Skip to main content

Advertisement

Log in

In vitro and in silico investigations by two new pH sensitive magnetic ferrate nanocarriers for delivery of 5-fluorouracil and chlorambucil

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In the preset study, potassium-calcium ferrate (KCaFeO4) and sodium-calcium ferrate (NaCaFeO4) nanoparticles were synthesized by thermal treatment method and the KCaFeO4@GO and NaCaFeO4@SiO2 nanocomposites were obtained by chemical processes. Different characterization techniques, such as X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) coupled with energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and Fourier transform infrared (FT–IR) spectroscopy were investigated to confirm the degree of crystallinity, microstructure, elemental analysis, morphology, and phase composition respectively. The prepared ferrate nanocomposites was used as a drug delivery carrier for 5-fluorouracil (5-FU) and chlorambucil (CLB) drugs. These drugs were loaded in to mentioned ferrate nanocomposites to compare effectiveness and cytotoxicity against the cancer and healthy cells. The cytotoxicity and anticancer activity of the drug against the MCF-7 cells were estimated by MTT assay. Results showed prepared drug loaded ferrate nanocomposites clearly decrease cell toxicity of loaded chemotherapeutic agents and these are two samples based 5-FU and CLB drugs are economically efficient drugs for curing breast cancer.

Graphical abstract

Highlights

  • A simple thermal treatment method was used to make two nanocomposites of KCaFeO4@GO and NaCaFeO4@SiO2.

  • 5-FU and CLB drugs were loaded in to mentioned nanocarriers to compare effectiveness and cytotoxicity.

  • The degree of crystallinity, microstructure, morphology, and phase composition of samples were examined by different techniques.

  • The cytotoxicity and anticancer activity of the drug against the MCF-7 cells were estimated by MTT assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Scheme 1

Similar content being viewed by others

References

  1. Singh G, Nenavathu BP, Imtiyaz K, Rizvi MMA (2020) Biomed Pharmacother 129:110443

    Article  CAS  Google Scholar 

  2. Zarychta E, Ruszkowska-Ciastek B (2022) Biomedicines 10:300

    Article  CAS  Google Scholar 

  3. Wong GL, Abu Jalboush S, Lo HW (2020) J Cancer 12:1827

    Article  CAS  Google Scholar 

  4. Cardoso F, Cataliotti L, Costa A, Knox S, Marotti L, Rutgers E, Beishon M (2017) Eur J Cancer 72:244250

    Article  Google Scholar 

  5. Ganesh Kumar A, Sankarganesh P, Parthasarathy V, Bhuvaneshwari J, Anbarasan R (2022) J Sol-Gel Sci Technol 101:411

    Article  Google Scholar 

  6. Zhang X, Powell K, Li L (2020) Cancers 12:3765

    Article  CAS  Google Scholar 

  7. Yong T, Zhang X, Bie N, Zhang H, Zhang X, Li F, Yang X (2019) Nat Commun 10:116

    Article  Google Scholar 

  8. Hashemi A, Naseri M, Chireh M (2021) Appl Phys A 127:111. ‏

    Article  Google Scholar 

  9. Alibabaei F, Saebnoori E, Fulazzaky MA, Talaeikhozani A, Roohi P, Moghadas F, Alian T (2021) Measure 179:109488

    Google Scholar 

  10. Sharma VK, Zboril R, Varma RS (2015) Acc Chem Res 48:182

    Article  CAS  Google Scholar 

  11. Samimi-Sedeh S, Saebnoori E, Talaiekhozani A, Fulazzaky MA, Roestamy M, Amani AM (2019) Plasma Chem Plasma Process 39:769786

    Article  Google Scholar 

  12. Maghraoui AEL, Zerouale A, Ijjaali M, Sajieddine M (2013) AMPC 3:8387

    Article  Google Scholar 

  13. Rajesh TP, Balaji R, Chen SM, Nivetha D, Rachel SS, Prakash N, Narendhar C (2021) Inorg Chem Commun 125:108447

    Article  CAS  Google Scholar 

  14. Zamani M, Naderi E, Aghajanzadeh M, Naseri M, Sharafi A, Danafar H (2019) J Mol Liq 274:6067

    Article  Google Scholar 

  15. Li QY, Lee JH, Kim HW, Jin GZ (2021) J Tissue Eng Regen Med 18:917930

    Google Scholar 

  16. Karki N, Tiwari H, Tewari C, Rana A, Pandey N, Basak S, Sahoo NG (2020) J Mater Chem B 8(36):8116–8148

    Article  CAS  Google Scholar 

  17. Gemeay AH, Elsharkawy RG, Aboelfetoh EF (2018) J Polym Environ 26:655669

    Article  Google Scholar 

  18. Jagiełło J, Chlanda A, Baran M, Gwiazda M, Lipińska L (2020) Nanomater 10(9):1846

    Article  Google Scholar 

  19. Mousavi SM, Hashemi SA, Ghasemi Y, Amani AM, Babapoor A, Arjmand O (2019) Drug Metab Rev 51:1241

    Google Scholar 

  20. Spoială A, Ilie CI, Crăciun LN, Ficai D, Ficai A, Andronescu E (2021) Res J Appl Sci 11(22):11075

    Google Scholar 

  21. Qu Z, Wong KY, Moniruzzaman M, Begun J, Santos HA, Hasnain SZ, Popat A (2021) Adv Ther 4:2000165

    Article  CAS  Google Scholar 

  22. Handali S, Moghimipour E, Rezaei M, Ramezani Z, Kouchak M, Amini M, Dorkoosh FA (2018) Biomed Pharmacother 108:12591273

    Article  Google Scholar 

  23. Chowdhury SM, Hossain MN, Rafe MR (2020) Heliyon 6:e04978

    Article  CAS  Google Scholar 

  24. Nowak‐Jary J, Machnicka B, Kozioł JJ (2021) Micro Nano Lett 16:515–523

    Article  Google Scholar 

  25. Pourjavadi A, Tehrani ZM, Jokar S (2015) J Ind Eng Chem 28:4553

    Article  Google Scholar 

  26. Goodarz Naseri M, Halimah MK, Dehzangi A, Kamalianfar A, Saion EB, Majlis BY (2014) J Phys Chem Solids 75:315

    Article  Google Scholar 

  27. Zhengfang T, Xia Y, Zhijun R, Min Z, Yufang Z, Nobutaka H (2018) Microporous Mesoporous Mater 256:1

    Article  Google Scholar 

  28. Durgalakshmi D, Rishvanth R, Ajay Rakkesh R, Bargavi P, Balakumar S, Aruna P, Ganesan S (2020) Int J Biol Macromol 156:969

    Article  Google Scholar 

  29. Goodarz Naseri M, Saion EB, Abbastabar Ahangar H, Hashim M, Shaari AH (2011) J Magn Magn Mater 323:1745

    Article  CAS  Google Scholar 

  30. Morimoto S, Tsuda M, Bunch H, Sasanuma H, Austin C, Takeda S (2019) Genes 10:868

    Article  CAS  Google Scholar 

  31. Chen SF, Huang NL, Lin JH, Wu CC, Wang YR, Yu YJ, Chan NL (2018) Nat Commun 9:113

    Article  Google Scholar 

  32. Wu CC, Li TK, Farh L, Lin LY, Lin TS, Yu YJ, Chan NL (2011) Science 333:459462

    Google Scholar 

  33. Gront D, Kmiecik S, Blaszczyk M, Ekonomiuk D, Koliński A (2012) Wiley Interdiscip Rev Comput Mol Sci 2:479493

    Article  Google Scholar 

  34. Munyengabe A, Zvinowanda C (2019) Asian J Chem 31:30293034. ‏

    Article  Google Scholar 

  35. Durmus Z, Kurt BZ, Durmus A (2019) ChemistrySelect 4:271278

    Article  Google Scholar 

  36. Wang P, Chen W, Zhang R, Xing Y (2022) Int J Environ Health Res 19:3247

    Article  CAS  Google Scholar 

  37. Munyengabe A, Zvinowanda C, Ramontja J, Zvimba J (2021) Water 13:2619

    Article  CAS  Google Scholar 

  38. Chireh M, Karam ZM, Naseri M, Jafarinejad-Farsangi S, Ghaedamini H (2022) Appl Phys A 128(4):1–8

    Article  Google Scholar 

  39. Hashemi A, Naseri M, Ghiyasvand S, Naderi E, Vafai S (2022) Appl Phys A 128:112

    Article  Google Scholar 

  40. Ahmad AL, Ebenezer OI, Shoparwe NF, Ismail S (2021) Membranes 12:24

    Article  Google Scholar 

  41. Rahmani H, Fattahi A, Sadrjavadi K, Khaledian S, Shokoohinia Y (2019) Pharm Bull 9:601

    Article  CAS  Google Scholar 

  42. Hussein-Al-Ali SH, Hussein MZ, Bullo S, Arulselvan P (2021) Int J Nanomed 16:6205

    Article  Google Scholar 

  43. Kirubasankar B, Murugadoss V, Lin J, Ding T, Dong M, Liu H, Angaiah S (2018) Nanoscale 10:2041420425

    Article  Google Scholar 

  44. Kazemzadeh Y, Dehdari B, Etemadan Z, Riazi M, Sharifi M (2019) Pet Sci 16:578590

    Article  Google Scholar 

  45. Chireh M, Naseri M, Ghaedamini H (2021) Adv Powder Technol 32(12):4697–4710

    Article  CAS  Google Scholar 

  46. Ruggiero I, Terracciano M, Martucci NM, De Stefano L, Migliaccio N, Tatè R, Rea I (2014) Nanoscale Res Lett 9:17

    Article  Google Scholar 

  47. Berdowska I, Zieliński B, Saczko J, Sopel M, Gamian A, Fecka I (2018) J Funct Foods 42:122128

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of science research and technology of Iran under the FRGS grant, Malayer University of Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Naseri.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, A., Naseri, M., Rahimi, M. et al. In vitro and in silico investigations by two new pH sensitive magnetic ferrate nanocarriers for delivery of 5-fluorouracil and chlorambucil. J Sol-Gel Sci Technol 106, 54–66 (2023). https://doi.org/10.1007/s10971-022-05996-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05996-6

Keywords

Navigation