) isocyanurate (TTESPI), tris(triethoxysilylmethyl) isocyanurate (TTESMI), and bis(triethoxysilylpropyl) isocyanurate (BTESPI), was found to yield membranes that have higher performance than the BTESPU homopolymer membrane. Of these, the membrane prepared from TTESPI showed the highest CO2 permeance of 3.2 × 10−7 mol/(m2 s Pa) and the highest CO2/N2 permselectivity of 18. The copolymerization of TTESPI with BTESE resulted in the increase of CO2 permeance by 1.7 times, although CO2/N2 permselectivity was slightly decreased to 12. The CO2-philicity of the urea units, which was estimated by density functional theory calculations on model systems, suggested a relationship between urea structure and membrane performance.

Graphical abstract

Urea- and isocyanurate-containing polysilsesquioxane membranes were prepared and their CO2 separation performance was investigated.

Highlights

  • Urea- and isocyanurate-containing PSQ membranes were prepared.

  • The membranes showed CO2-separation properties.

  • Relationship between membrane structure and separation properties was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cui H, Xie Y, Ye Y, Shi Y, Liang B, Chen B (2021) An ultramicroporous metal-organic framework with record high selectivity for inverse CO2/C2H2 separation. Bull Soc Chem Jpn 94:2689–2701. https://doi.org/10.1246/bcsj.20210237

    Article  CAS  Google Scholar 

  2. Wang J, Zhang Y, Su Y, Liu X, Zhang P, Lin RB, Chen S, Deng Q, Zeng Z, Deng S, Chen B (2022) Fine pore engineering in a series of isoreticular metal-organic frameworks for efficient C2H2/CO2 separation. Nat Commun 13:200. https://doi.org/10.1038/s41467-021-27929-7

    Article  CAS  Google Scholar 

  3. Robeson LM (2008) The upper bound revisited. J Membr Sci 320:390–400. https://doi.org/10.1016/j.memsci.2008.04.030

    Article  CAS  Google Scholar 

  4. Brunetti A, Scura F, Barbieri G, Drioli E (2010) Membrane technologies for CO2 separation. J Membr Sci 359:115–125. https://doi.org/10.1016/j.memsci.2009.11.040

    Article  CAS  Google Scholar 

  5. Ma C, Wang M, Wang Z, Gao M, Wang J (2020) Recent progress on thin film composite membranes for CO2 separation. J CO2 Utilization 42:101296. https://doi.org/10.1016/j.jcou.2020.101296

  6. Yu L, Kanezashi M, Nagasawa H, Tsuru T (2018) Role of amine type in CO2 separation performance within amine functionalized silica/organosilica membranes: A review. Appl Sci 8:1032. https://doi.org/10.3390/app8071032

    Article  CAS  Google Scholar 

  7. Yu L, Kanezashi M, Nagasawa H, Tsuru T (2017) Fabrication and CO2 permeation properties of amine-silica membranes using a variety of amine types. J Membr Sci 541:447–456. https://doi.org/10.1016/j.memsci.2017.07.024

    Article  CAS  Google Scholar 

  8. Xomeriakis G, Tsai C-Y, Brnker CJ (2005) Microporous sol–gel derived aminosilicate membrane for enhanced carbon dioxide separation. Sep Purif Technol 42:249–257. https://doi.org/10.1016/j.seppur.2004.08.003

    Article  CAS  Google Scholar 

  9. Paradis GG, Kreiter R, van Tuel MM, Nijmeijer A, Vente JF (2012) Amino-functionalized microporous hybrid silica membranes. J Mater Chem 22:7258–7264. https://pubs.rsc.org/en/content/articlelanding/2012/JM/c2jm15417j

    Article  CAS  Google Scholar 

  10. Yu, Kanezashi M, Nagasawa H, Oshita J, Naka A, Tsuru T (2017) Pyrimidine-bridged organoalkoxysilane membrane for high-efficiency CO2 transport via mild affinity. Sep Purif Technol 178:232–241. https://doi.org/10.1016/j.seppur.2017.01.039

    Article  CAS  Google Scholar 

  11. Yu L, Kanezashi M, Nagasawa H, Moriyama N, Tsuru T, Ito K (2018) Enhanced CO2 separation performance for tertiary amine-silica membranes via thermally induced local liberation of CH3Cl. AIChE J 64:1528–1539. https://doi.org/10.1002/aic.16040

    Article  CAS  Google Scholar 

  12. Guo M, Kanazashi M, Nagasawa H, Yu L, Ohshita J, Tsuru T (2020) Amino-decorated organosilica membranes for highly permeable CO2 capture. J Membr Sci 611:118328. https://doi.org/10.1016/j.memsci.2020.118328

    Article  CAS  Google Scholar 

  13. Ren X, Kanezashi M, Guo M, Xu R, Zhong J, Tsuru T (2021) Multiple amine-contained POSS-functionalized organosilica membranes for gas separation. Membranes 11:194, https://www.mdpi.com/2077-0375/11/3/194

    Article  CAS  Google Scholar 

  14. Takahashi T, Tanimoto R, Isobe T, Matsushita S, Nakajima A (2016) Surface modification of porous alumina filters for CO2 separation using silane coupling agents. J Membr Sci 497:216–220. https://doi.org/10.1016/j.memsci.2015.09.007

    Article  CAS  Google Scholar 

  15. Karimi S, Mortazavi Y, Khodadadi AA, Holmgren A, Korelskiy D, Hedlund J (2020) Functionalization of silica membranes for CO2 separation. Sep Purif Technol 235:116207. https://doi.org/10.1016/j.seppur.2019.116207

    Article  CAS  Google Scholar 

  16. Mizumo T, Muragishi H, Yamamoto K, Ohshita J, Kanezashi M, Tsuru T (2015) Preparation and separation properties of oxalylurea-bridged silica membranes. Appl Organomet Chem 29:433–438. https://doi.org/10.1002/aoc.3311

    Article  CAS  Google Scholar 

  17. Tsuru T, Nakasuji T, Oka M, Kanezashi M, Yoshioka T (2011) Preparation of hydrophobic nanoporous methylated SiO2 membranes and application to nanofiltration of hexane solutions. J Membr Sci 384:149–156. https://doi.org/10.1016/j.memsci.2011.09.018

    Article  CAS  Google Scholar 

  18. Xu R, Wang JH, Kanezashi M, Yoshioka T, Tsuru T (2013) Reverse osmosis performance of organosilica membranes and comparison with the pervaporation and gas permeation properties. AIChE J 59:1298–1307. https://doi.org/10.1002/aic.13885

    Article  CAS  Google Scholar 

  19. Kamitani T, Ishida A, Imoto H, Naka K (2021) Supramolecular organogel of polyureas containing POSS units in the main chain: Dependence on the POSS and comonomer structures. Polym J 54:161–167. https://www.nature.com/articles/s41428-021-00578-9

    Article  Google Scholar 

  20. Bergsman DS, Closser RG, Tassone CJ, Clemens BM, Nordlund D, Bent SF (2017) Effect of backbone chemistry on the structure of polyurea films deposited by molecular layer deposition. Chem Mater 29:1192–1203. https://pubs.acs.org/doi/10.1021/acs.chemmater.6b04530

  21. Villaluenga JPG, Seoane B (2001) Experimental estimation of gas-transport properties of linear low-density polyethylene membranes by an integral permeation method. J Appl Polym Sci 82:3013–3021. https://doi.org/10.1002/app.2156

    Article  CAS  Google Scholar 

  22. Ariga K (2021) Nanoarchitectonics: What’s coming next after nanotechnology? Nanoscale Horiz 6:364–378. https://pubs.rsc.org/en/content/articlelanding/2021/NH/D0NH00680G

    Article  CAS  Google Scholar 

  23. Guo M, Kanezashi M, Nagasawa H, Yu L, Ohshita J, Tsuru T (2020) Amino-decorated organosilica membranes for highly permeable CO2 capture. J Membr Sci 611:118328. https://doi.org/10.1016/j.memsci.2020.118328

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Toshinori Tsuru or Joji Ohshita.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kajimura, K., Horata, K., Adachi, Y. et al. Preparation of urea- and isocyanurate-containing polysilsesquioxane membranes for CO2 separation. J Sol-Gel Sci Technol 106, 149–157 (2023). https://doi.org/10.1007/s10971-022-06004-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-06004-7

Keywords

Navigation