Skip to main content
  • Original Paper: Sol–gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:

Preparation and luminescence characterization of Cu-doped lithium aluminate ceramics within the Li2O-Al2O3 system

Abstract

Cu+-doped lithium aluminates with LiAlO2, LiAl5O8, and Li5AlO4 stoichiometry were investigated. Tetragonal γ-LiAlO2 and cubic α-LiAl5O8 were prepared in the form of bulk ceramics using the Pechini sol–gel route with Cu-doping concentrations up to 1 mol%. For γ-LiAlO2, single-phase samples were obtained only for the lowest doping concentration tested, which was 0.1 mol%, while α-LiAl5O8 samples were single phase within the full concentration series. Radioluminescence and photoluminescence of Cu-doped γ-LiAlO2 featured only the transition from 3d9 4s1 to 3d10 corresponding to Cu+ ions. On the other hand, Cu-doped α-LiAl5O8 samples showed mainly emissions associated with Fe3+ and Cr3+ impurities with overall very small intensity compared to the reference BGO scintillator. Samples of Cu-doped β-Li5AlO4 were prepared using a nitrates decomposition method. Due to the volatility of Li2O, the samples were not in a single phase and contained a certain amount of secondary γ-LiAlO2 phase, even though excess lithium was used for the sample preparation. Furthermore, samples with β-Li5AlO4 exhibited strong hygroscopic properties, making Li5AlO4 an undesirable host material outside of a controlled atmosphere environment.

The graphical abstract shows the unit cells of the three lithium aluminate hosts investigated in this work, along with X-ray excited radioluminescence spectra obtained by doping copper into the γ-LiAlO2 and α-LiAl5O8 hosts.

Highlights

  • Single-phase samples of copper-doped γ-LiAlO2 and α-LiAl5O8 were obtained by the sol–gel method.

  • The Cu:LiAlO2 samples showed a single emission band, caused by a radiative transition of Cu+ ions.

  • The Cu:LiAl5O8 samples exhibited mainly low-intensity emission of undesired impurities.

  • The Cu:Li5AlO4 samples contained a secondary γ-LiAlO2 phase and were highly hygroscopic.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Mukhopadhyay S, Maurer R, Guss P, Kruschwitz C (2014) Review of current neutron detection systems for emergency response. In: Proc. SPIE 9213, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XVI. 92130T

  2. Eijk CWE, Bessière A, Dorenbos P (2004) Inorganic thermal-neutron scintillators. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 529:260–267. https://doi.org/10.1016/j.nima.2004.04.163

    CAS  Article  Google Scholar 

  3. Eijk CWE (2004) Inorganic scintillators for thermal neutron detection. Radiat Meas 59:337–342. https://doi.org/10.1016/j.radmeas.2004.02.004

    CAS  Article  Google Scholar 

  4. Firk FWK, Slaughter GG, Ginther RJ (1961) An improved Li6-loaded glass scintillator for neutron detection. Nucl Instrum Methods 13:313–316. https://doi.org/10.1016/0029-554X(61)90221-X

    CAS  Article  Google Scholar 

  5. Murray RB (1958) Use of Li6I(Eu) as a scintillation detector and spectrometer for fast neutrons. Nucl Instrum 2:237–248. https://doi.org/10.1016/0369-643X(58)90035-5

    CAS  Article  Google Scholar 

  6. Syntfeld A, Moszynski M, Arlt R et al. (2005) 6LiI(Eu) in neutron and γ-ray spectrometry – a highly sensitive thermal neutron detector. IEEE Trans Nucl Sci 52:3151–3156. https://doi.org/10.1109/TNS.2005.860193

    CAS  Article  Google Scholar 

  7. Yanagida T, Fujimoto Y, Koshimizu M et al. (2017) Comparative studies of optical and scintillation properties between LiGaO2 and LiAlO2 crystals. J Phys Soc Jpn 86:094201. https://doi.org/10.7566/JPSJ.86.094201

    Article  Google Scholar 

  8. Fujimoto Y, Kamada K, Yanagida T et al. (2012) Lithium aluminate crystals as scintillator for thermal neutron detection. IEEE Trans Nucl Sci 59:2252–2255. https://doi.org/10.1109/TNS.2012.2198494

    CAS  Article  Google Scholar 

  9. Knoll GF (2010) Radiation detection and measurement. John Wiley & Sons

  10. Hirano S-I, Hayashi T, Kageyama T (1987) Synthesis of LiAlO2 powder by hydrolysis of metal alkoxides. J Am Ceram Soc 70:171–174. https://doi.org/10.1111/j.1151-2916.1987.tb04953.x

    CAS  Article  Google Scholar 

  11. Jimenez-Becerril J, Bosch P, Bulbulian S (1991) Synthesis and characterization of γ-LiAlO2. J Nucl Mater 185:304–307

    CAS  Article  Google Scholar 

  12. Kalyana Sundaram NT, Subramania A (2007) Nano-size LiAlO2 ceramic filler incorporated porous PVDF-co-HFP electrolyte for lithium-ion battery applications. Electrochim Acta 52:4987–4993. https://doi.org/10.1016/j.electacta.2007.01.066

    CAS  Article  Google Scholar 

  13. Terada S, Nagashima I, Higaki K, Ito Y (1998) Stability of LiAlO2 as electrolyte matrix for molten carbonate fuel cells. J Power Sources 75:223–229. https://doi.org/10.1016/S0378-7753(98)00115-3

    CAS  Article  Google Scholar 

  14. Dickens PT, Marcial J, McCloy J et al. (2017) Spectroscopic and neutron detection properties of rare earth and titanium doped LiAlO2 single crystals. J Lumin 190:242–248. https://doi.org/10.1016/j.jlumin.2017.05.047

    CAS  Article  Google Scholar 

  15. Brik MG, Teng H, Lin H et al. (2010) Spectroscopic and crystal field studies of LiAlO2:Mn2+ single crystals. J Alloy Compd 506:4–9. https://doi.org/10.1016/j.jallcom.2010.06.160

    CAS  Article  Google Scholar 

  16. Aoyama M, Amano Y, Inoue K et al. (2013) Synthesis and characterization of Mn-activated lithium aluminate red phosphors. J Lumin 136:411–414. https://doi.org/10.1016/j.jlumin.2012.12.012

    CAS  Article  Google Scholar 

  17. Pejchal J, Fujimoto Y, Chani V et al. (2011) Crystal growth and luminescence properties of Ti-doped LiAlO2 for neutron scintillator. J Cryst Growth 318:828–832. https://doi.org/10.1016/j.jcrysgro.2010.11.053

    CAS  Article  Google Scholar 

  18. Danek V, Tarniowy M, Suski L (2004) Kinetics of the α → γ phase transformation in LiAlO2 under various atmospheres within the 1073–1173 K temperatures range. J Mater Sci 39:2429–2435. https://doi.org/10.1023/B:JMSC.0000020006.46296.04

    CAS  Article  Google Scholar 

  19. Kulkarni NS, Besmann TM, Spear KE (2008) Thermodynamic optimization of lithia-alumina. J Am Ceram Soc 91:4074–4083. https://doi.org/10.1111/j.1551-2916.2008.02753.x

    CAS  Article  Google Scholar 

  20. Singh V, Sivaramaiah G, Rao JL et al. (2017) Optical and EPR spectroscopic studies of deep red light emitting Fe-doped LiAl5O8 phosphor prepared via propellant combustion route. J Elec Mater 46:1525–1531. https://doi.org/10.1007/s11664-016-5192-z

    CAS  Article  Google Scholar 

  21. Li X, Jiang G, Zhou S et al. (2014) Luminescent properties of chromium(III)-doped lithium aluminate for temperature sensing. Sens Actuators B: Chem 202:1065–1069. https://doi.org/10.1016/j.snb.2014.06.053

    CAS  Article  Google Scholar 

  22. Kniec K, Tikhomirov M, Pozniak B et al. (2020) LiAl5O8:Fe3+ and LiAl5O8:Fe3+, Nd3+ as a new luminescent nanothermometer operating in 1st biological optical window. Nanomaterials (Basel) 10:189. https://doi.org/10.3390/nano10020189

    CAS  Article  Google Scholar 

  23. Teixeira VC, Andrade AB, Ferreira NS et al. (2019) X-ray excited optical luminescence and morphological studies of Eu-doped LiAl5O8. Phys B: Condens Matter 559:62–65. https://doi.org/10.1016/j.physb.2019.01.050

    CAS  Article  Google Scholar 

  24. Mu Z, Hu Y, Chen L et al. (2012) Luminescence and energy transfer in phosphor LiAl5O8: Ce3+, Dy3+. Radiat Meas 47:426–429. https://doi.org/10.1016/j.radmeas.2012.03.027

    CAS  Article  Google Scholar 

  25. Silva AJS, Nascimento PAM, Andrade AB et al. (2018) X-ray excited optical luminescence changes induced by excess/deficiency lithium ions in rare earth doped LiAl5O8. J Lumin 199:298–301. https://doi.org/10.1016/j.jlumin.2018.03.066

    CAS  Article  Google Scholar 

  26. Singh V, Pathak MS, Singh N et al. (2018) Effect of annealing on photoluminescence properties of combustion synthesized ultraviolet-emitting cerium-ion-doped LiAl5O8 phosphor. Optik 152:9–15. https://doi.org/10.1016/j.ijleo.2017.08.108

    CAS  Article  Google Scholar 

  27. Braun PB (1952) A superstructure in spinels. Nature 170:1123–1123. https://doi.org/10.1038/1701123a0

    CAS  Article  Google Scholar 

  28. Datta RK, Roy R (1963) Phase transitions in LiAl5O8. J Am Ceram Soc 46:388–390. https://doi.org/10.1111/j.1151-2916.1963.tb11757.x

    CAS  Article  Google Scholar 

  29. Famery R, Queyroux F, Gilles J-C, Herpin P (1979) Etude structurale de la forme ordonnée de LiAl5O8. J Solid State Chem 30:257–263. https://doi.org/10.1016/0022-4596(79)90107-5

    CAS  Article  Google Scholar 

  30. Pott GT, McNicol BD (1972) Zero‐phonon transition and fine structure in the phosphorescence of Fe3+ ions in ordered and disordered LiAl5O8. J Chem Phys 56:5246–5254. https://doi.org/10.1063/1.1677027

    CAS  Article  Google Scholar 

  31. Ávalos-Rendón T, Casa-Madrid J, Pfeiffer H (2009) Thermochemical capture of carbon dioxide on lithium aluminates (LiAlO2 and Li5AlO4): a new option for the CO2 absorption. J Phys Chem A 113:6919–6923. https://doi.org/10.1021/jp902501v

    CAS  Article  Google Scholar 

  32. Wang YJ, Liu JP, Kan MX, Liu ZQ (2013) The synthesis of lithium aluminate materials and its performance of CO2 absorption. Adv Mater Res 669:115–118

    Article  Google Scholar 

  33. Sharma A, Chourasia NK, Sugathan A et al. (2018) Solution processed Li5AlO4 dielectric for low voltage transistor fabrication and its application in metal oxide/quantum dot heterojunction phototransistors. J Mater Chem C 6:790–798. https://doi.org/10.1039/C7TC05074G

    CAS  Article  Google Scholar 

  34. Andreev OL, Zelyutin GV, Martem’yanova ZS, Batalov NN (2001) Electrical conductivity of Li6BeO4–Li5AlO4 solid solutions. Inorg Mater 37:177–179. https://doi.org/10.1023/A:1004122013795

    CAS  Article  Google Scholar 

  35. La Ginestra A, Lo Jacono M, Porta P (1972) The preparation, characterization, and thermal behaviour of some lithium aluminum oxides: Li3AlO3 and Li5AlO4. J Therm Anal 4:5–17. https://doi.org/10.1007/BF02100945

    Article  Google Scholar 

  36. Ogawa S, Shin-mura K, Otani Y, et al. (2017) Synthesis of High Purity Li5AlO4 Powder by Solid State Reaction Under the H2 Firing. In: Lin H-T, Matyáš J, Katoh Y, Vomiero A (eds). Ceramic Materials for Energy Applications VI. John Wiley & Sons, Ltd, pp. 49–60. https://doi.org/10.1002/9781119321774.ch6

  37. Follstaedt DM, Biefeld RM (1978) Nuclear-magnetic-resonance study of Li+ motion in lithium aluminates and LiOH. Phys Rev B 18:5928–5937. https://doi.org/10.1103/PhysRevB.18.5928

    CAS  Article  Google Scholar 

  38. Fujimoto Y, Yanagida T, Kamada K, Pejchal J (2013) Radiation response of transition metals-doped lithium aluminate crystals. In: 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC). IEEE, Seoul, Korea (South), pp. 1–3. https://doi.org/10.1109/NSSMIC.2013.6829660

  39. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  40. Gomez S, Urra I, Valiente R, Rodriguez F (2010) Spectroscopic study of Cu2+ and Cu+ ions in high-transmission glass. Electronic structure and Cu2+ /Cu+ concentrations. J Phys: Condens Matter 22:295505. https://doi.org/10.1088/0953-8984/22/29/295505

    CAS  Article  Google Scholar 

  41. Bosi L, Bosi FL, Gallo D, Zelada M (2001) Review of emission and lifetime data concerning Cu+ fluorescence in alkali halides. Phys Status Solidi (B) 223:821–829. https://doi.org/10.1002/1521-3951(200102)223:3<821::AID-PSSB821>3.0.CO;2-W

    CAS  Article  Google Scholar 

  42. Johnson RT, Biefeld RM (1979) Ionic conductivity of Li5AlO4 and Li5GaO4 in moist air environments: potential humidity sensors. Mater Res Bull 14:537–542. https://doi.org/10.1016/0025-5408(79)90197-1

    CAS  Article  Google Scholar 

  43. Wang X, Wang J, Li F et al. (2020) Influence of cold sintering process on the structure and properties of garnet-type solid electrolytes. Ceram Int 46:18544–18550. https://doi.org/10.1016/j.ceramint.2020.04.160

    CAS  Article  Google Scholar 

  44. Persson K (2014) Materials Data on Li5AlO4 by Materials Project. The Materials Project, United States. https://doi.org/10.17188/1289042

  45. Persson K (2014) Materials Data on LiAlO2 by Materials Project. The Materials Project, United States. https://doi.org/10.17188/1206753

  46. Persson K (2014) Materials Data on LiAl5O8 by Materials Project. The Materials Project, United States. https://doi.org/10.17188/1263228

  47. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Cryst 44:1272–1276. https://doi.org/10.1107/S0021889811038970

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of the Interior of the Czech Republic (Grant No. VI20192022152). Partial support from the European Structural and Investment Funds Project No. CZ.02.1.01/0.0/0.0/16_026/0008390 and from Specific University Research Grant No. A2_FCHT_2021_003, both by the Ministry of Education, Youth and Sports, is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study and to the preparation of the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Tomáš Thoř.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thoř, T., Rubešová, K., Jakeš, V. et al. Preparation and luminescence characterization of Cu-doped lithium aluminate ceramics within the Li2O-Al2O3 system. J Sol-Gel Sci Technol 103, 898–907 (2022). https://doi.org/10.1007/s10971-022-05905-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05905-x

Keywords

  • Lithium aluminate
  • Copper doping
  • Sol–gel
  • Luminescence
  • Scintillation