Skip to main content
Log in

A facile surfactant-assisted precipitation route to self-assembled 3D flower-shaped NiO nanostructures with enhanced surface area

  • Original Paper: Nanostructured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

High surface area nickel oxide particles were prepared from thermal decomposition of nanostructured nickel oxalate precursors. The latter were synthesized via a fast and facile method from the reaction between aqueous solutions of nickel chloride and ammonium oxalate in the presence of a surfactant. The effect of several parameters, including surfactant type (PVP, SDS), surfactant concentration (0, 5, 10 g L−1), solution pH (2, 6), and reaction temperature (20, 40, 60 °C) were investigated. The produced particles were characterized by performing X-ray powder diffraction (XRD), scanning electron microscopy (SEM), TG-DTA analysis and Brunauer–Emmett–Teller (BET) adsorption analysis. The synthesized nickel oxalate particles possessed a dominant morphology of cubic or rounded cubic shape varying in size. However, a distinctive flower-shaped structure was obtained in the case of using 5 g L−1 SDS and reaction temperature of 20 °C, which was attributed to the formation of SDS supermicelles and its template function. The 3D structure of the latter consisted of a self-assembly of several petal-like nanosheets with a mean thickness of 16-24 nm. Upon calcination in the air atmosphere, mesoporous nickel oxide particles of the same morphology were obtained with thinner petals (10–22 nm) and specific surface area of 189 m2 g−1. In addition, the photocatalytic activity of the produced NiO nanoparticles against decomposition of Rhodamine B (RhB) pigments under UV irradiation was established and characterized.

Graphical abstract

Highlights

  • Homogeneous precipitation of nickel oxalate nanoparticle precursor from aqueous solution.

  • Solution temperature, solution pH, surfactant type and surfactant concentration was investigated.

  • Obtaining exceptional flower-shaped particle morphology at 20 °C, pH = 6 and 5 g L−1 SDS.

  • High surface area flower-shaped NiO nanoparticles by thermal decomposition of oxalate precursor.

  • Highly efficient photocatalytic activity of NiO nanoparticles towards RhB degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074. https://doi.org/10.3762/bjnano.9.98

    Article  Google Scholar 

  2. Wang X, Li L, Zhang YG, Wang S, Zhang Z, Fei L, Qian Y (2006) High-yield synthesis of NiO nanoplatelets and their excellent electrochemical performance. Cryst Growth Des 6:2163–2165. https://doi.org/10.1021/cg060156w

    Article  CAS  Google Scholar 

  3. Lim HH, Horri BA, Salamatinia B (2018) Synthesis and Characterizations of Nickel (II) Oxide Sub-Micro Rods via co-precipitation Methods. IOP Confer Ser Mater Sci Eng 398. https://doi.org/10.1088/1757-899X/398/1/012033.

  4. Rakshit S, Ghosh S, Chall S, Mati SS, Moulik SP, Bhattacharya SC (2013) Controlled synthesis of spin glass nickel oxide nanoparticles and evaluation of their potential antimicrobial activity: a cost effective and ecofriendly approach. RSC Adv 3:19348–19356. https://doi.org/10.1039/c3ra42628a

    Article  CAS  Google Scholar 

  5. Zhang L, An L, Liu B, Yang H (2011) Synthesis and photocatalytic activity of porous polycrystalline NiO nanowires. Appl Phys A Mater Sci Process 104:69–75. https://doi.org/10.1007/s00339-011-6403-3

    Article  CAS  Google Scholar 

  6. Manibalan G, Murugadoss G, Kuppusami P, Kandhasamy N, Rajesh Kumar M (2021) Synthesis of heterogeneous NiO nanoparticles for high-performance electrochemical supercapacitor application. J Mater Sci Mater Electron 32:5945–5954. https://doi.org/10.1007/s10854-021-05315-9

    Article  CAS  Google Scholar 

  7. Wang X, Song J, Gao L, Jin J, Zheng H (2005) Optical and electrochemical properties of nanosized NiO via thermal decomposition of nickel oxalate nanofibres. 37:1–4. https://doi.org/10.1088/0957-4484/16/1/009

  8. Fereshteh Z, Salavati-Niasari M, Saberyan K, Hosseinpour-Mashkani SM, Tavakoli F (2012) Synthesis of nickel oxide nanoparticles from thermal decomposition of a new precursor. J Clust Sci 23:577–583. https://doi.org/10.1007/s10876-012-0477-8

    Article  CAS  Google Scholar 

  9. Salavati-Niasari M, Mir N, Davar F (2010) A novel precursor in preparation and characterization of nickel oxide nanoparticles via thermal decomposition approach. J Alloy Compd 493:163–168. https://doi.org/10.1016/j.jallcom.2009.11.153

    Article  CAS  Google Scholar 

  10. Sattarahmady N, Heli H, Dehdari Vais R (2014) A flower-like nickel oxide nanostructure: Synthesis and application for choline sensing. Talanta 119:207–213. https://doi.org/10.1016/j.talanta.2013.11.002

    Article  CAS  Google Scholar 

  11. Lin Y, Xie T, Cheng B, Geng B, Zhang L (2003) Ordered nickel oxide nanowire arrays and their optical absorption properties. Chem Phys Lett 380:521–525. https://doi.org/10.1016/j.cplett.2003.09.066

    Article  CAS  Google Scholar 

  12. Sun W, Xiao L, Wu X (2019) Facile synthesis of NiO nanocubes for photocatalysts and supercapacitor electrodes. J Alloy Compd 772:465–471. https://doi.org/10.1016/j.jallcom.2018.09.185

    Article  CAS  Google Scholar 

  13. Kavitha T, Yuvaraj H (2011) A facile approach to the synthesis of high-quality NiO nanorods: Electrochemical and antibacterial properties. J Mater Chem 21:15686–15691. https://doi.org/10.1039/c1jm13278d

    Article  CAS  Google Scholar 

  14. Wang D, Wang Q, Wang T (2013) Controlled synthesis of porous nickel oxide nanostructures and their electrochemical capacitive behaviors. 559–570. https://doi.org/10.1007/s11581-012-0781-1

  15. Vaidya S, Rastogi P, Agarwal S, Gupta SK, Ahmad T, Antonelli AM, Ramanujachary KV, Lofland SE, Ganguli AK (2008) Nanospheres, nanocubes, and nanorods of nickel oxalate: control of shape and size by surfactant and solvent. J Phys Chem C 112:12610–12615. https://doi.org/10.1021/jp803575h

    Article  CAS  Google Scholar 

  16. Rakshit S, Chall S, Mati SS, Roychowdhury A, Moulik SP, Bhattacharya SC (2013) Morphology control of nickel oxalate by soft chemistry and conversion to nickel oxide for application in photocatalysis. RSC Adv 3:6106–6116. https://doi.org/10.1039/c3ra21978j

    Article  CAS  Google Scholar 

  17. Jia Z, Liu J, Wang Q, Ye M, Zhu R (2014) Facile preparation of mesoporous nickel oxide microspheres and their adsorption property for methyl orange from aqueous solution. Mater Sci Semicond Process 26:716–725. https://doi.org/10.1016/j.mssp.2014.06.026

    Article  CAS  Google Scholar 

  18. Sathishkumar K, Shanmugam N, Kannadasan N, Cholan S, Viruthagiri G (2014) Synthesis and characterization of nanocrystalline nickel oxide using NaOH and oxalic acid as oxide sources. Mater Res Express 1:026104. https://doi.org/10.1088/2053-1591/1/2/026104

    Article  CAS  Google Scholar 

  19. Alagiri M, Ponnusamy S, Muthamizhchelvan C (2012) Synthesis and characterization of NiO nanoparticles by sol-gel method. J Mater Sci Mater Electron 23:728–732. https://doi.org/10.1007/s10854-011-0479-6

    Article  CAS  Google Scholar 

  20. Wu Y, He Y, Wu T, Chen T, Weng W, Wan H (2007) Influence of some parameters on the synthesis of nanosized NiO material by modified sol-gel method. Mater Lett 61:3174–3178. https://doi.org/10.1016/j.matlet.2006.11.018

    Article  CAS  Google Scholar 

  21. Bose P, Ghosh S, Basak S, Naskar MK (2016) A facile synthesis of mesoporous NiO nanosheets and their application in CO oxidation. J Asian Ceram Soc 4:1–5. https://doi.org/10.1016/j.jascer.2016.01.006

    Article  Google Scholar 

  22. Goel S, Tomar AK, Sharma RK, Singh G (2018) Highly pseudocapacitive NiO nanoflakes through surfactant-free facile microwave-assisted route. ACS Appl Energy Mater 1:1540–1548. https://doi.org/10.1021/acsaem.7b00343

    Article  CAS  Google Scholar 

  23. Suresh R, Ponnuswamy V, Sankar C, Manickam M, Venkatesan S, Perumal S (2017) NiO nanoflakes: effect of anions on the structural, optical, morphological and magnetic properties. J Magn Magn Mater 441:787–794. https://doi.org/10.1016/j.jmmm.2017.05.069

    Article  CAS  Google Scholar 

  24. Babu GA, Navaneethan GRM (2014) An investigation of flower shaped NiO nanostructures by microwave and hydrothermal route. 5231–5240. https://doi.org/10.1007/s10854-014-2293-4

  25. Cao S, Han T, Peng L (2020) Surfactant-free synthesis of 3D hierarchical flower-like NiO nanostructures with enhanced ethanol-sensing performance. J Mater Sci Mater Electron. https://doi.org/10.1007/s10854-020-04283-w

  26. Wang M, Zhu Y, Han L, Qi R, He F (2019) Inky flower-like supermicelles assembled from π-conjugated block copolymers. Polym Chem 11:61–67. https://doi.org/10.1039/c9py01625b

    Article  CAS  Google Scholar 

  27. Shende P, Kasture P, Gaud RS (2018) Nanoflowers: the future trend of nanotechnology for multi-applications. Artif Cells Nanomed Biotechnol 46:S413–S422. https://doi.org/10.1080/21691401.2018.1428812

    Article  CAS  Google Scholar 

  28. Wu Q, Liu Y, Hu Z (2013) Flower-like NiO microspheres prepared by facile method as supercapacitor electrodes. J Solid State Electrochem 17:1711–1716. https://doi.org/10.1007/s10008-013-2022-6

    Article  CAS  Google Scholar 

  29. Wang J, Zeng W, Wang Z (2015) Assembly of 2D nanosheets into 3D flower-like NiO: Synthesis and the in fl uence of petal thickness on gas-sensing properties. https://doi.org/10.1016/j.ceramint.2015.11.150

  30. Gao Q, Zeng W, Miao R (2016) Synthesis of multifarious hierarchical flower-like NiO and their gas-sensing properties. J Mater Sci Mater Electron 27:9410–9416. https://doi.org/10.1007/s10854-016-4986-3

    Article  CAS  Google Scholar 

  31. Luo L, Wu Y, Wei F, Shi J, Cheng L (2010) Synthesis and characterterization of flower-like NiO nano-architectures by homogeneous precipitation. Key Eng Mater 434–435:554–557

    Article  Google Scholar 

  32. Zhao B, Ke XK, Bao JH, Wang CL, Dong L, Chen YW, Chen HL (2009) Synthesis of flower-like NiO and effects of morphology on its catalytic properties. J Phys Chem C 113:14440–14447. https://doi.org/10.1021/jp904186k

    Article  CAS  Google Scholar 

  33. Mahmoudi S, Jafari A, Javadian S (2019) Temperature effect on performance of nanoparticle/surfactant flooding in enhanced heavy oil recovery. Pet Sci 16:1387–1402. https://doi.org/10.1007/s12182-019-00364-6

    Article  CAS  Google Scholar 

  34. Pakuro N, Yakimansky A, Chibirova F, Arest-Yakubovich A (2009) Thermo- and pH-sensitivity of aqueous poly(N-vinylpyrrolidone) solutions in the presence of organic acids. Polymer 50:148–153. https://doi.org/10.1016/j.polymer.2008.10.037

    Article  CAS  Google Scholar 

  35. Liu Z, Xu K, Sun H, Yin S (2015) One-step synthesis of single-layer MnO2 nanosheets with multi-role sodium dodecyl sulfate for high-performance pseudocapacitors. Small 11:2182–2191. https://doi.org/10.1002/smll.201402222

    Article  CAS  Google Scholar 

  36. Charboneau J, Von Wandruszka R (2010) The clouding of an anionic surfactant in acid solution: Mechanistic and analytical implications. J Surfactants Deterg 13:281–286. https://doi.org/10.1007/s11743-009-1174-y

    Article  CAS  Google Scholar 

  37. Okamoto T, Yang JG, Kuroda K, Ichino R, Okido M (2007) Preparation of size and aggregation controlled nickel oxalate dihydrate particles from nickel hydroxide. Adv Mater Res 15–17:581–586

    Google Scholar 

  38. Behnoudnia F, Dehghani H (2014) Anion effect on the control of morphology for NiC2O4·2H2O nanostructures as precursors for synthesis of Ni(OH)2 and NiO nanostructures and their application for removing heavy metal ions of cadmium (II) and lead (II). Dalton Trans 43:3471–3478. https://doi.org/10.1039/C3DT52049H

    Article  CAS  Google Scholar 

  39. Xue X, Penn RL, Leite ER, Huang F, Lin Z (2014) Crystal growth by oriented attachment: Kinetic models and control factors. Cryst Eng Comm 16:1419–1429. https://doi.org/10.1039/c3ce42129e

    Article  CAS  Google Scholar 

  40. Madras G, McCoy BJ (2003) Temperature effects during Ostwald ripening. J Chem Phys 119:1683–1693. https://doi.org/10.1063/1.1578617

    Article  CAS  Google Scholar 

  41. Dehghan Noudeh GH, Housaindokht M, Fazly Bazzaz BS (2007) The effect of temperature on thermodynamic parameters of micellization of some surfactants. J Appl Sci 7:47–52

    Article  Google Scholar 

  42. Li X, Gao Y, Boott CE, Winnik MA, Manners I (2015) Non-covalent synthesis of supermicelles with complex architectures using spatially confined hydrogen-bonding interactions. Nat Commun 6:1–8. https://doi.org/10.1038/ncomms9127

    Article  Google Scholar 

  43. Gould OEC, Qiu H, Lunn DJ, Rowden J, Harniman RL, Hudson ZM, Winnik MA, Miles MJ, Manners I (2015) Transformation and patterning of supermicelles using dynamic holographic assembly. Nat Commun 6:1–7. https://doi.org/10.1038/ncomms10009

    Article  CAS  Google Scholar 

  44. Kulthe SS, Choudhari YM, Inamdar NN, Mourya V (2012) Polymeric micelles: Authoritative aspects for drug delivery. Des Monomers Polym 15:465–521. https://doi.org/10.1080/1385772X.2012.688328

    Article  CAS  Google Scholar 

  45. Xu J, Fang Y, Xia Y, Wang C, He M (2005) Preparation of nickel nanoparticles in the presence of sodium dodecyl sulfate polyvinylpyrrolidone clusters. AIChE Annu Meet Confer Proc 1430–1435.

  46. Samiey B, Cheng CH, Wu J (2014) Effects of surfactants on the rate of chemical reactions. J Chem 2014. https://doi.org/10.1155/2014/908476

  47. Thota S, Kumar J (2007) Sol–gel synthesis and anomalous magnetic behaviour of NiO nanoparticles. J Phys Chem Solids 68:1951–1964. https://doi.org/10.1016/j.jpcs.2007.06.010

    Article  CAS  Google Scholar 

  48. Thommes M (2010) Physical adsorption characterization of nanoporous materials. Chem-Ing-Tech 82:1059–1073. https://doi.org/10.1002/cite.201000064

    Article  CAS  Google Scholar 

  49. Kazeminezhad I, Sadollahkhani A (2016) Influence of pH on the photocatalytic activity of ZnO nanoparticles. J Mater Sci Mater Electron 27:4206–4215. https://doi.org/10.1007/s10854-016-4284-0

    Article  CAS  Google Scholar 

  50. Wan X, Yuan M, Tie SL, Lan S (2013) Effects of catalyst characters on the photocatalytic activity and process of NiO nanoparticles in the degradation of methylene blue. Appl Surf Sci 277:40–46. https://doi.org/10.1016/j.apsusc.2013.03.126

    Article  CAS  Google Scholar 

  51. Abboud M, Mubarak AT, Hamdy MS, Abu Haija M, Ismail I, Bel-Hadj-Tahar R, Bel-Hadj-Tahar R (2020) Highly ordered mesoporous flower-like NiO nanoparticles: Synthesis, characterization and photocatalytic performance. N J Chem 44:3402–3411. https://doi.org/10.1039/c9nj04955j

    Article  CAS  Google Scholar 

  52. Kalaie MR, Youzbashi AA, Meshkot MA, Hosseini-Nasab F (2016) Preparation and characterization of superparamagnetic nickel oxide particles by chemical route. Appl Nanosci 6:789–795. https://doi.org/10.1007/s13204-015-0498-3

    Article  CAS  Google Scholar 

  53. Al-Sehemi AG, Al-Shihri AS, Kalam A, Dud G, Ahmad T (2014) Microwave synthesis, optical properties and surface area studies of NiO nanoparticles. J Mol Struct 1058:56–61. https://doi.org/10.1016/j.molstruc.2013.10.065

    Article  CAS  Google Scholar 

  54. Marei NN, Nassar NN, Vitale G (2016) The effect of the nanosize on surface properties of NiO nanoparticles for the adsorption of Quinolin-65. Phys Chem Chem Phys 18:6839–6849. https://doi.org/10.1039/c6cp00001k

    Article  CAS  Google Scholar 

  55. Nguyen K, Hoa ND, Hung CM, Thanh Le DT, Van Duy N, Van Hieu N (2018) A comparative study on the electrochemical properties of nanoporous nickel oxide nanowires and nanosheets prepared by a hydrothermal method. RSC Adv 8:19449–19455. https://doi.org/10.1039/c8ra02862a

    Article  CAS  Google Scholar 

  56. Ren Y, Gao L (2010) From three-dimensional flower-like α-Ni(OH)2 nanostructures to hierarchical porous NiO nanoflowers: Microwave-assisted fabrication and supercapacitor properties. J Am Ceram Soc 93:3560–3564. https://doi.org/10.1111/j.1551-2916.2010.04090.x

    Article  CAS  Google Scholar 

  57. Sharma RK, Ghose R (2015) Superlattices and microstructures synthesis of porous nanocrystalline NiO with hexagonal sheet-like morphology by homogeneous precipitation method. Superlattices Microstruct 80:169–180. https://doi.org/10.1016/j.spmi.2014.12.034

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. PZ performed data collection and analysis, and wrote the first draft of the manuscript. All authors commented on previous versions of the manuscript and read and approved the final manuscript.

Corresponding author

Correspondence to Alireza Zakeri.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahabi, P., Zakeri, A. & Asadrokht, M. A facile surfactant-assisted precipitation route to self-assembled 3D flower-shaped NiO nanostructures with enhanced surface area. J Sol-Gel Sci Technol 105, 73–84 (2023). https://doi.org/10.1007/s10971-022-05980-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05980-0

Keywords

Navigation