Skip to main content

Advertisement

Log in

Enhanced antibacterial property of zinc oxide nanoparticles by incorporation of graphene oxide

  • Original Paper:Sol-gel and hybrid materials for biological and health (medical) applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Zinc oxide nanoparticles (ZnO NPs) have shown a great potential for antibacterial and antifungal properties; however, an improvement of certain candidates is always a quest for many applications. For this purpose, we have chemically combined ZnO NPs with graphene oxide (GO) via hydrothermal process to enhance antibacterial property of zinc oxide. Before evaluating antibacterial effect, ZnO NPs and ZnO–GO nanocomposite were characterized in terms of phase composition, particles size and elemental composition by X-Ray diffraction (XRD), transmission electron microscope (TEM), Raman, FTIR and scanning electron microscope equipped with energy dispersive X-ray spectrometer (SEM-EDS), respectively. The antibacterial capacity of these materials was then assessed on E. coli bacterial through cell viability to quantify the E. coli inactivation efficiency. In addition, the E. coli morphological development in different conditions was examined. Results of our work showed that the combination of ZnO and GO resulted in an increase in bacterial inhibition compared with the ZnO alone. And, antibacterial effect of ZnO–GO nanocomposite is not dose dependent in case of long time treatment.

Graphical abstract

Highlights

  • Zinc oxide nanoparticles and zinc oxide–graphene oxide nanocomposite were synthesized and characterized.

  • Antibacterial property of Zinc oxide nanoparticles and zinc oxide–graphene oxide nanocomposite was performed with E. coli bacterial.

  • Zinc oxide nanoparticles incorporated with the graphene oxide sheets promoted and accelerated antibacterial efficiency of the zinc oxide nanoparticles.

  • For longer time treatment E. coli with the ZnO–GO nanocomposite, the antibacterial effect did not depend on the treatment dose in the range of concentration surveyed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Maglangit F, Yu Y, Deng H (2021) Bacterial pathogens: threat or treat (a review on bioactive natural products from bacterial pathogens). Nat Prod Rep 38(4):782–821

    Article  CAS  Google Scholar 

  2. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 44:278–284

    Article  CAS  Google Scholar 

  3. Perera S, Bhushan B, Bandara R, Rajapakse G, Rajapakse S, Bandara C (2013) Morphological, antimicrobial, durability, and physical properties of untreated and treated textiles using silver-nanoparticles. Colloids Surf A Physicochem Eng Asp 436:975–989

    Article  CAS  Google Scholar 

  4. Paladini F, Mauro P (2019) Antimicrobial silver nanoparticles for wound healing application: progress and future trends. Materiels 12:2540–2555

    Article  CAS  Google Scholar 

  5. Wang L, Li S, Yin J, Yang J, Li Q, Zheng W, Liu S, Jiang X (2020) The density of surface coating can contribute to different antibacterial activities of gold nanoparticles. Nano Lett 20(7):5036–5042

    Article  CAS  Google Scholar 

  6. Saraf R (2013) Cost effective and monodispersed zinc oxide nanoparticles synthesis and their characterization. Int J Adv Appl Sci 2(2):85–88

    Google Scholar 

  7. Amna S, Shahrom M, Azman S, NoorHaida MK, Ann CL, Siti Khadijah BM, Habsah H, Dasmawati M (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7:219–242

  8. Kurban H, Alaei S, Kurban M (2021) Effect of Mg content on electronic structure, optical and structural properties of amorphous ZnO nanoparticles: a DFTB study. J Non Cryst Solids 560:120726–120731

    Article  CAS  Google Scholar 

  9. Laurenti M, Canavese G, Stassi S, Fontana M, Castellino M, Pirri CF, Cauda VA (2016) Porous nanobranched structure: an effective way to improve piezoelectricity in sputtered ZnO thin films. RSC Adv 6(80):76996–77004

    Article  CAS  Google Scholar 

  10. Lu PJ, Huang SC, Chen YP, Chiueh LC, Shih DYC (2015) Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics. J Food Drug Anal 23(3):587–594

    Article  CAS  Google Scholar 

  11. Sogne V, Meier F, Klein T, Contado C (2017) Investigation of zinc oxide particles in cosmetic products by means of centrifugal and asymmetrical flow field-flow fractionation. J Chromatogr A 1515:196–208

    Article  CAS  Google Scholar 

  12. Sevinç BA, Hanley L (2010) Antibacterial activity of dental composites containing zinc oxide nanoparticles. J Biomed Mater Res B Appl Biomater 1:22–31

    Google Scholar 

  13. Shi LE, Li ZH, Zheng W, Zhao YF, Jin YF, Tang ZX (2014) Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 31(2):173–186

    Article  CAS  Google Scholar 

  14. Dutta T, Sarkar R, Pakhira B, Ghosh S, Sarkar R, Barui A, Sarkar S (2015) ROS generation by reduced graphene oxide (RGO) induced by visible light showing antibacterial activity: comparison with graphene oxide (GO). RSC Adv 5(98):80192–80195

    Article  CAS  Google Scholar 

  15. Prasanna VL, Vijayaraghavan R (2015) Insight into the mechanism of antibacterial activity of ZnO: surface defects mediated reactive oxygen species even in the dark. Langmuir 31(33):9155–9162

    Article  CAS  Google Scholar 

  16. Liu S, Zeng T, Hofmann M, Burcombe E, Wei J, Jiang R, Kong J, Chen Y (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980

    Article  CAS  Google Scholar 

  17. Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011) Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia Coli. Free Radic Biol Med 51(10):1872–1881

    Article  CAS  Google Scholar 

  18. Akhavan O, Ghaderi E, Esfandiar A (2011) Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J Phys Chem B 115(19):6279–6288

    Article  CAS  Google Scholar 

  19. Akhavan O, Ghaderi E (2012) Escherichia Coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon N. Y 50(5):1853–1860

    Article  CAS  Google Scholar 

  20. Raghupathi KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7):4020–4028

    Article  CAS  Google Scholar 

  21. Aditya A, Chattopadhyay S, Jha D, Gautam HK, Maiti S, Ganguli M (2018) Zinc oxide nanoparticles dispersed in ionic liquids show high antimicrobial efficacy to skin-specific bacteria. ACS Appl Mater Interfaces 10(18):15401–15411

    Article  CAS  Google Scholar 

  22. Lallo B, Abuçafy MP, Manaia EB, Chiavacci LA (2019) Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: an overview. Int J Nanomed 14:9395–9410

    Article  Google Scholar 

  23. Sun T, Hao H, Hao W, Yi S, Li X, Li J (2014) Preparation and antibacterial properties of titanium-doped ZnO from different zinc salts. Nanoscale Res Lett 9(1):1–11.

    Article  CAS  Google Scholar 

  24. Wang X, Sun T, Zhu H, Han T, Wang J, Dai H (2020) Roles of PH, cation valence, and ionic strength in the stability and aggregation behavior of zinc oxide nanoparticles. J Environ Manag 267:110656

    Article  CAS  Google Scholar 

  25. Goswami N, Sharma DK (2010) Structural and optical properties of unannealed and annealed ZnO nanoparticles prepared by a chemical precipitation technique. Phys E Low-Dimensional Syst Nanostruct 42(5):1675–1682

    Article  CAS  Google Scholar 

  26. Akhavan O, Mehrabian M, Mirabbaszadeh K, Azimirad R (2009) Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria. J Phys D Appl Phys 42 (22):225305

  27. Razali R, Zak AK, Majid WHA, Darroudi M (2011) Solvothermal synthesis of microsphere ZnO nanostructures in DEA media. Ceram Int 37(8):3657–3663

    Article  CAS  Google Scholar 

  28. Liu L, Zhang Y, Li C, Wang F, Wang L (2020) Facile preparation PCL/modified nano ZnO organic-inorganic composite and its application in antibacterial materials. J Polym Res 27:28–38

    Article  CAS  Google Scholar 

  29. Janani B, Al-Kheraif AA, Thomas AM, Syed A, Elgorba AM, Raju LL, Das A, Khan SS (2021) Construction of nano-heterojunction AgFeO2–ZnO for boosted photocatalytic performance and its antibacterial applications. Mater Sci Semicond Process 133:105924

    Article  CAS  Google Scholar 

  30. Zirak M, Akhavan O, Moradlou O, Nien YT, Moshfegh AZ (2014) Vertically aligned ZnO@CdS nanorod heterostructures for visible light photoinactivation of bacteria. J Alloy Compd 590:507–513

    Article  CAS  Google Scholar 

  31. Ahmad A, Ullah S, Ahmad W, Yuan Q, Taj R, Khan AU, Rahman AU, Khan UA (2020) Zinc oxide‑selenium heterojunction composite: synthesis, characterization and photo-induced antibacterial activity under visible light irradiation. J Photochem Photobiol B Biol 203:111743

    Article  CAS  Google Scholar 

  32. Sun H, Yang Z, Pu Y, Dou W, Wang C, Wang W, Hao X, Chen S, Shao Q, Dong M, Wu S, Ding T, Guo Z (2019) Zinc oxide/vanadium pentoxide heterostructures with enhanced day-night antibacterial activities. J Colloid Interface Sci 547:40–49

    Article  CAS  Google Scholar 

  33. Akhavan O, Azimirad R, Safa S (2011) Functionalized carbon nanotubes in ZnO thin films for photoinactivation of bacteria. Mater Chem Phys 130(1–2):598–602

    Article  CAS  Google Scholar 

  34. Tariq M, Khan AU, Rehman AU, Ullah S, Jan AU, Zakareya, Khan ZUH, Muhammad N, Islam ZU, Yuan Q (2021) Green synthesis of Zno@GO nanocomposite and its’ efficient antibacterial activity. Photodiagnosis Photodyn Ther 35(April):102471

    Article  CAS  Google Scholar 

  35. Zhou X, Shi T, Zhou H (2012) Hydrothermal preparation of ZnO-reduced graphene oxide hybrid with high performance in photocatalytic degradation. Appl Surf Sci 258(17):6204–6211

    Article  CAS  Google Scholar 

  36. Raizada P, Sudhaik A, Singh P (2019) Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: a review. Mater Sci Energy Technol 2(3):509–525

    Google Scholar 

  37. Guo W, Zhao B, Zhou Q, He Y, Wang Z, Radacsi N (2019) Fe-doped ZnO/reduced graphene oxide nanocomposite with synergic enhanced gas sensing performance for the effective detection of formaldehyde. ACS Omega 4(6):10252–10262

    Article  CAS  Google Scholar 

  38. Akhavan O (2010) Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano 4(7):4174–4180

    Article  CAS  Google Scholar 

  39. Liu S, Sun H, Suvorova A, Wang S (2013) One-pot hydrothermal synthesis of ZnO-reduced graphene oxide composites using Zn powders for enhanced photocatalysis. Chem Eng J 229:533–539

    Article  CAS  Google Scholar 

  40. Ghorbani M, Golobostanfard MR, Abdizadeh H (2017) Flexible freestanding sandwich type ZnO/RGO/ZnO electrode for wearable supercapacitor. Appl Surf Sci 419:277–285

    Article  CAS  Google Scholar 

  41. Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4(10):5731–5736

    Article  CAS  Google Scholar 

  42. Jannesari M, Akhavan O, Madaah Hosseini HR, Bakhsh B (2020) Graphene/CuO2 nanoshuttles with controllable release of oxygen nanobubbles promoting interruption of bacterial respiration. ACS Appl Mater Interfaces 12(32):35813–35825

    Article  CAS  Google Scholar 

  43. Zhong L, Yun K (2015) Graphene oxide-modified Zno particles: synthesis, characterization, and antibacterial properties. Int J Nanomed 10:79–92

    CAS  Google Scholar 

  44. Ma W, Lee M, Cao F, Fang Z, Feng Y, Zhang G, Yang Y, Liu H (2022) Synthesis and characterization of ZnO-GO composites with their piezoelectric catalytic and antibacterial properties. J Environ Chem Eng 10(3):107840

    Article  CAS  Google Scholar 

  45. Le TDH, Trinh KS (2020) Synthesis of zinc oxide nanoparticles and their antibacterial activity. Proc 2020 5th Int Conf Green Technol Sustain Dev GTSD 2020:119–123

  46. Zhang B, Cui L, Zhang K (2016) Dosage- and time-dependent antibacterial effect of zinc oxide nanoparticles determined by a highly uniform SERS negating undesired spectral variation. Anal Bioanal Chem 408(14):3853–3865

    Article  CAS  Google Scholar 

  47. Hummers WS, Offeman RE (1957) Preparation of graphitic oxide. J Am Chem Soc 208(1937):1937

    Google Scholar 

  48. Tran VK, Han GN, Dong SK, Yong JK, Heon H, Kwang BS, Hyoun WK (2012) Significant enhancement in blue emission and electrical conductivity of N-doped graphene. J Mater Chem 22(207890):17992–18003

    Google Scholar 

  49. Cote LJ, Cruz-Silva R, Huang J (2009) Flash reduction and patterning of graphite oxide and its polymer composite. J Am Chem Soc 131(31):11027–11032

    Article  CAS  Google Scholar 

  50. Bo Z, Shuai X, Mao S, Yang H, Qian J, Chen J, Yan J, Cen K (2014) Green preparation of reduced graphene oxide for sensing and energy storage applications. Sci Rep 4:1–8

    Google Scholar 

  51. Li X, He G, Xiao G, Liu H, Wang M (2009) Synthesis and morphology control of ZnO nanostructures in microemulsions. J Colloid Interface Sci 333(2):465–473

    Article  CAS  Google Scholar 

  52. Konkena B, Vasudevan S (2012) Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through PK. J Phys Chem Lett 3:867–872

    Article  CAS  Google Scholar 

  53. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite.Pdf. J Chem Phys 53:1126–1130

    Article  CAS  Google Scholar 

  54. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107

    Article  CAS  Google Scholar 

  55. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Giem AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401

    Article  CAS  Google Scholar 

  56. Arguello CA, Rousseau DL, Porto SPS (1969) First-order Raman effect in Wurtzite-type crystals. Phys Rev 182:1351–1363

    Article  Google Scholar 

  57. Damen TC, Porto SPS, Tell B (1966) Raman effect in zinc oxide. Phys Rev 142:570–574

    Article  CAS  Google Scholar 

  58. Thangavel R, Moirangthem RS, Lee WS, Chang YC, Wei PK, Kumar J (2010) Cesium doped and undoped ZnO nanocrystalline thin films: a comparative study of structural and micro-Raman investigation of optical phonons. J Raman Spectrosc 41:1594–1600

    Article  CAS  Google Scholar 

  59. Serrano J, Romero AH, Manjón FJ, Lauck R, Cardona M, Rubio A (2004) Pressure dependence of the lattice dynamics of ZnO: an ab initio approach. Phys Rev B Phys Rev B 69:094306

    Article  CAS  Google Scholar 

  60. Xing YJ, Xi ZH, Xue ZQ, Zhang XD, Song JH, Wang RM, Xu J, Song Y, Zhang SL, Yu DP (2003) Optical properties of the ZnO nanotubes synthesized via vapor phase growth. Appl Phys Lett 83:1689–1691

    Article  CAS  Google Scholar 

  61. Kumar PS, Paik P, Raj AD, Mangalaraj D, Nataraj D, Gedanken A, Ramakrishna S (2012) Biodegradability study and PH influence on growth and orientation of ZnO nanorods via aqueous solution process. Appl Surf Sci, 18(1):6765–6771

    Article  CAS  Google Scholar 

  62. McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Pruïhomme RK, Askey IA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404

    Article  CAS  Google Scholar 

  63. Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund PC (2006) Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett 6(12):2667–2673

    Article  CAS  Google Scholar 

  64. Yoon D, Moon H, Cheong H, Choi JS, Choi JA, Park BH (2009) Variations in the Raman spectrum as a function of the number of graphene layers. J Korean Phys Soc 55(3):1299–1303

    Article  CAS  Google Scholar 

  65. Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L (2007) Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett 7:238–242

    Article  CAS  Google Scholar 

  66. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun 143(1–2):47–57

    Article  CAS  Google Scholar 

  67. Akhavan O (2015) Bacteriorhodopsin as a superior substitute for hydrazine in chemical reduction of single-layer graphene oxide sheets. Carbon N. Y 81:158–166

    Article  CAS  Google Scholar 

  68. Akhavan O annd Ghaderi E (2013) Graphene nanomesh promises extremely efficient in vivo photothermal therapy. Small 9:3593–3601

    Article  CAS  Google Scholar 

  69. Calizo I, Balandin AA, Bao W, Miao F, Lau CN (2007) Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett 7:2645–2649

    Article  CAS  Google Scholar 

  70. Liu L, Ryu S, Tomasik MR, Stolyarova E, Jung N, Hybertsen MS, Steigerwald ML, Brus LE, Flynn GW (2008) Graphene Oxidation: thickness-dependent etching and strong chemical doping. Nano Lett 8(7):1965–1970

    Article  CAS  Google Scholar 

  71. Emiru TF, Ayele DW (2017) Controlled synthesis, characterization and reduction of graphene oxide: a convenient method for large scale production. Egypt J Basic Appl Sci 4(1):74–79

    Google Scholar 

  72. Zhang T, Zhang D, Shen M (2009) A low-cost method for preliminary separation of reduced graphene oxide nanosheets. Mater Lett 63(23):2051–2054

    Article  CAS  Google Scholar 

  73. Aunkor MTH, Raihan T, Prodhan SH, Metselaar HSC, Malik SUF, Azad AK (2020) Antibacterial activity of graphene oxide nanosheet against multidrug resistant superbugs isolated from infected patients: graphene oxide antibacterial activity. R Soc Open Sci 7(7):200640

    Article  CAS  Google Scholar 

  74. Jin SE, Jin HE (2021) Antimicrobial activity of zinc oxide nano/microparticles and their combinations against pathogenic microorganisms for biomedical applications: from physicochemical characteristics to pharmacological aspects. Nanomaterials 11(2):1–35

    Article  Google Scholar 

  75. Meunier A, Cornet F, Campos M (2021) Bacterial cell proliferation: from molecules to cells. FEMS Microbiol Rev 45(1):1–21

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National University Ho Chi Minh City (VNU-HCM) under grant number B2020-20-07. We acknowledge the support of time and facilities from Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for supporting this study. We are grateful to Ho Chi Minh City of Technology and Education (HCMUTE) for facilities support, especially Ms. Minh Nguyen Khac Ha and Ms. Lieu Le Thi for materials preparation support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thi Duy Hanh Le or Khai Tran Van.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, T.D.H., Tuan, H.N.A., Trinh, K.S. et al. Enhanced antibacterial property of zinc oxide nanoparticles by incorporation of graphene oxide. J Sol-Gel Sci Technol 104, 246–257 (2022). https://doi.org/10.1007/s10971-022-05923-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05923-9

Keywords

Navigation