Skip to main content
Log in

Fabrication, characterization, and optimization of the composite long afterglow material Sr2MgSi2O7:Eu2+, Dy3+@ SrAl2O4:Eu2+, Dy3+

  • Original Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In order to improve the water resistance of SrAl2O4:Eu2+, Dy3+, the composite long afterglow material Sr2MgSi2O7:Eu2+, Dy3+@ SrAl2O4:Eu2+, Dy3+ was prepared by covering uniform and stable Sr2MgSi2O7 sol on SrAl2O4:Eu2+, Dy3+ powder, which was synthesized via traditional solid-state method. The effects of various factors, such as the amount of ammonia, the molar ratio of Sr2MgSi2O7:SrAl2O4 and the content of H3BO3, on the structure and luminescent properties of Sr2MgSi2O7:Eu2+, Dy3+@ SrAl2O4:Eu2+, Dy3+ were investigated by the response surface method. The results show that the influence extent on both the initial afterglow brightness and water resistance are as follows:the amount of ammonia> the content of H3BO3 > the molar ratio of Sr2MgSi2O7:SrAl2O4. When the amount of ammonia, the molar ratio of Sr2MgSi2O7:SrAl2O4 and the content of H3BO3 is 1.64 mL, 11.10, and 0.006 mol, respectively, both the brightness and water resistance of Sr2MgSi2O7:Eu2+, Dy3+@ SrAl2O4:Eu2+, Dy3+ are improved, the water resistance is 0.835 (51.82% higher than that of pure SrAl2O4) and the initial afterglow brightness can reach 2793 mcd/m2 (91.69% higher than that of pure SrAl2O4), which were in good agreement with the predicted optimum value of 0.867 and 2720 mcd/m2, respectively. Under the optimization conditions, the synergistic action of SrAl2O4 with excellent afterglow properties and Sr2MgSi2O7 with high water resistance plays an important role in improving the water resistance without sacrificing brightness. Finally, the water-based light-emitting inks with SMSA as fluorescent pigment exhibit excellent luminescent properties in the dark.

Graphical abstract

Highlights

  • Sr2MgSi2O7@ SrAl2O4 long afterglow luminescent materials were obtained by covering Sr2MgSi2O7 sol on SrAl2O4 matrix.

  • Compared to SrAl2O4, the water resistance of Sr2MgSi2O7@ SrAl2O4 was improved without sacrificing the brightness.

  • The optimized parameters including the amount of ammonia, the molar ratio of SM:SA and the content of H3BO3 were obtained via response surface method.

  • The synergistic action of SrAl2O4 and Sr2MgSi2O7 for improving both the brightness and water resistance is successfully verified.

  • The water-based inks with Sr2MgSi2O7:Eu2+, Dy3+@ SrAl2O4:Eu2+, Dy3+ as fluorescent pigment exhibit excellent luminescent properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Almeida RM, Sousa N, Rojas-Hernandez RE, Santos LF (2020) Frequency conversion in lanthanide-doped sol-gel derived materials for energy applications. J Sol-Gel Sci Technol 95(3):520–529. https://doi.org/10.1007/s10971-020-05289-w

    Article  CAS  Google Scholar 

  2. Jin Y, Zhu Y, Li X, Ge M (2018) Thermosensitive luminous fibers based on cresol red-boric acid reversible thermochromic pigments. J Mater Sci-Mater Electron 29(1):138–145. https://doi.org/10.1007/s10854-017-7897-z

    Article  CAS  Google Scholar 

  3. Gao H, Yang H, Wang S, Li D, Wang F, Fang L, Lei L, Xiao YH, Yang GX (2018) A new route for the preparation of CoAl2O4 nanoblue pigments with high uniformity and its optical properties. J Sol-Gel Sci Technol 86(1):206–216. https://doi.org/10.1007/s10971-018-4609-y

    Article  CAS  Google Scholar 

  4. Shi C, Xue H, Zhu Y, Ge M (2018) A facile method to prepare the white persistent luminescent fibers based on Sr2ZnSi2O7: Eu2+, Dy3+ and fluorescence pigments. J Mater Sci-Mater Electron 29(11):9486–9493. https://doi.org/10.1007/s10854-018-8982-7

    Article  CAS  Google Scholar 

  5. Jaberi F, Movahed SO, Ahmadpour A (2019) The study on titanium dioxide-silica binary mixture coated SrAl2O4: Eu(2+), Dy(3+) phosphor as a photoluminescence pigment in a waterborne paint. J Fluoresc 29(2):461–471. https://doi.org/10.1007/s10895-019-02356-6

    Article  CAS  Google Scholar 

  6. Yan Y, Zhu Y, Guo X, Ge M (2014) The effects of inorganic pigments on the luminescent properties of colored luminous fiber. Text Res J 84(8):785–792. https://doi.org/10.1177/0040517513507361

    Article  CAS  Google Scholar 

  7. Shifa W, Gao H, Sun G, Wang Y, Fang L, Yang L, Liang L, Li W (2020) Synthesis of visible-light-driven SrAl2O4-based photocatalysts using surface modification and ion doping. Russ J Phys Chem 94(6):1234–1247. https://doi.org/10.1134/S003602442006031X

    Article  Google Scholar 

  8. Singh D, Sheoran S, Tanwar V, Bhagwan S (2017) Optical characteristics of Eu(III) doped MSiO3 (M= Mg, Ca, Sr and Ba) nanomaterials for white light emitting applications. J Mater Sci-Mater Electron 28(4):3243–3253. https://doi.org/10.1007/s10854-016-5914-2

    Article  CAS  Google Scholar 

  9. Tian S, Wen J, Fan H, Chen Y (2016) Sunlight-activated long persistent luminescent polyurethane incorporated with amino-functionalized SrAl2O4: Eu2+,Dy3+ phosphor. Polym Int 65(10):1238–1244. https://doi.org/10.1002/pi.5196

    Article  CAS  Google Scholar 

  10. Aldalbahi A, Rahaman M, Ansari AA (2019) Mesoporous silica modified luminescent Gd2O3: Eu nanoparticles: physicochemical and luminescence properties. J Sol-Gel Sci Technol 89(3):785–795. https://doi.org/10.1007/s10971-018-4897-2

    Article  CAS  Google Scholar 

  11. Ji H, Xie G, Lv Y, Lu H (2007) A new phosphor with flower-like structure and luminescent properties of Sr2MgSi2O7: Eu2+, Dy3+ long afterglow materials by sol-gel method. J Sol-Gel Sci Technol 44(2):133–137. https://doi.org/10.1007/s10971-007-1614-y

    Article  CAS  Google Scholar 

  12. Liu X, Qian X, Zheng P, Chen X, Feng Y, Shi Y, Zou J, Xie RJ, Li J (2021) Composition and structure design of three-layered composite phosphors for high color rendering chip-on-board light-emitting diode devices. J Adv Ceram 10(4):729–740. https://doi.org/10.1007/s40145-021-0467-0

    Article  CAS  Google Scholar 

  13. Xue H, Ge M, Zhu Y (2020) Preparation and properties research of a warm tone luminous polyacrylonitrile coaxial fiber based on SrAl2O4 phosphor. J Lumin 231:117777. https://doi.org/10.1016/j.jlumin.2020.117777

    Article  CAS  Google Scholar 

  14. Liu Z, Yang B, Zou J (2018) Enhancement of reliability and thermal stability of Ca0.2Sr2.73SiO5: 0.07Eu2+ phosphor by completely substitute Ba for Ca in warm LED application. Opt Mater 86:155–164. https://doi.org/10.1016/j.optmat.2018.10.011

    Article  CAS  Google Scholar 

  15. Lyu L, Chen Y, Yu L, Li R, Zhang L, Pei J (2020) The improvement of moisture resistance and organic compatibility of SrAl2O4: Eu(2+), Dy(3+) persistent phosphors coated with silica-polymer hybrid shell. Materials 13(2):426–443. https://doi.org/10.3390/ma13020426

    Article  CAS  Google Scholar 

  16. Zhu Y, Zheng M, Zeng J, Xiao Y, Liu Y (2009) Luminescence enhancing encapsulation for strontium aluminate phosphors with phosphate. Mater Chem Phys 113(2–3):721–726. https://doi.org/10.1016/j.matchemphys.2008.08.007

    Article  CAS  Google Scholar 

  17. Chen Z, Zhu YN, Guo X, Li M, Ge M (2018) Comparison of the luminescent properties of warm-toned long-lasting phosphorescent composites: SiO2/red-emitting color converter@ SrAl2O4: Eu2+, Dy3+ and PMMA/red-emitting color converter@ SrAl2O4: Eu2+, Dy3+. J Lumin 199:1–5. https://doi.org/10.1016/j.jlumin.2018.03.010

    Article  CAS  Google Scholar 

  18. Wang H, Liang X, Liu K, Zhou Q, Chen P, Wang J, Li J (2016) Synthesis of SrAl2O4: Eu2+ phosphors co-doped with Dy3+, Tb3+, Si4+ and optimization of co-doping amount by response surface method. Opt Mater 53:94–100. https://doi.org/10.1016/j.optmat.2016.01.030

    Article  CAS  Google Scholar 

  19. Wang YH, Viazzi C, Jiang Y, Princivalle A, Guizard C (2014) Synthesis of stoichiometric Y2Si2O7 powders by sonohydrolysis-assisted sol-gel route. J Sol-Gel Sci Technol 69(3):504–512. https://doi.org/10.1007/s10971-013-3250-z

    Article  CAS  Google Scholar 

  20. Seo JH, Sohn SH (2010) Surface modification of the (Y, Gd)BO3: Eu3+ phosphor by dual-coating of oxide nanoparticles. Mater Lett 64(11):1264–1267. https://doi.org/10.1016/j.matlet.2010.03.004

    Article  CAS  Google Scholar 

  21. Zhang J, Fan Y, Chen Z, Yan S, Wang J, Zhao P, Hao B, Gai M (2015) Enhancing the water-resistance stability of CaS: Eu2+, Sm2+ phosphor with SiO2-PMMA composite coating. J Rare Earth 33(9):922–926. https://doi.org/10.1016/S1002-0721(14)60506-8

    Article  CAS  Google Scholar 

  22. Tayebi M, Ostad Movahed S, Ahmadpour A (2019) The effect of the surface coating of a strontium mono-aluminate europium dysprosium-based (SrAl2O4: Eu(2+), Dy(3+)) phosphor by polyethylene (PE), polystyrene (PS) and their dual system on the photoluminescence properties of the pigment. RSC Adv 9(66):38703–38712. https://doi.org/10.1039/C9RA08571H

    Article  CAS  Google Scholar 

  23. Cai Y, Chang S, Liu Z (2018) Improving luminescence properties of submicron-sized spherical di-strontium magnesium silicate phosphors through morphology control. J Mater Sci-Mater Electron 29(14):12381–12386. https://doi.org/10.1007/s10854-018-9353-0

    Article  CAS  Google Scholar 

  24. Yang SH, Lee HY, Tseng PC, Lee MH (2021) Photoelectric properties of Sr2MgSi2O7: Eu2+ phosphors produced by co-precipitation method. J Lumin 231:117787. https://doi.org/10.1016/j.jlumin.2020.117787

    Article  CAS  Google Scholar 

  25. Wang Y, Wu S, Lei W, Wu M, Wang Y, Li F, Shen Y (2022) A new method for preparing cubic-shaped Sr2MgSi2O7: Eu2+, Dy3+ phosphors and the effect of sintering temperature. Ceram Int 48(4):5397–5403. https://doi.org/10.1016/j.ceramint.2021.11.083

    Article  CAS  Google Scholar 

  26. Jun LUO, Qiang GAO, Kaiyan Z, Mingqiao GE, Jialin LIU (2014) Structure and luminescent properties of luminous polypropylene fiber based on Sr2MgSi2O7: Eu2+, Dy3+. J Rare Earth 32(8):696–701. https://doi.org/10.1016/S1002-0721(14)60128-9

    Article  CAS  Google Scholar 

  27. Pan L, Liu S, Zhang X, Oderinde O, Yao F, Fu G (2018) Optimization method for blue Sr2MgSi2O7: Eu2+, Dy3+ phosphors produced by microwave synthesis route. J Alloy Compd 737:39–45. https://doi.org/10.1016/j.jallcom.2017.11.343

    Article  CAS  Google Scholar 

  28. Kang S, Fang Y, Huang YK (2015) Critical influence of g-C3N4 self-assembly coating on the photocatalytic activity and stability of Ag/AgCl microspheres under visible light. Appl Catal B-Environ 168-169:472–482. https://doi.org/10.1016/j.apcatb.2015.01.002

    Article  CAS  Google Scholar 

  29. Ashassi-Sorkhabi H, Rafizadeh SH (2004) Effect of coating time and heat treatment on structures and corrosion characteristics of electroless Ni-P alloy deposits. Surf Coat Technol 176(3):318–326. https://doi.org/10.1016/S0257-8972(03)00746-1

    Article  CAS  Google Scholar 

  30. Huang YM, Ma QL (2015) Long afterglow of trivalent dysprosium doped strontium aluminate. J Lumin 160:271–275. https://doi.org/10.1016/j.jlumin.2014.12.042

    Article  CAS  Google Scholar 

  31. Hu XW, Yang H, Guo TT, Shu DH (2018) Preparation and properties of Eu and Dy co-doped strontium aluminate long afterglow nanomaterials. Ceram Int 44(7):7535–7544. https://doi.org/10.1016/j.ceramint.2018.01.157

    Article  CAS  Google Scholar 

  32. Wang L, Shang Z, Shi M (2020) Preparing and testing the reliability of long-afterglow SrAl2O4: Eu(2+), Dy(3+) phosphor flexible films for temperature sensing. RSC Adv 10(19):11418–11425. https://doi.org/10.1039/D0RA00628A

    Article  CAS  Google Scholar 

  33. Tang ZL, Zhang F, Zhang ZT (2000) Luminescent properties of SrAl2O4: Eu, Dy material prepared by the gel method. J Eur Ceram Soc 20:2129–2132. https://doi.org/10.1016/S0955-2219(00)00092-3

    Article  CAS  Google Scholar 

  34. Kang FW, Hu YH, Chen L (2013) Luminescent properties of Eu3+ in MWO4 (M=Ca, Sr, Ba) matrix. J Lumin 135:113–119. https://doi.org/10.1016/j.jlumin.2012.10.041

    Article  CAS  Google Scholar 

  35. Dhoble SJ, Pawade VB (2013) Luminescence characterization of blue emitting aluminates based lamp phosphors. Int J Lumin Appl 3(1):27–31

    Google Scholar 

  36. Suna XY, Min ZB, Yua XG (2011) Luminescence properties of Tb3+-activated silicate glass scintillator. Int J Mater Res 102(1):104–108

    Article  Google Scholar 

  37. Nanto H (2006) Photostimulated luminescence in insulators and semiconductors. Radiat Eff Defect Solids 146(1-4):311–321. https://doi.org/10.1080/10420159808220303

    Article  Google Scholar 

  38. Xie RJ, Mitomo M, Uheda K, Xu FF, Akimune Y (2004) Preparation and luminescence spectra of calcium- and rare-earth (= Eu, Tb, and Pr)-codoped α-SiAlON ceramics. J Am Ceram Soc 85(5):1229–1234. https://doi.org/10.1111/j.1151-2916.2002.tb00250.x

    Article  Google Scholar 

  39. Rojas-Hernandez RE, Rubio-Marcos F, Rodriguez MÁ, Fernandez JF (2018) Long lasting phosphors: SrAl2O4: Eu, Dy as the most studied material. Renew Sust Energ Rev 81:2759–2770. https://doi.org/10.1016/j.rser.2017.06.081

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Undergraduate Training Program for Innovation and Entrepreneurship of Tianjin (Grant No. 201810058070), and Tianjin Technical and Engineering Center of Nonwovens (No. KF202106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Liang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, A., Wu, Y., Pan, Z. et al. Fabrication, characterization, and optimization of the composite long afterglow material Sr2MgSi2O7:Eu2+, Dy3+@ SrAl2O4:Eu2+, Dy3+. J Sol-Gel Sci Technol 105, 500–510 (2023). https://doi.org/10.1007/s10971-022-05989-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05989-5

Keywords

Navigation