Skip to main content
  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:

Effect of sintering temperature on the microstructure and electrical properties of (Na0.5Bi0.5)TiO3 processed by the sol-gel method

Abstract

(Na0.5Bi0.5)TiO3 lead free ceramics have been synthesised by conventional sol-gel reaction method. The crystalline phase of calcined ceramics was studied at room temperature using X-ray diffraction. Rietveld refinement of the XRD measurements by FullProf showed that the samples have a rhombohedral structure with a space group R3c. In this study, NBT ceramics were sintered at different temperatures of 1000 °C, 1050 °C and 1100 °C for a period of 4 h. The sintering temperature was determined to be 1100 C, and the effect of sintering temperature on grain size was interpreted using dynamic crystal growth theory and, consequently, the electrical behaviour was also examined. The dielectric properties of these ceramic products were examined at different temperatures over a wide frequency range using an impedance analyser. It was found that the dielectric constant and dielectric loss decreased with increasing measurement frequency. The resulting ceramics have a large maximum dielectric permittivity at 320 °C and a dispersive permittivity at high temperatures. The exposant critique ɤ of the relationship between the dielectric constant and temperature \(\left( {{\upvarepsilon }}_{{{{\mathrm{rmax}}}}/{\upvarepsilon}_{{{\mathrm{r}}}}} \right)\) vs (T-Tm)ɣ) has been calculated with precision for NBT relaxor ferroelectrics at different frequencies. The (Na0.5Bi0.5)TiO3 sample exhibits a diffuse ferroelectric behaviour.

Graphical abstract

Highlights

  • Lead-free piezoelectric ceramics (Na0.5Bi0.5)TiO3 are formed using the sol-gel method.

  • The ceramics have a pure perovskite structure with the rhombohedral phase.

  • Effects of sintering temperature on the electrical properties were investigated.

  • The NBT exhibits ferroelectric relaxer behavior.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Zhang S, Alberta EF, Eitel RE, Randall CA, Shrout TR (2005) “Elastic, piezoelectric, and dielectric characterization of modified BiScO 3-PbTiO3 ceramics,”. IEEE Trans Ultrason Ferroelectr Freq Control 52(11):2131–2139. https://doi.org/10.1109/TUFFC.2005.1561684

    Article  Google Scholar 

  2. Cross LEric (1987) “Relaxor ferroelecirics,”. Ferroelectrics 76(1):241–267. https://doi.org/10.1080/00150198708016945

    CAS  Article  Google Scholar 

  3. Mesrar M, Lamcharfi T, Echatoui N-S, and Abdi F (2022) “(1-x)(Na0.5Bi0.5)TiO3-x(K0.5Bi0.5)TiO3 ceramics near morphotropic phase boundary: a structural and electrical study,” Materialia 101404.https://doi.org/10.1016/J.MTLA.2022.101404

  4. Chanda S, Maity R, Saha S, Dutta A, Sinha TP (2021) “Double perovskite nanostructured Dy2CoMnO6 an efficient visible-light photocatalysts: synthesis and characterization,”. J Sol-Gel Sci Technol 99(3):600–613. https://doi.org/10.1007/S10971-021-05605-Y/TABLES/3

    CAS  Article  Google Scholar 

  5. Madhan K, Murugaraj R (2020) “Structural, electrical, and weak ferromagnetic-to-antiferromagnetic nature of Ni and La co-doped BaTiO3 by sol–gel combustion route,”. J Sol-Gel Sci Technol 95(1):11–21. https://doi.org/10.1007/S10971-020-05311-1

    CAS  Article  Google Scholar 

  6. Ozer N, Sands T (2000) “Preparation and optical characterization of sol-gel deposited Pb(Zr0.45Ti0.55)O3 films,”. J Sol-Gel Sci Technol 19(1–3):157–162. https://doi.org/10.1023/A:1008711632646

    CAS  Article  Google Scholar 

  7. Binkle O, Nass R (1998) Synthesis and Characterization of PZT Fibers via Sol-Gel J. Sol-Gel Sci.Technol 13(1):1023–1026. https://doi.org/10.1023/A:1008616516686

    CAS  Article  Google Scholar 

  8. Zhang J, Zhang Y, Yan Z, Wang A, Jiang P, Zhong M (2020) “Fabrication and performance of PNN-PZT piezoelectric ceramics obtained by low-temperature sintering,”. Sci Eng Compos Mater 27(1):359–365. https://doi.org/10.1515/SECM-2020-0039/MACHINEREADABLECITATION/RIS

    CAS  Article  Google Scholar 

  9. Verma A et al. (2019) Enhanced energy storage properties in A-site substituted Na0.5Bi0.5TiO3 ceramics. J Alloy Compd 792:95–107. https://doi.org/10.1016/j.jallcom.2019.03.304

    CAS  Article  Google Scholar 

  10. Yang Y et al. (2021) “Enhancement of magnetoresistance and near room-temperature temperature coefficient of resistivity in polycrystalline La0.7Ca0.24Na0.06MnO3 by silver doping,”. J Sol-Gel Sci Technol 99(3):627–635. https://doi.org/10.1007/S10971-021-05614-X/FIGURES/7

    CAS  Article  Google Scholar 

  11. Shrout TR, Zhang SJ (2007) “Lead-free piezoelectric ceramics: Alternatives for PZT?,”. J Electroceram 19(1):111–124. https://doi.org/10.1007/s10832-007-9047-0

    CAS  Article  Google Scholar 

  12. Otoničar M, Škapin SD, Spreitzer M, Suvorov D (2010) “Compositional range and electrical properties of the morphotropic phase boundary in the Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 system,”. J Eur Ceram Soc 30(4):971–979. https://doi.org/10.1016/j.jeurceramsoc.2009.10.006

    CAS  Article  Google Scholar 

  13. Yang Z et al. (2019) Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties. Nano Energy 58:768–777. https://doi.org/10.1016/j.nanoen.2019.02.003

    CAS  Article  Google Scholar 

  14. Madhan K, Jagadeeshwaran C, Murugaraj R (2019) “Enhancement of electrical and magnetic properties in acceptor-doped BaTiO3 ferroelectric ceramics,”. J Mater Sci Mater Electron 30(3):2953–2965. https://doi.org/10.1007/S10854-018-00573-6

    CAS  Article  Google Scholar 

  15. Liu G, Jiang W, Zhang L, Cai J, Wang Z, Liu K, ... Yan Y (2018) Effects of sintering temperature and KBT content on microstructure and electrical properties of (Bi.5Na.5)TiO3-BaTiO3-(Bi.5K.5)TiO3 Pb-free ceramics. Ceramics International, 44(8):9303–9311

  16. Madhan K, Murugaraj R (2020) “Enrichment of optical, electrical, and magnetic properties of Li+, La3+ doped BaTiO3 perovskite multifunctional ceramics,” Appl Phys A Mater Sci Process, 126(2) https://doi.org/10.1007/S00339-020-3285-2

  17. Madhan K, Selvadurai APB, Murugaraj R (2019) Conjuring of defect-induced short and long-range ferromagnetism ordering in Ba(1− x)NdxTi0.99Co0.01O3. Materials Letters 243:100–103

  18. Elkechai O, Manier M, Mercurio JP (1996) “Na0.5Bi0.5TiO3-K0.5Bi 0.5TiO3 (NBT-KBT) system: A structural and electrical study,”. Phys Status Solidi Appl Res 157(2):499–506. https://doi.org/10.1002/pssa.2211570234

    Article  Google Scholar 

  19. Sidi MM, Ben M, and Sidi FA (2018) “Investigation of Morphotropic Phase Boundary by Rietveld Refinement and Raman Spectroscopy for (1-x)(Na0.5Bi0.5)TiO3-xBaTiO3 Ceramics ASIAN JOURNAL OF CHEMISTRY ASIAN JOURNAL OF CHEMISTRY,”. https://doi.org/10.14233/ajchem.2018.21116

  20. Fang X, Shen B, Zhai J, Yao X (2011) “Preparation, dielectric and ferroelectric properties of (Na 0.5Bi0.5)0.94Ba0.06TiO3 thin films by a sol-gel process,”. J Sol-Gel Sci Technol 58(1):1–5. https://doi.org/10.1007/S10971-010-2346-Y/FIGURES/7

    CAS  Article  Google Scholar 

  21. Smolenskii GA, Chupis IE (1982) “Ferroelectromagnets,”. Sov Phys - Uspekhi 25(7):415–448. https://doi.org/10.1070/PU1982v025n07ABEH004570

    Article  Google Scholar 

  22. Yadav AK et al. (2017) “Structural and dielectric properties of Pb(1−x)(Na0.5Sm0.5)xTiO3 ceramics,”. J Mater Sci Mater Electron 28(14):10730–10738. https://doi.org/10.1007/s10854-017-6849-y

    CAS  Article  Google Scholar 

  23. Jones GO, Thomas PA (2002) “Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3,”. Acta Crystallogr Sect B Struct Sci 58(2):168–178. https://doi.org/10.1107/S0108768101020845

    CAS  Article  Google Scholar 

  24. Li LQ, Xiong Y, Tang MH, Cheng CP, Ouyang J (2014) “Effect of BiFeO3 doping on ferroelectric properties of Na0.5Bi0.5TiO3–BaTiO3 based thin film derived by sol–gel method,”. J Sol-Gel Sci Technol 72(2):394–397. https://doi.org/10.1007/S10971-014-3448-8/FIGURES/3

    CAS  Article  Google Scholar 

  25. Puli VS, Martínez RV, Kumar A, Scott JF, Katiyar RS (2011) “A quaternary lead based perovskite structured materials with diffuse phase transition behavior,”. Mater Res Bull 46(12):2527–2530. https://doi.org/10.1016/j.materresbull.2011.08.017

    CAS  Article  Google Scholar 

  26. Raghavender M, Kumar GS, Prasad G (2009) “A-site substitution-controlled dielectric dispersion in lead-free sodium bismuth titanate,”. Pramana - J Phys 72(6):999–1009. https://doi.org/10.1007/s12043-009-0092-x

    CAS  Article  Google Scholar 

  27. Kreisel J, Glazer AM, Bouvier P, Lucazeau G (2001) “High-pressure Raman study of a relaxor ferroelectric: The Na0.5Bi0.5TiO3 perovskite,”. Phys Rev B—Condens Matter Mater Phys 63(17):1741061–17410610. https://doi.org/10.1103/physrevb.63.174106

    Article  Google Scholar 

  28. Bibi I et al. (2021) Effect of dopant on ferroelectric, dielectric and photocatalytic properties of chromium-doped cobalt perovskite prepared via micro-emulsion route. Results Phys 20:103726. https://doi.org/10.1016/J.RINP.2020.103726

    Article  Google Scholar 

  29. Hanžić N, Jurkin T, Maksimović A, Gotić M (2015) “The synthesis of gold nanoparticles by a citrate-radiolytical method,”. Radiat Phys Chem 106:77–82. https://doi.org/10.1016/J.RADPHYSCHEM.2014.07.006

    Article  Google Scholar 

  30. Mielewczyk-Gryn A et al. (2013) Characterization of CaTi0.9Fe0.1O3/La0.98Mg0.02NbO4 composite. Cent Eur J Phys 11(2):213–218. https://doi.org/10.2478/s11534-012-0152-6

    CAS  Article  Google Scholar 

  31. Mesrar M, Lamcharfi T, Echatoui N-S, Abdi F, and Harrach A (2019) “High dielectric constant of (1-x)(Na0.5Bi0.5)TiO3-xBaTiO3 prepared by the hydrothermal method,” Mediterr J Chem. https://doi.org/10.13171/10.13171/mjc8319051210mm

  32. Aman D, El-Hafiz DRA, Ebiad MA(2018) “Thermodynamic parameter for steam reforming reaction of biodiesel by-product using nano-sized perovskite catalysts,” Moroccan J Chem 6(3):466–479. https://doi.org/10.48317/IMIST.PRSM/MORJCHEM-V6I3.6444

    CAS  Article  Google Scholar 

  33. Madhan K, Murugaraj R (2020) “Investigation on microstructural, electrical and optical properties of Nd-Doped BaCo0.01Ti0.99O3 perovskite,”. J Electron Mater 49(1):377–384. https://doi.org/10.1007/s11664-019-07751-0

    CAS  Article  Google Scholar 

  34. Cernea M, Vasile BS, Capiani C, Ioncea A, Galassi C (2012) “Dielectric and piezoelectric behaviors of NBT-BT0.05 processed by sol-gel method,”. J Eur Ceram Soc 32(1):133–139. https://doi.org/10.1016/j.jeurceramsoc.2011.07.038

    CAS  Article  Google Scholar 

  35. Fu Z, Zhu R, Wu D, Li A (2008) “Preparation of (1−x%)(Na0.5Bi0.5)TiO3–x%SrTiO3 thin films by a sol–gel method for dielectric tunable applications,” J Sol-Gel Sci Technol 49(1):29–34. https://doi.org/10.1007/S10971-008-1844-7

    Article  Google Scholar 

  36. Li LQ, Xiong Y, Tang MH, Cheng CP, Ouyang J (2014) “Effect of BiFeO3 doping on ferroelectric properties of Na0.5Bi0.5TiO3–BaTiO3 based thin film derived by sol–gel method,” J Sol-Gel Sci Technol 72(2):394–397. https://doi.org/10.1007/S10971-014-3448-8

    CAS  Article  Google Scholar 

  37. Fang X, Shen B, Zhai J, Yao X (2010) “Preparation, dielectric and ferroelectric properties of (Na0.5Bi0.5)0.94Ba0.06TiO3 thin films by a sol–gel process,” J Sol-Gel Sci Technol 58(1):1–5. https://doi.org/10.1007/S10971-010-2346-Y

    Article  Google Scholar 

  38. Wang Q, Lian G, Dickey EC (2004) “Grain boundary segregation in yttrium-doped polycrystalline TiO2,”. Acta Mater 52(4):809–820. https://doi.org/10.1016/j.actamat.2003.10.016

    CAS  Article  Google Scholar 

  39. Philips Analytical (2001) “New analytical software for XRD simplifies identification of complex phase mixtures. J Appl Crystallogr 34(6):788–788. https://doi.org/10.1107/s0021889801019264

    Article  Google Scholar 

  40. Rodríquez-Carvajal J, Roisnel T (2004) Line broadening analysis using FullProf*: determination of microstructural properties. In Materials Science Forum (Vol. 443, pp. 123–126). Trans Tech Publications Ltd

  41. Schneider CA, Rasband WS, Eliceiri KW(2012) “NIH Image to ImageJ: 25 years of image analysis,” Nat Methods 9(7):671–675. https://doi.org/10.1038/nmeth.2089

    CAS  Article  Google Scholar 

  42. Igathinathane C, Pordesimo LO, Batchelor WD (2009) “Major orthogonal dimensions measurement of food grains by machine vision using ImageJ,”. Food Res Int 42(1):76–84. https://doi.org/10.1016/J.FOODRES.2008.08.013

    Article  Google Scholar 

  43. Taïbi-Benziada L, Simon A (2009) “Sintering, microstructures and dielectric properties of Ba1-x Pbx(Ti1-xLix)O3-3x F3x ferroelectric ceramics,”. Cent Eur J Chem 7(2):159–163. https://doi.org/10.2478/s11532-008-0063-y

    CAS  Article  Google Scholar 

  44. Dagar S, Hooda A, Khasa S, Malik M (2020) “Investigations of structural, enhanced dielectric and magnetic properties of NBT doped ferrite system,”. Mater Chem Phys 249:123214. https://doi.org/10.1016/J.MATCHEMPHYS.2020.123214

    CAS  Article  Google Scholar 

  45. Mesrar M, Lamcharfi T, Echatoui N-S et al. (2019) High dielectric constant of (1-x)(Na0. 5Bi0. 5) TiO3-xBaTiO3 prepared by the hydrothermal method. Mediterranean Journal of Chemistry 8(3):213–219

  46. Mesrar M, Lamcharfi T, Echatoui N, Abdi F, Harrach A, Ahjyaje FZ (2019) “Hydrothermal synthesis, microstructure and electrical properties of (1- x)(Na0.5Bi0.5)TiO3-xBaTiO3 ceramics,”. Moroccan J Quant Qual Res 0(1):14–24

    Google Scholar 

  47. Roukos R, Dargham SA, Romanos J, Barakat F, Chaumont D (2019) “Complex structural contribution of the morphotropic phase boundary in Na0.5Bi0.5TiO3—CaTiO3 system,”. Ceram Int 45(4):4467–4473. https://doi.org/10.1016/j.ceramint.2018.11.126

    CAS  Article  Google Scholar 

  48. Dunce M et al. (2021) Influence of sintering temperature on microstructure of Na0.5Bi0.5TiO3 ceramics. J Alloy Compd 884:160955. https://doi.org/10.1016/J.JALLCOM.2021.160955

    CAS  Article  Google Scholar 

  49. Bhattacharyya R, Das S, Das A, Omar S (2021) “Effect of sintering temperature on the microstructure and conductivity of Na0.54Bi0.46Ti0.99Mg0.01O3-δ. Solid State Ion 360:115547. https://doi.org/10.1016/J.SSI.2020.115547

    CAS  Article  Google Scholar 

  50. Mrharrab L, Nfissi A, Ababou Y, Belhajji M, Sayouri S, Faik A (2021) “Effect of starting materials on the structure of pure and Gd-doped BaTiO3 elaborated by the sol gel process,” Moroccan J Chem 9(4):628–638. https://doi.org/10.48317/IMIST.PRSM/morjchem-v9i4.27263

    CAS  Article  Google Scholar 

  51. Elbasset A, Abdi F, Lamcharfi T-D et al. (2016) Characterization micro/nanostructures of barium strontium titanate. Orient J Chem 32(3):1521–1524

  52. Wang X, Chan HLW, Choy CL (2003) “(Bi1/2Na1/2)TiO3-Ba(Cu1/2W 1/2)O3 lead-free piezoelectric ceramics,”. J Am Ceram Soc 86(10):1809–1811. https://doi.org/10.1111/j.1151-2916.2003.tb03562.x

    CAS  Article  Google Scholar 

  53. Hiruma Y, Aoyagi R, Nagata H, Takenaka T (2005) “Ferroelectric and piezoelectric properties of (Bi1/2K 1/2)TiO3 ceramics,”. Jpn J Appl Phys, Part 1 Regul Pap Short Notes Rev Pap 44(7A):5040–5044. https://doi.org/10.1143/JJAP.44.5040

    CAS  Article  Google Scholar 

  54. Chourti K et al. (2020) “Relationships between crystalline structure and dielectric properties in Sr2Sm(1-x) NdxTi2Nb3O15 ceramics,”. Rev Imist Ma 8:304–317

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mesrar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mesrar, M., Lamcharfi, T., Echatoui, NS. et al. Effect of sintering temperature on the microstructure and electrical properties of (Na0.5Bi0.5)TiO3 processed by the sol-gel method. J Sol-Gel Sci Technol 103, 820–831 (2022). https://doi.org/10.1007/s10971-022-05885-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05885-y

Keywords

  • (Na0.5Bi0.5)TiO3
  • Sol-gel method
  • Reitveld refinement
  • SEM
  • Dielectric measurements