Skip to main content
Log in

Preparation of conductive Cu1.5Mn1.5O4 and Mn3O4 spinel mixture powders as positive active materials in rechargeable Mg batteries operative at room temperature

  • Invited Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

We prepared conductive mixtures of Cu1.5Mn1.5O4 and Mn3O4 spinels (CMO–MOs) as positive electrode active materials in rechargeable Mg batteries (RMBs) using a sol–gel complex polymerization method. The CMO–MO spinel mixtures with high specific surface areas above 100 m2 g−1 were obtained with mild calcination in Ar at 300 °C. The conductivity of CMO–MOs was estimated to be approximately 1000 times higher than that of a conventional MgMn2O4 (MMO) spinel powder. The discharge capacities evaluated using 2032-type coin-cell battery with a Mg-alloy negative electrode at room temperature increase with an increase in the specific surface area of the spinel powders. The specific surface area for providing the theoretical capacity of the conductive CMO–MOs was about one-third that of the insulative MMO. High specific surface area and high conductivity are key parameters for the positive active material to realize practical room-temperature operation of RMBs.

Graphical abstract

Highlights

  • CuxMn3-xO4 (x = 1.3–1.5) and Mn3O4 (CMO–MOs) spinel mixtures with large specific surface areas of ~100 m2g−1 were successfully synthesized via the sol–gel polymerization method with low-temperature calcination below 500 °C in Ar.

  • The specific surface area for providing the theoretical capacity of conductive CMO–MOs was about one-third that of insulative MgMn2O4.

  • High specific surface area and the high conductivity are essential factors for a positive electrode active material in RMBs operated at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahad A, Tahir M, Aman Sheikh M, Ahmed KI, Mughees A, Numani A (2020) Technologies trend towards 5G network for smart health-care using IoT: a review. Sensors 20. https://doi.org/10.3390/s20144047

  2. Shafique K, Khawaja BA, Sabir F, Qazi S, Mustaqim M (2020) Internet of things (IoT) for next-generation smart systems: a review of current challenges, future trends and prospects for emerging 5G-IoT scenarios. IEEE Access 8:23022–23040. https://doi.org/10.1109/ACCESS.2020.2970118

    Article  Google Scholar 

  3. Crocioni G, Pau D, Delorme JM, Gruosso G (2020) Li-ion batteries parameter estimation with tiny neural networks embedded on intelligent IoT mMicrocontrollers. IEEE Access 8:122135–122146. https://doi.org/10.1109/ACCESS.2020.3007046

    Article  Google Scholar 

  4. Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang JG (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7:513–537. https://doi.org/10.1039/C3EE40795K

    Article  CAS  Google Scholar 

  5. Canepa P, Sai Gautam G, Hannah DC, Malik R, Liu M, Gallagher KG, Persson KA, Ceder G (2017) Odyssey of multivalent cathode materials: open questions and future challenges. Chem Rev 117:4287–4341. https://doi.org/10.1021/acs.chemrev.6b00614

    Article  CAS  Google Scholar 

  6. Muldoon J, Bucur CB, Gregory T (2014) Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem Rev 114:11683–11720. https://doi.org/10.1021/cr500049y

    Article  CAS  Google Scholar 

  7. Tan S, Xiong F, Wang J, An Q, Mai L (2020) Crystal regulation towards rechargeable magnesium battery cathode materials. Mater Horiz 7:1971–1995. https://doi.org/10.1039/D0MH00315H

    Article  CAS  Google Scholar 

  8. Bella F, De Luca S, Fagiolari L, Versaci D, Amici J, Francia C, Bodoardo S (2021) An overview on anodes for magnesium batteries: challenges towards a promising storage solution for renewables. Nanomaterials (Basel) 11. https://doi.org/10.3390/nano11030810

  9. Muldoon J, Bucur CB, Gregory T (2017) Fervent hype behind magnesium batteries: an open call to synthetic chemists-electrolytes and cathodes needed. Angew Chem Int Ed Engl 56:12064–12084. https://doi.org/10.1002/anie.201700673

    Article  CAS  Google Scholar 

  10. Yoo HD, Han SD, Bolotin IL, Nolis GM, Bayliss RD, Burrell AK, Vaughey JT (2017) Degradation mechanisms of magnesium metal anodes in electrolytes based on (CF3SO2)2N at high current densities. Langmuir 33:9398–9406. https://doi.org/10.1021/acs.langmuir.7b01051

    Article  CAS  Google Scholar 

  11. Rahman MF, Gerosa D (2015) Synthesis and characterization of cathode material for rechargeable magnesium battery technology. OPTOELECTRONICS ADVANCED MATERIALS-RAPID COMMUNICATIONS 9:1204–1207

    CAS  Google Scholar 

  12. Fan S, Asselin GM, Pan B, Wang H, Ren Y, Vaughey JT, Sa N (2020) A simple halogen-free magnesium electrolyte for reversible magnesium deposition through cosolvent assistance. ACS Appl Mater Interfaces 12:10252–10260. https://doi.org/10.1021/acsami.9b18833

    Article  CAS  Google Scholar 

  13. Jay R, Tomich AW, Zhang J, Zhao Y, De Gorostiza A, Lavallo V, Guo J (2019) Comparative study of Mg(CB11H12)2 and Mg(TFSI)2 at the magnesium/electrolyte interface. ACS Appl Mater Interfaces 11:11414–11420. https://doi.org/10.1021/acsami.9b00037

    Article  CAS  Google Scholar 

  14. Mandai T, Tatesaka K, Soh K, Masu H, Choudhary A, Tateyama Y, Ise R, Imai H, Takeguchi T, Kanamura K (2019) Modifications in coordination structure of Mg[TFSA]2-based supporting salts for high-voltage magnesium rechargeable batteries. Phys Chem Chem Phys 21:12100–12111. https://doi.org/10.1039/c9cp01400d

    Article  CAS  Google Scholar 

  15. Deivanayagam R, Ingram BJ, Shahbazian-Yassar R (2019) Progress in development of electrolytes for magnesium batteries. Energy Storage Mater 21:136–153. https://doi.org/10.1016/j.ensm.2019.05.028

    Article  Google Scholar 

  16. Zhao-Karger Z, Bardaji MEG, Fuhr O, Fichtner M (2017) A new class of non-corrosive, highly efficient electrolytes for rechargeable magnesium batteries. J Mater Chem A Mater Energy Sustain 5:10815–10820. https://doi.org/10.1039/C7TA02237A

    Article  CAS  Google Scholar 

  17. Dlugatch B, Mohankumar M, Attias R, Krishna BM, Elias Y, Gofer Y, Zitoun D, Aurbach D (2021) Evaluation of Mg[B(HFIP)4]2-based electrolyte solutions for rechargeable Mg batteries. ACS Appl Mater Interfaces 13:54894–54905. https://doi.org/10.1021/acsami.1c13419

    Article  CAS  Google Scholar 

  18. Tuerxun F, Yamamoto K, Hattori M, Mandai T, Nakanishi K, Choudhary A, Tateyama Y, Sodeyama K, Nakao A, Uchiyama T, Matsui M, Tsuruta K, Tamenori Y, Kanamura K, Uchimoto Y (2020) Determining factor on the polarization behavior of magnesium deposition for magnesium battery anode. ACS Appl Mater Interfaces 12:25775–25785. https://doi.org/10.1021/acsami.0c03696

    Article  CAS  Google Scholar 

  19. Yoo HD, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach D (2013) Mg rechargeable batteries: an on-going challenge. Energy Environ Sci 6:2265–2279. https://doi.org/10.1039/C3EE40871J

    Article  CAS  Google Scholar 

  20. Mao M, Lin Z, Tong Y, Yue J, Zhao C, Lu J, Zhang Q, Gu L, Suo L, Hu YS, Li H, Huang X, Chen L (2020) Iodine vapor transport-triggered preferential growth of chevrel Mo6S8 nanosheets for advanced multivalent batteries. ACS Nano 14:1102–1110. https://doi.org/10.1021/acsnano.9b08848

    Article  CAS  Google Scholar 

  21. Hatakeyama T, Li H, Okamoto NL, Shimokawa K, Kawaguchi T, Tanimura H, Imashuku S, Fichtner M, Ichitsubo (2021) Accelerated kinetics revealing metastable pathways of magnesiation-induced transformations in MnO2 polymorphs. Chem Mater 33:6983–6996. https://doi.org/10.1021/acs.chemmater.1c02011

    Article  CAS  Google Scholar 

  22. Gershinsky G, Yoo HD, Gofer Y, Aurbach D (2013) Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3. Langmuir 29:10964–10972. https://doi.org/10.1021/la402391f

    Article  CAS  Google Scholar 

  23. Liu M, Rong Z, Malik R, Canepa P, Jain A, Ceder G, Persson KA (2015) Spinel compounds as multivalent battery cathodes: a systematic evaluation based on ab initio calculations. Energy Environ Sci 8:964–974. https://doi.org/10.1039/C4EE03389B

    Article  CAS  Google Scholar 

  24. Shimokawa K, Ichitsubo T (2020) Spinel–rocksalt transition as a key cathode reaction toward high-energy-density magnesium rechargeable batteries. Curr Opin Electrochem 21:93–99. https://doi.org/10.1016/j.coelec.2020.01.017

    Article  CAS  Google Scholar 

  25. Okamoto S, Ichitsubo T, Kawaguchi T, Kumagai Y, Oba F, Yagi S, Shimokawa K, Goto N, Doi T, Matsubara E (2015) Intercalation and Push-Out Process with Spinel-to-Rocksalt transition on Mg insertion into spinel oxides in magnesium batteries. Adv Sci 2:1500072. https://doi.org/10.1002/advs.201500072

    Article  CAS  Google Scholar 

  26. Truong QD, Kempaiah Devaraju M, Tran PD, Gambe Y, Nayuki K, Sasaki Y, Honma I (2017) Unravelling the surface structure of MgMn2O4 cathode materials for rechargeable magnesium-ion battery. Chem Mater 29:6245–6251. https://doi.org/10.1021/acs.chemmater.7b01252

    Article  CAS  Google Scholar 

  27. Kim C, Phillips PJ, Key B, Yi T, Nordlund D, Yu YS, Bayliss RD, Han SD, He M, Zhang Z, Burrell AK, Klie RF, Cabana J (2015) Direct observation of reversible magnesium ion intercalation into a spinel oxide host. Adv Mater 27:3377–3384. https://doi.org/10.1002/adma.201500083

    Article  CAS  Google Scholar 

  28. Tuerxun F, Otani S, Yamamoto K, Matsunaga T, Imai H, Mandai T, Watanabe T, Uchiyama T, Kanamura K, Uchimoto Y (2021) Phase transition behavior of MgMn2O4 spinel oxide cathode during magnesium ion insertion. Chem Mater 33:1006–1012. https://doi.org/10.1021/acs.chemmater.0c04194

    Article  CAS  Google Scholar 

  29. Truong QD, Kobayashi H, Nayuki K, Sasaki Y, Honma I (2020) Atomic-scale observation of phase transition of MgMn2O4 cubic spinel upon the charging in Mg-ion battery. Solid State Ion 344:115136. https://doi.org/10.1016/j.ssi.2019.115136

    Article  CAS  Google Scholar 

  30. Shimokawa K, Atsumi T, Okamoto NL, Kawaguchi T, Imashuku S, Watanabe K, Nakayamaet M, Kanamura K, Ichitsubo T (2021) Structure design of long-life spinel-oxide cathode materials for magnesium rechargeable batteries. Adv Mater 33:e2007539. https://doi.org/10.1002/adma.202007539

    Article  CAS  Google Scholar 

  31. Han J, Yagi S, Takeuchi H, Nakayama M, Ichitsubo T (2021) Catalytic mechanism of spinel oxides for oxidative electrolyte decomposition in Mg rechargeable batteries. J Mater Chem A Mater Energy Sustain 9:26401–26409. https://doi.org/10.1039/D1TA08115B

    Article  CAS  Google Scholar 

  32. Chen W, Zhan X, Luo B, Ou Z, Shih PC, Yao L, Pidaparthy S, Patra A, An H, Braun PV, Stephens RM, Yang H, Zuo JM, Chen Q (2019) Effects of Particle Size on Mg2+ Ion Intercalation into λ-MnO2 Cathode Materials. Nano Lett 19:4712–4720. https://doi.org/10.1021/acs.nanolett.9b01780

    Article  CAS  Google Scholar 

  33. Ishii K, Doi S, Ise R, Mandai T, Oaki Y, Yagi S, Imai H (2020) Structured spinel oxide positive electrodes of magnesium rechargeable batteries: High rate performance and high cyclability by interconnected bimodal pores and vanadium oxide coating. J Alloy Compd 816:152556. https://doi.org/10.1016/j.jallcom.2019.152556

    Article  CAS  Google Scholar 

  34. Sone K, Hayashi Y, Mandai T, Yagi S, Oaki Y, Imai H (2021) Effective 3D open-channel nanostructures of a MgMn2O4 positive electrode for rechargeable Mg batteries operated at room temperature. J Mater Chem A Mater Energy Sustain 9:6851–6860. https://doi.org/10.1039/D0TA07974J

    Article  CAS  Google Scholar 

  35. Mandai T, Kutsuma A, Konya M, Nakabayashi Y, Kanamura K (2022) Room temperature operation of magnesium rechargeable batteries with a hydrothermally treated ZnMnO3 defect spinel cathode. Electrochem (Tokyo) 90:027005–027005. https://doi.org/10.5796/electrochemistry.21-00125

    Article  CAS  Google Scholar 

  36. Pietrzak TK, Wasiucionek M, Michalski PP, Kaleta A, Garbarczyk JE (2016) Highly conductive cathode materials for Li-ion batteries prepared by thermal nanocrystallization of selected oxide glasses. Mater Sci Eng B Solid State Mater Adv Technol 213:140–147. https://doi.org/10.1016/j.mseb.2016.05.008

    Article  CAS  Google Scholar 

  37. Wu D, Zhuang Y, Wang F, Yang Y, Zeng J, Zhao J (2021) High-rate performance magnesium batteries achieved by direct growth of honeycomb-like V2O5 electrodes with rich oxygen vacancies. Nano Res. https://doi.org/10.1007/s12274-021-3679-2

  38. Xue X, Chen R, Song X, Tao A, Yan W, Kong W, Jin Z (2020) Electrochemical Mg2+ Displacement Driven Deversible copper Extrusion/Intrusion Reactions for High-Rate Rechargeable Magnesium Batteries. Adv Funct Mater 2009394. https://doi.org/10.1002/adfm.202009394

  39. Ismail FM, Hamad FF, Faraj HS (2003) Electrical conductivity of some copper manganites. Z für Physikalische Chem 217:667–676. https://doi.org/10.1524/zpch.217.6.667.20444

    Article  CAS  Google Scholar 

  40. Zaouali A, Dhahri A, Boughariou A, Dhahri E, Khirouni K (2021) High electrical conductivity at room temperature of MnCo2O4 cobaltite spinel prepared by sol–gel method. J Mater Sci: Mater Electron 32:1–12. https://doi.org/10.1007/s10854-020-04895-2

    Article  CAS  Google Scholar 

  41. Karmakar S, Varma S, Behera D (2018) Investigation of structural and electrical transport properties of nano-flower shaped NiCo2O4 supercapacitor electrode materials. J Alloy Compd 757:49–59. https://doi.org/10.1016/j.jallcom.2018.05.056

    Article  CAS  Google Scholar 

  42. Bose VC, Maniammal K, Madhu G, Veenas CL, Biju V (2015) DC electrical conductivity of nanocrystalline Mn3 O4 synthesized through a novel sol-gel route. IOP Conf Ser Mater Sci Eng 73:012084. https://doi.org/10.1088/1757-899X/73/1/012084

    Article  CAS  Google Scholar 

  43. Quan J, Mei L, Ma Z, Huang J, Li D (2016) Cu1.5Mn1.5O4 spinel: a novel anode material for lithium-ion batteries. RSC Adv 6:55786–55791. https://doi.org/10.1039/C6RA08308K

    Article  CAS  Google Scholar 

  44. Sun RL, Zhang SR, An K, Song PF, Liu Y (2021) Cu1.5Mn1.5O4 spinel type composite oxide modified with CuO for synergistic catalysis of CO oxidation. J Fuel Chem Technol 49:799–808. https://doi.org/10.1016/S1872-5813(21)60032-4

    Article  Google Scholar 

  45. Liu T, Yao Y, Wei L, Shi Z, Han L, Yuan H, Li B, Dong L, Wang F, Sun C (2017) Preparation and evaluation of copper–manganese oxide as a high-efficiency catalyst for CO oxidation and NO reduction by CO. J Phys Chem C 121:12757–12770. https://doi.org/10.1021/acs.jpcc.7b02052

    Article  CAS  Google Scholar 

  46. Wang X, Lan Z, Zhang K, Chen J, Jiang L, Wang R (2017) Structure–activity relationships of AMn2O4 (A = Cu and Co) spinels in selective catalytic reduction of NOx: experimental and theoretical study. J Phys Chem C 121:3339–3349. https://doi.org/10.1021/acs.jpcc.6b10446

    Article  CAS  Google Scholar 

  47. Li WB, Liu ZX, Liu RF, Chen JL, Xu BQ (2016) Rod-like CuMnOx transformed from mixed oxide particles by alkaline hydrothermal treatment as a novel catalyst for catalytic combustion of toluene. Phys Chem Chem Phys 18:22794–22798. https://doi.org/10.1039/c6cp03433k

    Article  CAS  Google Scholar 

  48. Li F, Zhang R, Li Q, Zhao S (2017) Preparation of ultrafine Cu1.5Mn1.5O4 spinel nanoparticles and its application in p-nitrophenol reduction. Res Chem Intermed 43:6505–6519. https://doi.org/10.1007/s11164-017-3001-9

    Article  CAS  Google Scholar 

  49. Marbán G, Valdés-Solís T, Fuertes AB (2007) High surface area CuMn2O4 prepared by silica-aquagel confined co-precipitation. Charact Test Steam Reforming Methanol (SRM) Catal Lett 118:8–14. https://doi.org/10.1007/s10562-007-9181-y

    Article  CAS  Google Scholar 

  50. Wei P, Bieringer M, Cranswick LMD, Petric A (2010) In situ high-temperature X-ray and neutron diffraction of Cu–Mn oxide phases. J Mater Sci 45:1056–1064. https://doi.org/10.1007/s10853-009-4042-2

    Article  CAS  Google Scholar 

  51. Bobruk M, Durczak K, Dąbek J, Brylewski T (2017) Structure and electrical properties of Mn–Cu–O spinels. J Mater Eng Perform 26:1598–1604. https://doi.org/10.1007/s11665-017-2588-8

    Article  CAS  Google Scholar 

  52. Mandai T (2020) Critical issues of fluorinated alkoxyborate-based electrolytes in magnesium battery applications. ACS Appl Mater Interfaces 12:39135–39144. https://doi.org/10.1021/acsami.0c09948

    Article  CAS  Google Scholar 

  53. Mandai T, Youn Y, Tateyama Y (2021) Remarkable electrochemical and ion-transport characteristics of magnesium-fluorinated alkoxyaluminate–diglyme electrolytes for magnesium batteries. Mater Adv 2:6283–6296. https://doi.org/10.1039/d1ma00448d

    Article  CAS  Google Scholar 

  54. Martin BE, Petric A (2007) Electrical properties of copper–manganese spinel solutions and their cation valence and cation distribution. J Phys Chem Solids 68:2262–2270. https://doi.org/10.1016/j.jpcs.2007.06.019

    Article  CAS  Google Scholar 

  55. Hadded A, Massoudi J, Dhahri E, Khirouni K, Costa BF (2020) Structural, optical and dielectric properties of Cu1.5Mn1.5O4 spinel nanoparticles. RSC Adv 10:42542–42556. https://doi.org/10.1039/D0RA08405K

    Article  CAS  Google Scholar 

  56. Han YF, Ramesh K, Chen L, Widjaja E, Chilukoti S, Chen F (2007) Observation of the reversible phase-transformation of α-Mn2O3 nanocrystals during the catalytic combustion of methane by in situ Raman spectroscopy. J Phys Chem C Nanomater Interfaces 111:2830–2833. https://doi.org/10.1021/jp0686691

    Article  CAS  Google Scholar 

  57. Ramesh K, Chen L, Chen F, Liu Y, Wang Z, Han YF (2008) Re-investigating the CO oxidation mechanism over unsupported MnO, Mn2O3 and MnO2 catalysts. Catal Today 131:477–482. https://doi.org/10.1016/j.cattod.2007.10.061

    Article  CAS  Google Scholar 

  58. Javed Q, Wang FP, Rafique MY, Toufiq AM, Li QS, Mahmood H, Khan W (2012) Diameter-controlled synthesis of α-Mn2O3 nanorods and nanowires with enhanced surface morphology and optical properties. Nanotechnology 23:415603. https://doi.org/10.1088/0957-4484/23/41/415603

    Article  CAS  Google Scholar 

  59. Wang L, Asheim K, Vullum PE, Svensson AM, Vullum-Bruer F (2016) Sponge-like porous manganese(II,III) oxide as a highly efficient cathode material for rechargeable magnesium ion batteries. Chem Mater 28:6459–6470. https://doi.org/10.1021/acs.chemmater.6b01016

    Article  CAS  Google Scholar 

  60. Xu HY, Xu SL, Li XD, Wang H, Yan H (2006) Chemical bath deposition of hausmannite Mn3O4 thin films. Appl Surf Sci 252:4091–4096. https://doi.org/10.1016/j.apsusc.2005.06.011

    Article  CAS  Google Scholar 

  61. Xia H, Wan Y, Yan F, Lu L (2014) Manganese oxide thin films prepared by pulsed laser deposition for thin film microbatteries. Mater Chem Phys 143:720–727. https://doi.org/10.1016/j.matchemphys.2013.10.005

    Article  CAS  Google Scholar 

  62. Rosenberg M, Nicolau P (1964) Electrical properties and cation migration in MgMn2O4. Phys Status Solidi B Basic Res 6:101–110. https://doi.org/10.1002/pssb.19640060107

    Article  CAS  Google Scholar 

  63. Salker AV, Gurav SM (2000) Electronic and catalytic studies on Co1−xCuxMn2O4 for CO oxidation. J Mater Sci 35:4713–4719. https://doi.org/10.1023/A:1004803123577

    Article  CAS  Google Scholar 

  64. Mohanta S, Kaushik SD, Naik I (2019) Coexistence of spin-canting and metamagnetism in tetragonal distorted spinel CuMn2O4. Solid State Commun 287:94–98. https://doi.org/10.1016/j.ssc.2018.10.0142

    Article  CAS  Google Scholar 

  65. Truong QD, Kobayashi H, Honma I (2019) Rapid synthesis of MgCo2O4 and Mg2/3Ni4/3O2 nanocrystals in supercritical fluid for Mg-ion batteries. RSC Adv 9:36717–36725. https://doi.org/10.1039/c9ra04936c

    Article  CAS  Google Scholar 

  66. Shimokawa K, Atsumi T, Harada M, Ward RE, Nakayama M, Kumagai Y, Oba F, Okamoto NL, Kanamura K, Ichitsubo T (2019) Zinc-based spinel cathode materials for magnesium rechargeable batteries: toward the reversible spinel–rocksalt transition. J Mater Chem A Mater Energy Sustain 7:12225–12235. https://doi.org/10.1039/C9TA02281C2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Nobuhiko Nakano at Keio University for the measurement of the powder conductivity measurements with the digital multimeter. This work was supported by JST ALCA-APRING Grant Number JPMJAL1301 and Kato Foundation for promotion of Science (KS-3306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Imai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takemitsu, H., Hayashi, Y., Watanabe, H. et al. Preparation of conductive Cu1.5Mn1.5O4 and Mn3O4 spinel mixture powders as positive active materials in rechargeable Mg batteries operative at room temperature. J Sol-Gel Sci Technol 104, 635–646 (2022). https://doi.org/10.1007/s10971-022-05891-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05891-0

Keywords

Navigation