Skip to main content
Log in

Lanthanide loaded dopamine modified spinel nanoferrites: Novel photocatalyst with enhanced catalytic activity

  • Original Paper: Sol-gel and hybrid materials with surface modification for applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Magnetically separable different lanthanide metal loaded dopamine modified spinel ferrite nanostructures have been synthesized. Dopamine was used to introduce amine functionalities over the surface of ferrite nanoparticles which provide perfect binding and stabilization to the loaded metal nanoparticles. Modification of the surface of ferrite nanoparticles has been confirmed with the emergence of different vibrational bands in the IR spectra. Appearance of diffraction peaks of loaded metals along with the peaks of modified ferrite nanoparticles substantiates the loading of respective metal nanoparticles. HR-TEM, EDS patterns and FE-SEM elemental mapping studies validates the formation and purity of the samples. Elemental mapping supports the uniform binding of the metal nanoparticles over the surface of modified ferrite nanoparticles. Catalytic proficiency for all the synthesized samples has been compared toward the degradation of nitrophenols. Metal loaded samples possessed excellent catalytic activity irrespective of the nature of metal loaded for the degradation of nitrophenols. The results validated these nanostructures as potential photocatalysts for the degradation of nitrophenols with a marked advantage of stable and recoverable nature.

Graphical abstract

Lanthanide based modified ferrite nanoparticles have been utilized efficiently as photocatalyst for the eradication of nitrophenols from wastewater.

Highlights

  • Lanthanide metal loaded modified ferrite nanoparticles were well synthesized.

  • Synthesized nanoparticles were used for the degradation of nitrophenols.

  • Degradation process fitted best to pseudo first order kinetics.

  • M@Dopa@CoF NPs are more catalytically active as compare to M@Dopa@NiF NPs.

  • Interestingly, 10 wt% La, 20 wt% Ce and 10 wt% Nd presented best results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Mazierski P, Mikolajczyk A, Bajorowicz B, Malankowska A, Zaleska-Medynska A, Nadolna J (2018) The role of lanthanides in TiO2-based photocatalysis: A review. Appl Catal B 233:301–317. https://doi.org/10.1016/j.apcatb.2018.04.019

    Article  CAS  Google Scholar 

  2. Reddy KL, Kumar S, Kumar A, Krishnan V (2019) Wide spectrum photocatalytic activity in lanthanide-doped upconversion nanophosphors coated with porous TiO2 and Ag-Cu bimetallic nanoparticles. J Hazard Mater 367:694–705. https://doi.org/10.1016/j.jhazmat.2019.01.004

    Article  CAS  Google Scholar 

  3. Yu Y, Yu L, Koh KY, Wang C, Chen JP (2018) Rare-earth metal based adsorbents for effective removal of arsenic from water: A critical review. Crit Rev Environ Sci Technol 48:22–24. https://doi.org/10.1080/10643389.2018.1514930

    Article  CAS  Google Scholar 

  4. Zhang L, Gao Y, Zhou Q, Kan J, Wang Y (2014) High-performance removal of phosphate from water by graphene nanosheets supported lanthanum hydroxide nanoparticles. Water Air Soil Pollut 225:1967. https://doi.org/10.1007/s11270-014-1967-0

    Article  CAS  Google Scholar 

  5. Chaudhary S, Kumar S, Umar A, Singh J, Rawat M, Mehta SK (2017) Europium-doped gadolinium oxide nanoparticles: a potential photoluminescencent probe for highly selective and sensitive detection of Fe3+ and Cr3+ ions. Sens Actuators B Chem 243:579–588. https://doi.org/10.1016/j.snb.2016.12.002

    Article  CAS  Google Scholar 

  6. Tammanoon N, Wisitsoraat A, Phokharatkul D, Tuantranont A, Phanichphant S, Yordsri V, Liewhiran C (2018) Highly sensitive acetone sensors based on flame-spray-made La2O3-doped SnO2 nanoparticulate thick films. Sens Actuators B Chem 262:245–262. https://doi.org/10.1016/j.snb.2018.01.238

    Article  CAS  Google Scholar 

  7. Magdalane CM, Kaviyarasu K, Vijaya JJ, Siddhardha B, Jeyaraj B (2016) Photocatalytic activity of binary metal oxide nanocomposites of CeO2/CdO nanospheres: investigation of optical and antimicrobial activity. J Photochem Photobiol B 163:77–86. https://doi.org/10.1016/j.jphotobiol.2016.08.013

    Article  CAS  Google Scholar 

  8. Ziarati A, Sobhani-Nasab A, Rahimi-Nasrabadi M, Ganjali MR, Badiei A (2017) Sonication method synergism with rare earth based nanocatalyst: preparation of NiFe2–xEuxO4 nanostructures and its catalytic applications for the synthesis of benzimidazoles, benzoxazoles, and benzothiazoles under ultrasonic irradiation. J Rare Earth 35:374–381. https://doi.org/10.1016/S1002-0721(17)60922-0

    Article  CAS  Google Scholar 

  9. El-Bahy ZM, Ismail AA, Mohamed RM (2009) Enhancement of titania by doping rare earth for photodegradation of organic dye (Direct Blue). J Hazard Mater 166:138–143. https://doi.org/10.1016/j.jhazmat.2008.11.022

    Article  CAS  Google Scholar 

  10. Dong H, Zeng G, Tang L, Fan C, Zhang C, He X, He Y (2015) An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res 79:128–146. https://doi.org/10.1016/j.watres.2015.04.038

    Article  CAS  Google Scholar 

  11. Stengl V, Bakardjieva S, Murafa N (2009) Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles. Mater Chem Phys 114:217–226. https://doi.org/10.1016/j.matchemphys.2008.09.025

    Article  CAS  Google Scholar 

  12. Singhania A, Bhaskarwar AN (2018) Effect of rare earth (RE-La, Pr, Nd) metal-doped ceria nanoparticles on catalytic hydrogen iodide decomposition for hydrogen production. Int J Hydrog Energy 43:4818–4825. https://doi.org/10.1016/j.ijhydene.2018.01.096

    Article  CAS  Google Scholar 

  13. Pizzolitto C, Menegazzo F, Ghedini E, Innocenti G, Di Michele A, Cruciani G, Cavani F, Signoretto M (2018) Increase of ceria redox ability by lanthanum addition on Ni based catalysts for hydrogen production. ACS Sustain Chem Eng 6:13867–13876. https://doi.org/10.1021/acssuschemeng.8b02103.

    Article  CAS  Google Scholar 

  14. Perkas N, Amirian G, Zhong Z, Teo J, Gofer Y, Gedanken A (2009) Methanation of carbon dioxide on Ni catalysts on mesoporous ZrO2 doped with rare earth oxides. Catal Lett 130:455–462. https://doi.org/10.1007/s10562-009-9952-8

    Article  CAS  Google Scholar 

  15. Iqbal K, Iqbal A, Kirillov AM, Wang B, Liu W, Tang Y (2017) A new Ce-doped MgAl-LDH@ Au nanocatalyst for highly efficient reductive degradation of organic contaminants. J Mater Chem A 5:6716–6724. https://doi.org/10.1039/C6TA10880F.

    Article  CAS  Google Scholar 

  16. Mekuria SL, Addisu KD, Chou HY, Hailemeskel BZ, Tsai HC (2018) Potential fluorescence and magnetic resonance imaging modality using mixed lanthanide oxide nanoparticles. Colloids Surf B Biointerfaces 167:54–62. https://doi.org/10.1016/j.colsurfb.2018.03.033

    Article  CAS  Google Scholar 

  17. Kharel PL, Zamborini FP, Alphenaar BW (2018) Enhancing the photovoltaic performance of dye-sensitized solar cells with rare-earth metal oxide nanoparticles. J Electrochem Soc 165:H52–H56. https://doi.org/10.1149/2.1311802jes.

    Article  CAS  Google Scholar 

  18. Sun L, Wei R, Feng J, Zhang H (2018) Tailored lanthanide-doped upconversion nanoparticles and their promising bioapplication prospects. Coord Chem Rev 364:10–32. https://doi.org/10.1016/j.ccr.2018.03.007

    Article  CAS  Google Scholar 

  19. De Silva CR, Smith S, Shim I, Pyun J, Gutu T, Jiao J, Zheng Z (2009) Lanthanide (III)-doped magnetite nanoparticles. J Am Chem Soc 131:6336–6337. https://doi.org/10.1021/ja9014277

    Article  CAS  Google Scholar 

  20. Wang J, Chen S, Liu H, Li W (2018) Magnetic and thermosensitive luminescent nanocomposites based on Fe3O4/SiO2/poly (N-isopropylacrylamide)/lanthanide-polyoxometalates and their controllable luminescence properties. J Rare Earth 36:733–738. https://doi.org/10.1016/j.jre.2018.01.006

    Article  CAS  Google Scholar 

  21. Wu Y, Wei Y, Guo Q, Xu H, Gu L, Huang F, Luo D, Huang Y, Fan L, Wu J (2018) Solvothermal fabrication of La-WO3/SrTiO3 heterojunction with high photocatalytic performance under visible light irradiation,. Sol Energy Mater Sol Cells 176:230–238. https://doi.org/10.1016/j.solmat.2017.12.005

    Article  CAS  Google Scholar 

  22. Shakir M, Faraz M, Sherwani MA, Al-Resayes SI (2016) Photocatalytic degradation of the Paracetamol drug using Lanthanum doped ZnO nanoparticles and their in-vitro cytotoxicity assay. J Lumin 176:159–167. https://doi.org/10.1016/j.jlumin.2016.03.027

    Article  CAS  Google Scholar 

  23. Samoila P, Cojocaru C, Sacarescu L, Dorneanu PP, Domocos AA, Rotaru A (2017) Remarkable catalytic properties of rare-earth doped nickel ferrites synthesized by sol-gel auto-combustion with maleic acid as fuel for CWPO of dyes. Appl Catal B 202:21–32. https://doi.org/10.1016/j.apcatb.2016.09.012

    Article  CAS  Google Scholar 

  24. Zhu X, Zhang P, Li B, Hu Q, Su W, Dong L, Wang F (2017) Preparation, characterization and photocatalytic properties of La/WO3 composites. J Mater Sci Mater El 28:12158–12167. https://doi.org/10.1007/s10854-017-7030-3

    Article  CAS  Google Scholar 

  25. Thi VHT, Lee BK (2017) Effective photocatalytic degradation of paracetamol using La-doped ZnO photocatalyst under visible light irradiation. Mater Res Bull 96:171–182. https://doi.org/10.1016/j.materresbull.2017.04.028.

    Article  CAS  Google Scholar 

  26. Ruzimuradov O, Hojamberdiev M, Fasel C, Riedel R (2017) Fabrication of lanthanum and nitrogen–co-doped SrTiO3-TiO2 heterostructured macroporous monolithic materials for photocatalytic degradation of organic dyes under visible light. J Alloy Compd 699:144–150. https://doi.org/10.1016/j.jallcom.2016.12.355

    Article  CAS  Google Scholar 

  27. Ortiz-Quiñonez JL, Pal U, Villanueva MS (2018) Structural, magnetic, and catalytic evaluation of spinel Co, Ni, and Co–Ni ferrite nanoparticles fabricated by low-temperature solution combustion process. ACS Omega 3:14986–15001. https://doi.org/10.1021/acsomega.8b02229.

    Article  Google Scholar 

  28. Andersen HL, Saura-Múzquiz M, Granados-Miralles C, Canévet E, Lock N, Christensen M (2018) Crystalline and magnetic structure–property relationship in spinel ferrite nanoparticles. Nanoscale 10:14902–14914. https://doi.org/10.1039/C8NR01534A.

    Article  CAS  Google Scholar 

  29. Wang T, Ma B, Jin A, Li X, Zhang X, Wang W, Cai Y (2018) Facile loading of Ag nanoparticles onto magnetic microsphere by the aid of a tannic acid-Metal polymer layer to synthesize magnetic disinfectant with high antibacterial activity. J Hazard Mater 342:392–400. https://doi.org/10.1016/j.jhazmat.2017.08.047.

    Article  CAS  Google Scholar 

  30. Maleki A, Kari T (2018) Novel leaking-free, green, double core/shell, palladium-loaded magnetic heterogeneous nanocatalyst for selective aerobic oxidation. Catal Lett 148:2929–2934. https://doi.org/10.1007/s10562-018-2492-3

    Article  CAS  Google Scholar 

  31. Jiang J, Sun X, Li Y, Deng C, Duan G (2018) Facile synthesis of Fe3O4@ PDA core-shell microspheres functionalized with various metal ions: A systematic comparison of commonly-used metal ions for IMAC enrichment. Talanta 178:600–607. https://doi.org/10.1016/j.talanta.2017.09.071

    Article  CAS  Google Scholar 

  32. Goyal A, Kapoor S, Samuel P, Kumar V, Singhal S (2015) Facile protocol for reduction of nitroarenes using magnetically recoverable CoM0.2Fe1.8O4 (M= Co, Ni, Cu and Zn) ferrite nanocatalysts. RSC Adv 5:51347–51363. https://doi.org/10.1039/C5RA07190A.

    Article  CAS  Google Scholar 

  33. Goyal A, Singhal S (2016) Robust and economic reduction protocol employing immensely stable and leach-proof magnetically separable nanocomposites. RSC Adv 6:91275–91294. https://doi.org/10.1039/C6RA17387J.

    Article  CAS  Google Scholar 

  34. Malik R, Goyal A, Yadav S, Gupta N, Goel N, Kaushik A, Kumar V, Tikoo KB, Singhal S (2019) Functionalized magnetic nanomaterials for rapid and effective adsorptive removal of fluoroquinolones: Comprehensive experimental cum computational investigations. J Hazard Mater 364:621–634. https://doi.org/10.1016/j.jhazmat.2018.10.058

    Article  CAS  Google Scholar 

  35. Singh C, Goyal A, Singhal S (2014) Nickel-doped cobalt ferrite nanoparticles: efficient catalysts for the reduction of nitroaromatic compounds and photo-oxidative degradation of toxic dyes. Nanoscale 6:7959–7970. https://doi.org/10.1039/C4NR01730G.

    Article  CAS  Google Scholar 

  36. Yu H, Fan H, Yadian B, Tan H, Liu W, Hng HH, Huang Y, Yan Q (2015) General approach for MOF-derived porous spinel AFe2O4 hollow structures and their superior lithium storage properties. ACS Appl Mater Interfaces 7:26751–26757. https://doi.org/10.1021/acsami.5b08741.

    Article  CAS  Google Scholar 

  37. Vestal CR, Zhang ZJ (2003) Synthesis and magnetic characterization of Mn and Co spinel ferrite-silica nanoparticles with tunable magnetic core. Nano Lett 3:1739–1743. https://doi.org/10.1021/nl034816k.

    Article  CAS  Google Scholar 

  38. Kavitha V, Palanivelu K (2005) Degradation of nitrophenols by Fenton and photo-Fenton processes. J Photochem Photobiol 170:83–95. https://doi.org/10.1016/j.jphotochem.2004.08.003

    Article  CAS  Google Scholar 

  39. Khatamian M, Khandar AA, Divband B, Haghighi M, Ebrahimiasl S (2012) Heterogeneous photocatalytic degradation of 4-nitrophenol in aqueous suspension by Ln (La3+, Nd3+ or Sm3+) doped ZnO nanoparticles. J Mol Catal A Chem 365:120–127. https://doi.org/10.1016/j.molcata.2012.08.018

    Article  CAS  Google Scholar 

Download references

Funding

The authors are highly thankful to CSIR (Grant no. (09/135(0708)/2015-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonal Singhal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, R., Garg, T., Kumar, V. et al. Lanthanide loaded dopamine modified spinel nanoferrites: Novel photocatalyst with enhanced catalytic activity. J Sol-Gel Sci Technol 106, 199–214 (2023). https://doi.org/10.1007/s10971-022-06000-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-06000-x

Keywords

Navigation