Skip to main content
Log in

Pt nanoparticles anchored on bifunctional CuFe2O4 submicrospheres with improved catalytic properties for the reduction of [Fe(CN)6]3− by S2O32−

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

We have developed a facile three-step fabricating procedure whereby uniformly distributed and highly catalytically active Pt nanoparticles (NPs) were anchored on the superparamagnetic and catalytically active CuFe2O4 submicrospheres to form core-shell CuFe2O4@Pt nanocomposite catalyst. The as-prepared CuFe2O4 and CuFe2O4@Pt catalysts were characterized by transmission electron microscopy (TEM) and high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Their catalytic properties for reduction of [Fe(CN)6]3− to [Fe(CN)6]4− by S2O32− were comparatively studied. The results indicate that the inherent catalytic performance of CuFe2O4 can be improved dramatically when Pt NPs are homogeneously dispersed and firmly immobilized on its surface. The remarkably enhanced catalytic activity is mainly ascribed to the excellent catalytic performance of noble metal Pt.

Schematic diagram of fabrication of core-shell CuFe2O4@Pt.

Highlights

  • A facile three-step fabricating procedure is demonstrated to fabricate CuFe2O4@Pt NPs.

  • CuFe2O4@Pt exhibits superior catalytic efficiency to CuFe2O4 for reduction of [Fe(CN)6]3−.

  • The enhanced mechanism is due to the excellent catalytic activity of noble metal Pt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhu M, Diao G (2011) Synthesis of porous Fe3O4 nanospheres and its application for the catalytic degradation of xylenol orange. J Phys Chem C 115:18923–18934

    Article  CAS  Google Scholar 

  2. Hudson R, Feng YT, Varma RS, Moores A (2014) Bare magnetic nanoparticles: sustainable synthesis and applications in catalytic organic transformations. Green Chem 16:4493–4505

    Article  CAS  Google Scholar 

  3. Zhang D, Zhou C, Sun Z, Wu L, Tung C, Zhang T (2012) Magnetically recyclable nanocatalysts (MRNCs): a versatile integration of high catalytic activity and facile recovery. Nanoscale 4:6244–6255

    Article  CAS  Google Scholar 

  4. Liu Y, Lv M, Li L, Yu H, Wu Q, Pang J, Liu Y, Xie C, Yu S, Liu S (2019) Fe3O4@SiO2/APTS/Ru magnetic nanocomposite catalyst for hydrogenation reactions. Appl Organometal Chem 32:e4686

    Article  Google Scholar 

  5. Du W, Xia S, Nie R, Hou Z (2014) Magnetic Pt catalyst for selective hydrogenation of halonitrobenzenes. Ind Eng Chem Res 53:4589–4594

    Article  CAS  Google Scholar 

  6. Long Y, Liang K, Niu J, Yuan B, Ma J (2015) Pt NPs immobilized on core-shell magnetite microparticles: novel and highly efficient catalysts for the selective aerobic oxidation of ethanol and glycerol in water. Dalton Trans 44:8660–8668

    Article  CAS  Google Scholar 

  7. Gao Y, Chen B, Li H, Ma Y (2003) Preparation and characterization of a magnetically separated photocatalyst and its catalytic properties. Mater Chem Phys 80:348–355

    Article  CAS  Google Scholar 

  8. Bai S, Shen X, Zhong X, Liu Y, Zhu G, Xu X, Chen K (2012) One-pot solvothermal preparation of magnetic reduced graphene oxide-ferrite hybrids for organic dye removal. Carbon 50:2337–2346

    Article  CAS  Google Scholar 

  9. Li M, Xiong Y, Liu X, Bo X, Zhang Y, Han C, Guo L (2015) Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electro-catalytic properties for oxygen evolution and hydrogen peroxide reduction. Nanoscale 7:8920–8930

    Article  CAS  Google Scholar 

  10. Ren Y, Lin L, Ma J, Yang J, Feng J, Fan Z (2015) Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4 (M = Co, Cu, Mn, and Zn) as heterogeneous catalysts in the water. Appl Catal B 165:572–578

    Article  CAS  Google Scholar 

  11. Chen M, Mo L, Cui Z, Zhang Z (2019) Magnetic nanocatalysts: Synthesis and application in multicomponent reactions. Curr Opin Green Sustain Chem 15:27–37

    Article  Google Scholar 

  12. Zhang Q, Yang X, Guan J (2019) Applications of magnetic nanomaterials in heterogeneous catalysis. ACS Appl Nano Mater 2:4681–4697

    Article  CAS  Google Scholar 

  13. Li Y, Shen J, Hu Y, Qiu S, Min G, Song Z, Sun Z, Li C (2015) General flame approach to chainlike MFe2O4 spinel (M = Cu, Ni, Co, Zn) nanoaggregates for reduction of nitroaromatic compounds. Ind Eng Chem Res 54:9750–9757

    Article  CAS  Google Scholar 

  14. Feng J, Su L, Ma Y, Ren C, Guo Q, Chen X (2013) CuFe2O4 magnetic nanoparticles: a simple and efficient catalyst for the reduction of nitrophenol. Chem Eng J 221:16–24

    Article  CAS  Google Scholar 

  15. Goyal A, Bansal S, Singhal S (2014) Facile reduction of nitrophenols: comparative catalytic efficiency of MFe2O4 (M = Ni, Cu, Zn) nano ferrites. Int J Hydrog Energy 39:4895–4908

    Article  CAS  Google Scholar 

  16. Guo Y, Zhang L, Liu X, Li B, Tang D, Liu W, Qin W (2016) Synthesis of magnetic core-shell carbon dots@MFe2O4 (M = Mn, Zn and Cu) hybrid materials and their catalytic properties. J Mater Chem A 4:4044–4055

    Article  CAS  Google Scholar 

  17. Wang J, Yu B, Wang W, Cai X (2019) Facile synthesis of carbon dots-coated CuFe2O4 nanocomposites as a reusable catalyst for highly efficient reduction of organic pollutants. Catal Commun 126:35–39

    Article  CAS  Google Scholar 

  18. Wang L, Hu G, Wang Z, Wang B, Song Y, Tang H (2015) Highly efficient and selective degradation of methylene blue from mixed aqueous solution by using monodisperse CuFe2O4 nanoparticles. RSC Adv 5:73327–73332

    Article  CAS  Google Scholar 

  19. Zhao Y, He G, Dai W, Chen H (2014) High catalytic activity in the phenol hydroxylation of magnetically separable CuFe2O4-reduced graphene oxide. Ind Eng Chem Res 53:12566–12574

    Article  CAS  Google Scholar 

  20. Guo X, Wang K, Li D, Qin J (2017) Heterogeneous photo-Fenton processes using graphite carbon coating hollow CuFe2O4 spheres for the degradation of methylene blue. Appl Sur Sci 420:792–801

    Article  CAS  Google Scholar 

  21. Wang L, Bock D, Li J, Stach E, Marschilok A, Takeuchi K, Takeuch E (2018) Synthesis and characterization of CuFe2O4 nano/submicron wire-carbon nanotube composites as binder-free anodes for Li-ion batteries. ACS Appl Mater Interfaces 10:8770–8785

    Article  CAS  Google Scholar 

  22. Ma S, Feng J, Qin W, Ju Y, Chen X (2015) CuFe2O4@PDA magnetic nanomaterials with a core-shell structure: synthesis and catalytic application in the degradation of methylene blue in water. RSC Adv 5:53514–53523

    Article  CAS  Google Scholar 

  23. Manikandan V, Mirzaei A, Sikarwar S, Yadav B, Vigneselvan S, Vanitha A, Chandrasekaran J (2020) The rapid response and high sensitivity of a ruthenium-doped copper ferrite thin film (Ru-CuFe2O4) sensor. RSC Adv 10:13611–13615

    Article  CAS  Google Scholar 

  24. Zhao C, Lan W, Gong H, Bai J, Ramachandran R, Liu S, Wang F (2018) Highly sensitive acetone-sensing properties of Pt-decorated CuFe2O4 nanotubes prepared by electrospinning. Ceram Int 44:2856–2863

    Article  CAS  Google Scholar 

  25. Kumar A, Srivastava R (2020) Pd-decorated magnetic spinels for selective catalytic reduction of furfural: interplay of a framework-substituted transition metal and solvent in selective reduction. ACS Appl Energy Mater 3:9928–9939

    Article  CAS  Google Scholar 

  26. Lin L, Cui H, Zeng G, Chen M, Zhang H, Xu M, Shen X, Bortolini C, Dong M (2013) Ag-CuFe2O4 magnetic hollow fibers for recyclable antibacterial materials. J Mater Chem B 1:2719–2723

    Article  CAS  Google Scholar 

  27. Koley P, Shit S, Joseph B, Pollastri S, Sabri Y, Mayes E, Nakka L, Tardio J, Mondal J (2020) Leveraging Cu/CuFe2O4-catalyzed biomass-derived furfural hydrodeoxygenation: a nanoscale metal-organic-framework template is the prime key. ACS Appl Mater Interfaces 12:21682–21700

    Article  CAS  Google Scholar 

  28. Chen Z, Wang L, Xu H, Wen Q (2020) Efficient heterogeneous activation of peroxymonosulfate by modified CuFe2O4 for degradation of tetrabromobisphenol A. Chem Eng J 389:124345

    Article  CAS  Google Scholar 

  29. Nie R, Wang J, Wang L, Qin Y, Chen P, Hou Z (2012) Platinum supported on reduced graphene oxide as a catalyst for hydrogenation of nitroarenes. Carbon 50:586–5596

    Article  CAS  Google Scholar 

  30. Panella B, Vargas A, Baiker A (2009) Magnetically separable Pt catalyst for asymmetric hydrogenation. J Catal 261:88–93

    Article  CAS  Google Scholar 

  31. Toyao T, Kayamori S, Maeno Z, Hakim Siddiki S, Shimizu K (2019) Heterogeneous Pt and MoOx co-loaded TiO2 catalysts for low-temperature CO2 hydrogenation to form CH3OH. ACS Catal 9:8187–8196

    Article  CAS  Google Scholar 

  32. Qiao J, Liu Y, Hong F, Zhang J (2014) A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev 43:631–675

    Article  CAS  Google Scholar 

  33. Du L, Zhang S, Chen G, Yin G, Du C, Tan Q, Sun Y, Qu Y, Gao Y (2014) Polyelectrolyte assisted synthesis and enhanced oxygen reduction activity of Pt nanocrystals with controllable shape and size. ACS Appl Mater Interfaces 6:14043–14049

    Article  CAS  Google Scholar 

  34. Du X, Luo S, Du H, Tang M, Huang X, Shen P (2016) Monodisperse and self-assembled Pt-Cu nanoparticles as an efficient electrocatalyst for methanol oxidation reaction. J Mater Chem A 4:1579–1585

    Article  CAS  Google Scholar 

  35. Rizo R, Pérez‐Rodríguez S, García G (2019) Well‐defined platinum surfaces for the ethanol oxidation reaction. Chem Electro Chem 6:4725–4738

    CAS  Google Scholar 

  36. Nasrollahzadeh M, Sajjadi M, Iravani S, Varmam R (2021) Green-synthesized nanocatalysts and nanomaterials for water treatment: Current challenges and future perspectives. J Hazard Mater 401:123401

    Article  CAS  Google Scholar 

  37. Dandapat A, Jana D, De G (2009) Synthesis of thick mesoporous γ-alumina films, loading of Pt nanoparticles, and use of the composite film as a reusable catalyst. ACS Appl Mater Interfaces 1:833–840

    Article  CAS  Google Scholar 

  38. Narayanan R, El-Sayed MA (2003) Effect of catalytic activity on the metallic nanoparticle size distribution: electron-transfer reaction between Fe(CN)6 and thiosulfate ions catalyzed by PVP-platinum nanoparticles. J Phys Chem B 107:12416–12424

    Article  Google Scholar 

  39. Yang W, Ma Y, Tang J, Yang X (2007) “Green synthesis” of monodisperse Pt nanoparticles and their catalytic properties. Colloids Surf A 302:628–633

    Article  CAS  Google Scholar 

  40. Kalekar A, Sharma K, Lehoux A, Audonnet F, Remita H, Saha A, Sharma G (2013) Investigation into the catalytic activity of porous platinum nanostructures. Langmuir 29:11431–11439

    Article  CAS  Google Scholar 

  41. Sharma R, Sharma P, Maitra A (2003) Size-dependent catalytic behavior of platinum nanoparticles on the hexacyanoferrate(III)/thiosulfate redox reaction. J Colloid Interface Sci 265:134–140

    Article  CAS  Google Scholar 

  42. Li H, Cao M, Liu T, Cao R (2012) Activation energy of the reaction between hexacyanoferrate (III) and thiosulfate ions catalyzed by platinum nanoparticles confined in nanometer space. J Colloid Interface Sci 369:352–357

    Article  CAS  Google Scholar 

  43. Cheng C, Wen Y, Xu X, Gu H (2009) Tunable synthesis of carboxyl-functionalized magnetite nanocrystal clusters with uniform size. J Mater Chem 19:8782–8788

    Article  CAS  Google Scholar 

  44. Guo S, Dong S, Wang E (2009) A general route to construct diverse multifunctional Fe3O4/metal hybrid sanostructures. Chem Eur J 15:2416–2424

    Article  CAS  Google Scholar 

  45. Hervés P, Pérez-Lorenzo M, Liz-Marzán L, Dzubiella J, Lu Y, Ballauff M (2012) Catalysis by metallic nanoparticles in aqueous solution: model reactions. Chem Soc Rev 41:5577–5587

    Article  Google Scholar 

  46. Kun H, Chao G (2011) Graphene nanosheets decorated with Pd, Pt, Au, and Ag nanoparticles: synthesis, characterization and catalysis applications. Sci China Chem 54:397–404

    Article  Google Scholar 

  47. Sanles-Sobrido M, Correa-Duarte M, Carregal-Romero S, Rodrıguez-Gonzalez B, Alvarez-Puebla R, Herves P, Liz-Marzan L (2009) Highly catalytic single-crystal dendritic Pt nanostructures supported on carbon nanotubes. Chem Mater 21:1531–1535

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Shaanxi Province (No. 2018JM2032) and the Key Research and Development Program of Shaanxi Province (No. 2020ZDLGY11-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqi Ma.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Liu, Y., Du, Q. et al. Pt nanoparticles anchored on bifunctional CuFe2O4 submicrospheres with improved catalytic properties for the reduction of [Fe(CN)6]3− by S2O32−. J Sol-Gel Sci Technol 105, 758–767 (2023). https://doi.org/10.1007/s10971-022-05963-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05963-1

Keywords

Navigation