Skip to main content

Advertisement

Log in

Antiproliferative effect of 1,10-Phenanthroline coupled to sulfated ZnO nanoparticles in SiHa cervix cancer cell line

  • Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

During the last decade, nanosized zinc oxide (ZnO) particles have been explored as antiproliferative agents in some cancer cell lines. In this research we propose the surface modification of ZnO with sulfate groups and 1,10-Phenanthroline as antiproliferative agent against SiHa cervical cancer cell line. The ZnO nanoparticles were prepared by two different methods: sol–gel (SG) and precipitation (P). By using sulfate as surface modifier, the anchoring of 1,10-Phenanthroline (Phen) was achieved by wet impregnation. The sol–gel samples showed hexagonal tube-shaped particles of around 100 nm in width, whereas the precipitation method promoted the formation of sphere-like particles with diameters ranging from 20 to 80 nm. The assessment of zeta potential and hydrodynamic size showed the variations due to the surface modifications exhibiting values ranging from −9.9 to −12.4 mV when dispersed in DMEM medium. The in vitro assays revealed the synergistic effect of the modified nanoparticles, which promoted apoptosis and inhibited 65% of cell proliferation in SiHa cell line.

Graphical abstract

Highlights

  • Wet impregnation allowed to incorporate 1,10-Phenanthroline on the sulfated ZnO nanoparticles.

  • The sol–gel and precipitation methods directed to different morphologies affecting the distribution of 1,10-Phenanthroline.

  • Sol–gel modified nanoparticles showed 71.5% of apoptosis in SiHa cell line at a dose of 30 µg ml−1.

  • The surface modified sol–gel ZnO material activates twice Caspase-9 than the corresponding surface modified ZnO obtained by precipitation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Siddiqi KS, Ur Rahman A, Tajuddin, Husen A (2018) Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res Lett 13:141. https://doi.org/10.1186/s11671-018-2532-3

    Article  CAS  Google Scholar 

  2. Tianke Z, Du E, Liu Y, Cheng J, Zhang Z, Xu Y, Qi S, Chen Y (2020) Anticancer effects of zinc oxide nanoparticles through altering the methylation status of histone on bladder cancer cells. Int J Nanomed 15:1457–1468. https://doi.org/10.2147/IJN.S228839

    Article  Google Scholar 

  3. Wiesmann N, Tremel W, Brieger J (2020) Zinc oxide nanoparticles for therapeutic purposes in cancer medicine. J Mater Chem B 8:4973–4989. https://doi.org/10.1039/D0TB00739K

    Article  CAS  Google Scholar 

  4. Anjum S, Hashim M, Malik SA, Khan M, Lorenzo JM, Abbasi BH, Hano C (2021) Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment. Cancers 13:4570. https://doi.org/10.3390/cancers13184570

    Article  CAS  Google Scholar 

  5. Saffar MA, Eshaghi A, Dehnavi MR (2022) Superhydrophobic ZnO thin film modified by stearic acid on copper substrate for corrosion and fouling protections. J Sol-Gel Sci Technol 101:672–682. https://doi.org/10.1007/s10971-022-05749-5

    Article  CAS  Google Scholar 

  6. Yang Z, Ye Z, Zhao B, Zong X, Wong P (2010) Synthesis of ZnO nanobundles via sol–gel route and application to glucose biosensor. J Sol-Gel Sci Technol 54:282–285. https://doi.org/10.1007/s10971-010-2191-z

    Article  CAS  Google Scholar 

  7. Giridhar M, Bhojya Naik HS, Sudhamani CN, Kenchappa R, Patil S (2019) Antibacterial activity of water-soluble dye capped zinc oxide nanoparticles synthesised from waste Zn–C battery. SN Appl Sci 1:297. https://doi.org/10.1007/s42452-019-0272-3

    Article  CAS  Google Scholar 

  8. Kumar M, Uday Parsekar S, Duraipandy N, Syamala Kiran M, Koley AP (2019) Synthesys, DNA binding and in vitro cytotoxicity studies of a mononuclear copper (II) complex containing N2S(thiolate)Cu core and 1,10-phenanthroline as a coligand. Inorg Chim Acta 484:219–226. https://doi.org/10.1016/j.ica.2018.09.044

    Article  CAS  Google Scholar 

  9. Đurić SŽ, Mojicevic M, Vojnovic S, Wadepohl H, Andrejević TP, Stevanović NL, Nikodinovic-Runic J, Djuran MI, Glišić BĐ (2020) Silver(I) complexes with 1,10-phenanthroline-based ligands: the influence of epoxide function on the complex structure and biological activity. Inorg Chim Acta 502:119357. https://doi.org/10.1016/j.ica.2019.119357

    Article  CAS  Google Scholar 

  10. Nunes P, Correia I, Cavaco I, Marquez F, Pinheiro T, Avecilla F, Costa Pessoa J (2021) Therapeutic potential of vanadium complexes with 1,10-phenanthroline ligands, quo vadis? Fate of complexes in cell media and cancer cells. J Inorg Biochem 217:111350. https://doi.org/10.1016/j.jinorgbio.2020.111350

    Article  CAS  Google Scholar 

  11. Soli J, Kachbouri S, Elaloui E, Charnay C (2021) Role of surfactant type on morphological, textural, optical, and photocatalytic properties of ZnO nanoparticles obtained by modified sol–gel. J Sol-Gel Sci Technol 100:271–285. https://doi.org/10.1007/s10971-021-05653-4

    Article  CAS  Google Scholar 

  12. Sowri Babu K, Ramachandra Reddy A, Sujatha CH, Venugopal Reddy K, Mallika AN (2016) Synthesis and optical characterization of porous ZnO. J Adv Ceram 2:260–265. https://doi.org/10.1007/s40145-013-0069-6

    Article  CAS  Google Scholar 

  13. Hosono E, Fujihara S, Kimura T, Imai H (2004) Non-basic solution routes to prepare ZnO nanoparticles. J Sol-Gel Sci Technol 29:71–79. https://doi.org/10.1023/B:JSST.0000023008.14883.1e

    Article  CAS  Google Scholar 

  14. Zhong J, Li J, Zeng J, Huang S, Hu W (2014) Enhanced photocatalytic activity of sulfated silica-titania composites prepared by impregnation using ammonium persulfate solution. Mater Sci Semicond Process 26:62–68. https://doi.org/10.1016/j.mssp.2014.04.008

    Article  CAS  Google Scholar 

  15. Sadeek SA, El-Hamid SMA (2016) Preparation, characterization and cytotoxicity studies of some transition metal complexes with ofloxacin and 1,10-phenanthroline mixed ligand. J Mol Struct 1122(3):175–185. https://doi.org/10.1016/j.molstruc.2016.05.101

    Article  CAS  Google Scholar 

  16. Uribe-López M, Hidalgo-López MC, López-González R, Frías-Márquez DM, Núñez-Nogueira G, Hernández-Castillo D, Alvarez Lemus MA (2021) Photocatalytic activity of ZnO nanoparticles and the role of the synthesis method on their physical and chemical properties. J Photochem Photobio A Chem 404:112866. https://doi.org/10.1016/j.jphotochem.2020.112866

    Article  CAS  Google Scholar 

  17. Wang H, Li M, Jia L, Li L, Wang G, Zhang Y, Li G (2010) Surfactant-assisted in situ chemical etching for the general synthesis of ZnO nanotubes array. Nanoscale Res Lett 5(7):1102–1106. https://doi.org/10.1007/s11671-010-9608-z

    Article  CAS  Google Scholar 

  18. Yildirimer L, Thanh NTK, Loizidou M, Seifalian AM (2011) Toxicology and clinical potential of nanoparticles. Nano Today 6(6):585–607. https://doi.org/10.1016/j.nanotod.2011.10.001

    Article  CAS  Google Scholar 

  19. Brown ASC, Hargreaves JSJ (1999) Sulfated metal oxides catalysts. Superactivity through superacidity? Green Chem 1:17–20. https://doi.org/10.1039/A807963C

    Article  CAS  Google Scholar 

  20. Accorsi G, Listorti A, Yoosaf K, Armaroli N (2009) 1,10-Phenanthrolines: versatile building blocks for luminescent molecules, materials and metal complexes. Chem Soc Rev 38(6):1690. https://doi.org/10.1039/b806408n

    Article  CAS  Google Scholar 

  21. Abebe A, Atlabachew M, Liyew M, Ferede E (2018) Synthesis of organic salts from 1,10-phenanthroline for biological applications. Cogent Chem 4:1476077. https://doi.org/10.1080/23312009.2018.1476077

    Article  CAS  Google Scholar 

  22. Hoxha K, Case DAH, Day GM, Prior TJ (2015) Cryst Eng Comm 17:7130–7141. https://doi.org/10.1039/C5CE01286D

  23. Sietsma JRA, van Dillen AJ, de Jongh PE, de Jong KP (2006) Application of ordered mesoporous materials as model supports to study catalyst preparation by impregnation and drying, In: Gaigneaux EM, Devillers M, De Vos DE, Hermans S, Jacobs PA, Martens JA, Ruiz P (eds) Studies in Surface and Catalysis, 162, Scientific bases for the preparation of heterogeneous catalysts. Elsevier, Amsterdam, pp. 95–102

  24. Istadi I, Anggoro DD, Buchori L, Rahmawati DA, Intaningrum D (2015) Active acid catalyst of sulphated zinc oxide for transesterification of soybean oil with methanol to biodiesel. Proc Environ Sci 23:385–393. https://doi.org/10.1016/j.proenv.2015.01.055

    Article  CAS  Google Scholar 

  25. Bai Z, Guo Y, Yang L, Li L, Li W, Xu P, Hu C, Wang K (2011) Highly dispersed Pd nanoparticles supported on 1,10-phenanthroline-functionalized multi-walled carbon nanotubes for electrooxidation of formic acid. J Power Sources 196:6232–6237. https://doi.org/10.1016/j.jpowsour.2011.03.020

    Article  CAS  Google Scholar 

  26. Thakuria R, Nath NK, Saha BK (2019) The nature and applications of π–π interactions: a perspective. Cryst Growth Des 19(2):523–528. https://doi.org/10.1021/acs.cgd.8b01630

    Article  CAS  Google Scholar 

  27. Yu J, Kim HJ, Go MR, Bae SH, Choi SJ (2017) ZnO interactions with biomatrices: effect of particle size on ZnO-protein Corona. Nanomaterials 7(11):377. https://doi.org/10.3390/nano7110377

    Article  CAS  Google Scholar 

  28. Auría-Soro C, Nesma T, Juanes-Velasco P, Landeira-Viñuela A, Fidalgo-Gomez H, Acebes-Fernandez V, Gongora R, Almendral Parra MJ, Manzano-Roman R, Fuentes M (2019) Interactions of nanoparticles and biosystems: microenvironment of nanoparticles and biomolecules in nanomedicine. Nanomaterials 9(10):1365. https://doi.org/10.3390/nano9101365

    Article  CAS  Google Scholar 

  29. Sikora A, Bartczak D, Geißler D, Kestens V, Roebben G, Ramaye Y, Varga Z, Palmai M, Shard AG, Goenaga-Infante H, Minelli C (2015) A systematic comparison of different techniques to determine the zeta potential of silica nanoparticles in biological medium. Anal Methods 7:9835–9843. https://doi.org/10.1039/c5ay02014j

    Article  CAS  Google Scholar 

  30. Meißner T, Oelschlägel K, Potthoff A (2014) Implications of the stability behavior of zinc oxide nanoparticles for toxicological studies. Int Nano Lett 4:116. https://doi.org/10.1007/s40089-014-0116-5

    Article  CAS  Google Scholar 

  31. Birnboim HC (1992) Effect of lipophilic chelators on oxyradical-induced DNA strand breaks in human granulocytes: paradoxical effect of 1,10-phenanthroline. Arch Biochem Biophys 294(1):17–21. https://doi.org/10.1016/0003-9861(92)90130-o

    Article  CAS  Google Scholar 

  32. Wang J, Yu Y, Lu K, Yang M, Li Y, Zhou X, Su Z (2017) Silica nanoparticles induce autophagy dysfunction via lysosomal impairment and inhibition of autophagosome degradation in hepatocytes. Int J Nanomed 12:809–825. https://doi.org/10.2147/IJN.5123596

    Article  CAS  Google Scholar 

  33. Sizochenko N, Mikolajczyk A, Syzochenko M, Puzyn T, Leszczynski J (2021) Zeta potentials (ζ) of metal oxide nanoparticles: a meta-analysis of experimental data and predictive neural networks modeling. Nanoimpact 22:100317. https://doi.org/10.1016/j.impact.2021.100317

    Article  CAS  Google Scholar 

  34. Liao C, Jin Y, Li Y, Tjong SC (2020) Interactions of zinc oxide nanostructures with mammalian cells: cytotoxicity and photocatalytic toxicity. Int J Mol Sci 21(17):6305. https://doi.org/10.3390/ijms21176305

    Article  CAS  Google Scholar 

  35. Boucher D, Denault JB (2012) Caspase family. In: Choi, S (ed) Encyclopedia of signaling molecules. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0461-4_176

  36. Brentnall M, Rodríguez-Menocal L, Ladron d Guevara R, Cepero E, Boise LH (2013) Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol 14:32. https://doi.org/10.1186/1471-2121-14-32

    Article  CAS  Google Scholar 

  37. Wang SW, Lee CH, Lin MS, Chi CW, Chen YJ, Wang GS, Liao KW, Chiu LP, Wu SH, Huang DM, Chen L, Shen YS (2020) ZnO nanoparticles induced caspase-dependent apoptosis in gingival squamous cell carcinoma through mitochondrial dysfunction and p70S6K signaling pathway. Int J Mol Sci 21(5):1612. https://doi.org/10.3390/ijms21051612

    Article  CAS  Google Scholar 

  38. Li Z, Guo D, Yin X, Ding S, Shen M, Zhang R, Wang Y, Xu R (2020) Zinc oxide nanoparticles induce human multiple myeloma cell death via reactive oxygen species and Cyt-C/Apaf-1/Caspase-9/Caspase-3 signaling pathway in vitro. Biomed Pharmacother 122:109712. https://doi.org/10.1016/j.biopha.2019.109712

    Article  CAS  Google Scholar 

  39. McLaughlin-Drubin ME, Münger K (2009) The human papillomavirus E7 oncoprotein. Virology 384(2):335–344. https://doi.org/10.1016/j.virol.2008.10.006

    Article  CAS  Google Scholar 

  40. Mohamed Asik RM, Gowdhami B, Mohamed Jaabir MS, Archunan G, Suganthy N (2019) Anticancer potential of zinc oxide nanoparticles against cervical carcinoma cells synthesized via biogenic route using aqueous extract of Gracilaria edulis. Mat Sci Eng C 103:109840. https://doi.org/10.1016/j.msec.2019.109840

    Article  CAS  Google Scholar 

  41. Pandurangan M, Enkhtaivan G, Kim DH (2016) Anticancer studies of synthesized ZnO nanoparticles against human cervical carcinoma cells. J Photochem Photobio B Biol 158:206–2011. https://doi.org/10.1016/j.jphotobiol.2016.03.002

    Article  CAS  Google Scholar 

  42. Rad MM, Najafzadeh N, Tata N, Jafari A (2018) Ag–ZnO nanocomposites cause cytotoxicity and induce cell cycle arrest in human gastric and melanoma cancer cells. Pharm Chem J 52:112–116. https://doi.org/10.1007/s11094-018-1774-9

    Article  CAS  Google Scholar 

  43. Deegan C, McCann M, Devereux M, Coyle B, Egan DA (2007) In vitro cancer chemotherapeutic activity of 1,10-phenanthroline (phen), [Ag2(phen)3(mal)]x2H2O, [Cu(phen)2(mal)]x2H2O and [Mn(phen)2(mal)]x2H2O (malH2=malonic acid) using human cancer cells. Cancer Lett 247(2):224–233. https://doi.org/10.1016/j.canlet.2006.04.006

    Article  CAS  Google Scholar 

  44. Zhang Z, Bi C, Schmitt SM, Fan Y, Dong L, Zuo J, Ping DQ (2021) 1,10-Phenanthroline promotes copper complexes into tumor cells and induces apoptosis by inhibiting the proteasome activity. J Biol Inorg Chem 17(8):1257–1267. https://doi.org/10.1007/s00775-012-0940-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank to the UJAT and LANNBIO-CINVESTAV Mérida for the facilities and projects INFRA-269701, INFRA-269784, FOMIX Yucatán 2008-108160, CONACYT LAB-2009-01-123913, 294643, 188345 and 204822. LAR acknowledge to CONACYT for the doctoral scholarship.

Funding

The Doctoral scholarship for LAR was provided by CONACYT-Mexico and the projects acknowledged in the Acknowledgement section correspond to the acquisition of equipment for the laboratories where the investigation was performed.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by LAR, ENCH, GMM and MFHL. The first draft of the manuscript was written by LAR, RLG and CGM, all authors commented on previous versions of the manuscript and the submitted version was revised by PQO and MAAL. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mayra Angélica Alvarez Lemus.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramón, L.A., de la Cruz Hernández, E.N., González, R.L. et al. Antiproliferative effect of 1,10-Phenanthroline coupled to sulfated ZnO nanoparticles in SiHa cervix cancer cell line. J Sol-Gel Sci Technol 104, 147–159 (2022). https://doi.org/10.1007/s10971-022-05922-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05922-w

Keywords

Navigation