Skip to main content
Log in

Investigation of local structures of silicon oxynitride glasses prepared from aerogels

  • Invited Paper: Fundamentals of sol-gel and hybrid materials processing
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Oxynitride glasses in Si-Al-O-N system were synthesized to investigate atomic arrangements in those glasses. Aerogels of silica (SiO2) and silica-alumina (SiO2-Al2O3) system were fabricated by drying wet gels in supercritical CO2 condition. The SiO2 gels were prepared from the silicon alkoxide with CH3 groups and the SiO2-Al2O3 gels were prepared from silicone and aluminum alkoxides. Ammonolysis were performed at TN = 750–1400 °C to synthesize oxynitride glasses. The nitrogen concentration in the resultant glasses increased with the increase in the ammonolysis temperatures and exceeded 34 eq.% by ammonolysis at 1300 °C. The specific surface area of these aerogels has been 1941 and 1159 m2 g−1, respectively. The glass structures were investigated by adopting 29Si and 27Al NMR measurements. In silicon oxynitride glasses, it was revealed that only one N atom occupies the nearest neighbor site around Si after ammonolysis at TN < 1200 °C, while two or more N atoms occupy the nearest neighbor site around Si after ammonolysis at TN > 1300 °C. In Si-Al-O-N glasses, the number of N atoms at around neighboring to Si atom varied with ammonolysis temperature but any traces of Al-N bonds were not found, indicating the bridging N in the form of Si-N-Al was absent in the glasses.

Nitrogen contents of oxynitride glasses prepared from silica-based aerogels with CH3 groups (ON-CH3) and those doped with Al and Eu ions (ON-AE) increased with increase of ammonolysis temperature. The 29Si NMR spectra differed between ON-CH3 and ON-AE.

Highlights

  • Silicon-based oxynitride glasses were prepared from aerogels via ammonolysis at high temperature.

  • Nitrogen contents of the oxynitride glasses reached to higher than 34 eq.%.

  • The local structures of the oxynitride glasses were investigated by 29Si and 27Al NMR measurements.

  • It was found that most of inserted nitrogen was bonded to Si atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sakka S (1995) Structure, Properties and Application of Oxynitride Glasses. J Non-Cryst Solids 181:215–224. https://doi.org/10.1016/S0022-3093(94)00514-1

    Article  CAS  Google Scholar 

  2. Hampshire S (2003) Oxynitride glasses, their properties and crystallisation – a review. J Non-Cryst Solids 316:64–73. https://doi.org/10.1016/s0022-3093(02)01938-5

    Article  CAS  Google Scholar 

  3. Hampshire S, Pomeroy MJ (2008) Oxynitride Glasses. Int J Appl Ceram Technol 5:155–163. https://doi.org/10.1111/j.1744-7402.2008.02205.x

    Article  CAS  Google Scholar 

  4. Ali S, Jonson B, Pomeroy MJ, Hampshire S (2015) Issues associated with the development of transparent oxynitride glasses. Ceram Int 41:3345–3354. https://doi.org/10.1016/j.ceramint.2014.11.030

    Article  CAS  Google Scholar 

  5. Garcia ÀR, Clausell C, Barba A (2016) Oxynitride glasses: a review. Boletín de la Soc Española de Cerámica y Vidr 55:209–218. https://doi.org/10.1016/j.bsecv.2016.09.004

    Article  CAS  Google Scholar 

  6. Hakeem AS, Ali S, Jonson B (2013) Preparation and properties of mixed La–Pr silicate oxynitride glasses. J Non-Cryst Solids 368:93–97. https://doi.org/10.1016/j.jnoncrysol.2013.03.013

    Article  CAS  Google Scholar 

  7. Hakeem AS, Daucé R, Leonova E, Edén M, Shen Z, Grins J, Esmaeilzadeh S (2005) Silicate Glasses with Unprecedented High Nitrogen and Electropositive Metal Contents Obtained by Using Metals as Precursors. Adv Mater 17:2214–2216. https://doi.org/10.1002/adma.200500715

    Article  CAS  Google Scholar 

  8. Ali S, Jonson B, Rouxel T (2011) Glasses in the Ba-Si-O-N System. J Am Ceram Soc 94:2912–2917. https://doi.org/10.1111/j.1551-2916.2011.04718.x

    Article  CAS  Google Scholar 

  9. Ali S, Jonson B (2011) Compositional effects on the properties of high nitrogen content alkaline-earth silicon oxynitride glasses, AE=Mg, Ca, Sr, Ba. J Eur Ceram Soc 31:611–618. https://doi.org/10.1016/j.jeurceramsoc.2010.11.005

    Article  CAS  Google Scholar 

  10. Loehman RE (1983) Preparation and Properties of Oxynitride Glasses. J Non-Cryst Solids 56:123–134. https://doi.org/10.1016/0022-3093(83)90457-X

    Article  CAS  Google Scholar 

  11. Brinker CJ, Haaland DM (1983) Oxynitride Glass-Formation from Gels. J Am Ceram Soc 66:758–765. https://doi.org/10.1111/j.1151-2916.1983.tb10558.x

    Article  CAS  Google Scholar 

  12. Rajaram M, Day DE (1987) Nitrogen Dissolution in Sodium Alkaline-Earth Metaphosphate Melts. J Am Ceram Soc 70:203–207. https://doi.org/10.1111/j.1151-2916.1987.tb04968.x

    Article  CAS  Google Scholar 

  13. Brinker CJ, Haaland DM, Loehman RE (1983) Oxynitride Glasses Prepared from Gels and Melts. J Non-Cryst Solids 56:179–184. https://doi.org/10.1016/0022-3093(83)90465-9

    Article  CAS  Google Scholar 

  14. Kamiya K, Ohya M, Yoko T (1986) Nitrogen-Containing SiO2 Glass-Fibers Prepared by Ammonolysis of Gels Made from Silicon Alkoxides. J Non-Cryst Solids 83:208–222. https://doi.org/10.1016/0022-3093(86)90068-2

    Article  CAS  Google Scholar 

  15. Brow RK, Pantano CG (1987) Thermochemical Nitridation of Microporous Silica Films in Ammonia. J Am Ceram Soc 70:9–14. https://doi.org/10.1111/j.1151-2916.1987.tb04845.x

    Article  CAS  Google Scholar 

  16. Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, San Diego

  17. Szaniawska K, Murawski L, Pastuszak R, Walewski M, Fantozzi G (2001) Nitridation and densification of SiO2 aerogels. J Non-Cryst Solids 286:58–63. https://doi.org/10.1016/S0022-3093(01)00478-1

    Article  CAS  Google Scholar 

  18. Szaniawska K, Gładkowski M, Wicikowski L, Murawski L (2008) Nitridation of SiO2–B2O3 aerogels. J Non-Cryst Solids 354:4481–4483. https://doi.org/10.1016/j.jnoncrysol.2008.06.072

    Article  CAS  Google Scholar 

  19. Ahmadi S, Eftekhari Yekta B, sarpoolaky H, Aghaei A (2014) Preparation of monolithic oxynitride glasses by sol–gel method. J Non-Cryst Solids 404:61–66. https://doi.org/10.1016/j.jnoncrysol.2014.07.037

    Article  CAS  Google Scholar 

  20. Kistler SS (1931) Coherent Expanded Aerogels and Jellies. Nature 127:741–741. https://doi.org/10.1038/127741a0

    Article  CAS  Google Scholar 

  21. Prakash SS, Brinker CJ, Hurd AJ, Rao SM (1995) Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrinkage. Nature 374:439–443. https://doi.org/10.1038/374439a0

    Article  CAS  Google Scholar 

  22. Yokogawa H, Yokoyama M (1995) Hydrophobic Silica Aerogels. J Non-Cryst Solids 186:23–29. https://doi.org/10.1016/0022-3093(95)00086-0

    Article  CAS  Google Scholar 

  23. Kanamori K, Aizawa M, Nakanishi K, Hanada T (2007) New Transparent Methylsilsesquioxane Aerogels and Xerogels with Improved Mechanical Properties. Adv Mater 19:1589–1593. https://doi.org/10.1002/adma.200602457

    Article  CAS  Google Scholar 

  24. Hernandez C, Pierre AC (2001) Evolution of the texture and structure of SiO2-Al2O3 xerogels and aerogels as a function of the Si to Al molar ratio. J Sol-Gel Sci Technol 20:227–243. https://doi.org/10.1023/A:1008714617174

    Article  CAS  Google Scholar 

  25. Woignier T, Phalippou J, Despetis F, Calas-Etienne S (2018) In: Klein L et al. (ed) Handbook of Sol-Gel Science and Technology, Springer International Publishing AG, part of Springer Nature. https://doi.org/10.1007/978-3-319-32101-1_27

  26. Osawa Y, Iwasaki K, Nakanishi T, Yasumori A, Matsui Y, Nishimura T, Ohsawa T, Segawa H, Ohashi N (2021) Synthesis of bulk silicon oxynitride glass through nitridation of SiO2 aerogels and determination of Tg. J Am Ceram Soc 104:4420–4432. https://doi.org/10.1111/jace.17836

    Article  CAS  Google Scholar 

  27. Watanabe S, Osawa Y, Machida S, Katsumata K-i, Yasumori A, Takahashi K, Deguchi K, Ohki S, Segawa H (2021) Investigation of luminescence properties of Eu-doped Si-Al-O-N glasses synthesized via sol-gel process. J Non-Cryst Solids 573. https://doi.org/10.1016/j.jnoncrysol.2021.121107

  28. Segawa H, Ohki S, Deguchi K, Shimizu T, Hirosaki N (2020) Exploration of zinc borophosphate glasses as dispersion media for SiAlON phosphors. Int J Appl Glass Sci 11:471–479. https://doi.org/10.1111/ijag.15004

    Article  CAS  Google Scholar 

  29. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319. https://doi.org/10.1021/ja01269a023

    Article  CAS  Google Scholar 

  30. Barrett EP, Joyner LG, Halenda PP (1951) The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J Am Chem Soc 73:373–380. https://doi.org/10.1021/ja01145a126

    Article  CAS  Google Scholar 

  31. Landers J, Gor GY, Neimark AV (2013) Density functional theory methods for characterization of porous materials. Colloids Surf A: Physicochemical Eng Asp 437:3–32. https://doi.org/10.1016/j.colsurfa.2013.01.007

    Article  CAS  Google Scholar 

  32. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report. Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

  33. Maekawa H, Maekawa T, Kawamura K, Yokokawa T (1991) The structural groups of alkali silicate glasses determined from 29Si MAS-NMR. J Non-Cryst Solids 127:53–64. https://doi.org/10.1016/0022-3093(91)90400-z

    Article  CAS  Google Scholar 

  34. Nanba T, Nishimura M, Miura Y (2004) A theoretical interpretation of the chemical shift of 29Si NMR peaks in alkali borosilicate glasses. Geochim Cosmochim Acta 68:5103–5111. https://doi.org/10.1016/j.gca.2004.05.042

    Article  CAS  Google Scholar 

  35. Weeren R, Leone EA, Curran S, Klein LC, Danforth SC (1994) Synthesis and Characterization of Amorphous Si2N2O. J Am Ceram Soc 77:2699–2702. https://doi.org/10.1111/j.1151-2916.1994.tb04664.x

    Article  Google Scholar 

  36. Dogan F, Hammond KD, Tompsett GA, Huo H, Conner Jr. WC, Auerbach SM, Grey CP (2009) Searching for microporous, strongly basic catalysts: experimental and calculated 29Si NMR spectra of heavily nitrogen-doped Y zeolites. J Am Chem Soc 131:11062–11079. https://doi.org/10.1021/ja9031133

    Article  CAS  Google Scholar 

  37. El Rassy H, Pierre AC (2005) NMR and IR spectroscopy of silica aerogels with different hydrophobic characteristics. J Non-Cryst Solids 351:1603–1610. https://doi.org/10.1016/j.jnoncrysol.2005.03.048

    Article  CAS  Google Scholar 

  38. Borba A, Vareda JP, Durães L, Portugal A, Simões PN (2017) Spectroscopic characterization of silica aerogels prepared using several precursors – effect on the formation of molecular clusters. N J Chem 41:6742–6759. https://doi.org/10.1039/c7nj01082f

    Article  CAS  Google Scholar 

  39. Leonova E, Hakeem AS, Jansson K, Stevensson B, Shen Z, Grins J, Esmaeilzadeh S, Edén M (2008) Nitrogen-rich La–Si–Al–O–N oxynitride glass structures probed by solid state NMR. J Non-Cryst Solids 354:49–60. https://doi.org/10.1016/j.jnoncrysol.2007.07.027

    Article  CAS  Google Scholar 

  40. Carduner KR, Carter RO, Milberg ME, Crosbie GM (1987) Determination of phase composition of silicon nitride powders by silicon-29 magic angle spinning nuclear magnetic resonance spectroscopy. Anal Chem 59:2794–2797. https://doi.org/10.1021/ac00150a015

    Article  CAS  Google Scholar 

  41. Chollon G, Hany R, Vogt U, Berroth K (1998) A silicon-29 MAS-NMR study of alpha-silicon nitride and amorphous silicon oxynitride fibres. J Eur Ceram Soc 18:535–541. https://doi.org/10.1016/S0955-2219(97)00162-3

    Article  CAS  Google Scholar 

  42. Sen S, Xu Z, Stebbins JF (1998) Temperature dependent structural changes in borate, borosilicate and boroaluminate liquids: high-resolution 11B, 29Si and 27Al NMR studies. J Non-Cryst Solids 226:29–40. https://doi.org/10.1016/s0022-3093(97)00491-2

    Article  CAS  Google Scholar 

  43. Walkley B, Rees GJ, San Nicolas R, van Deventer JSJ, Hanna JV, Provis JL (2018) New Structural Model of Hydrous Sodium Aluminosilicate Gels and the Role of Charge-Balancing Extra-Framework Al. J Phys Chem C 122:5673–5685. https://doi.org/10.1021/acs.jpcc.8b00259

    Article  CAS  Google Scholar 

  44. Rehak P, Kunath-Fandrei G, Losso P, Hildmann B, Schneider H, Jager C (1998) Study of the Al coordination in mullites with varying Al: Si ratio by Al-27 NMR spectroscopy and X-ray diffraction. Am Miner 83:1266–1276. https://doi.org/10.2138/am-1998-11-1215

    Article  CAS  Google Scholar 

  45. Poe BT, McMillan PF, Angell CA, Sato RK (1992) Al and Si coordination in SiO2-Al2O3 glasses and liquids: a study by NMR and IR spectroscopy and MD simulations. Chem Geol 96:333–349. https://doi.org/10.1016/0009-2541(92)90063-b

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the MEXT Elements Strategy Initiative to Form Core Research Center for Electronic Materials: Tokodai Institute of Elements Strategy, Japan, Grant Number JPMXP0112101001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyo Segawa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Segawa, H., Osawa, Y., Watanabe, S. et al. Investigation of local structures of silicon oxynitride glasses prepared from aerogels. J Sol-Gel Sci Technol 104, 503–511 (2022). https://doi.org/10.1007/s10971-022-05903-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05903-z

Keywords

Navigation