Skip to main content

Application of sol-gel processes to materials and interfaces in oxide-based all-solid-state batteries

Abstract

All-solid-state batteries are an attractive proposal to achieve the demands for safe, efficient and high energy storage. This paper briefly discusses the current challenges in the field of all-solid-state batteries and how sol-gel routes can addressed them. The application of the sol-gel process for the synthesis of solid electrolytes is described, with special emphasis on solid oxide-type electrolytes. In this context, the use of sol-gel derived sintering additives is discussed. The sol-gel process involved in the fabrication of oxide-type all-solid-state battery is also described. Chemical strategies based on sol-gel technology to prepare cathode|electrolyte and anode-lithium metal|electrolyte interfaces with low interfacial resistance are described and contrasted with state-of-art literature.

Graphical abstract

Highlights

  • Sol-gel process used to prepare oxide-type all-solid-state batteries.

  • Sol-gel process for the synthesis of solid electrolytes, polymeric and inorganic electrolytes.

  • Sol-gel sintering additives used for the synthesis of solid electrolytes.

  • Sol-gel derived interfacial materials and buffer layers for low interfacial electrode/electrolyte resistance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. © European Union, Towards clean, competitive and connected mobility: the contribution of Transport. Research and Innovation to the Mobility package. 2017. p. SWD 223.

  2. Kim KJ et al. (2021) Solid-state Li–metal batteries: Challenges and horizons of oxide and sulfide solid electrolytes and their interfaces. Adv Energy Mater 11(1):2002689

    CAS  Article  Google Scholar 

  3. Kato Y, Hori S, Kanno R (2020) Li10GeP2S12-type superionic conductors: Synthesis, structure, and ionic transportation. Adv Energy Mater 10(42):2002153

    CAS  Article  Google Scholar 

  4. Zhu Y, He X, Mo Y (2015) Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations. ACS Appl Mater Interfaces 7(42):23685–23693

    CAS  Article  Google Scholar 

  5. Wang Q et al. (2019) Siloxane-based polymer electrolytes for solid-state lithium batteries. Energy Storage Mater 23:466–490

    Article  Google Scholar 

  6. Klein L, Aparicio M, Damay F (2018) Sol-Gel Processing for Battery and Fuel Cell Applications. In: Klein L, Aparicio M, Jitianu A Eds Handbook of Sol-Gel Science and Technology: Processing, Characterization and Applications. Springer International Publishing, Cham, p 2573–2593

    Chapter  Google Scholar 

  7. Rosero-Navarro NC, Tadanaga K (2018) Sol-Gel Processing of Solid Electrolytes for Li-Ion Batteries. In: Klein L, Aparicio M, Jitianu A Eds Handbook of Sol-Gel Science and Technology: Processing, Characterization and Applications. Springer International Publishing, Cham, p 2631–2648

    Chapter  Google Scholar 

  8. Karabelli D, Birke KP, Weeber M (2021) A performance and cost overview of selected solid-state electrolytes: Race between polymer electrolytes and inorganic sulfide electrolytes. Batteries 7(1):18

    CAS  Article  Google Scholar 

  9. Zhao Q et al. (2020) Designing solid-state electrolytes for safe, energy-dense batteries. Nat Rev Mater 5(3):229–252

    CAS  Article  Google Scholar 

  10. Feng J et al. (2021) PEO based polymer-ceramic hybrid solid electrolytes: a review. Nano Convergence 8(1):2

    CAS  Article  Google Scholar 

  11. Ngai KS et al. (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22(8):1259–1279

    CAS  Article  Google Scholar 

  12. Armand, M.B., et al. Polymer Electrolytes, in Energy Materials. 2011. p. 1–31.

  13. Zelazowska, E., E. Rysiakiewicz-Pasek, and M. Borczuch-LŁaczka. Sol-gel derived Li-ion conducting polymer electrolytes. in Materials Science- Poland. 2005.

  14. Liang H-P et al. (2022) Polysiloxane-based single-ion conducting polymer blend electrolyte comprising small-molecule organic carbonates for high-energy and high-power lithium-metal batteries. Adv Energy Mater 12(16):2200013

    CAS  Article  Google Scholar 

  15. Meng N, Zhu X, Lian F (2022) Particles in composite polymer electrolyte for solid-state lithium batteries: A review. Particuology 60:14–36

    CAS  Article  Google Scholar 

  16. Hayashi A et al. (2001) Preparation of Li2S–P2S5 amorphous solid electrolytes by mechanical milling. J Am Ceram Soc 84(2):477–79

    CAS  Article  Google Scholar 

  17. Hayashi A et al. (2003) Formation of superionic crystals from mechanically milled Li2S–P2S5 glasses. Electrochem Commun 5(2):111–114

    CAS  Article  Google Scholar 

  18. Mizuno F et al. (2005) New, highly ion-conductive crystals precipitated from Li2S–P2S5 glasses. Adv Mater 17(7):918–921

    CAS  Article  Google Scholar 

  19. Tatsumisago M, Hayashi A (2014) Sulfide glass-ceramic electrolytes for all-solid-state lithium and sodium batteries. Int J Appl Glass Sci 5(3):226–235

    CAS  Article  Google Scholar 

  20. Kamaya N et al. (2011) A lithium superionic conductor. Nat Mater 10(9):682–6

    CAS  Article  Google Scholar 

  21. Kato Y et al. (2016) High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy 1:16030

    CAS  Article  Google Scholar 

  22. Murugan R, Thangadurai V, Weppner W (2007) Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem 46(41):7778–81

    CAS  Article  Google Scholar 

  23. Tadanaga K et al. (2013) Low temperature synthesis of highly ion conductive Li7La3Zr2O12–Li3BO3 composites. Electrochem Commun 33:51–54

    CAS  Article  Google Scholar 

  24. Samson AJ et al. (2019) A bird’s-eye view of Li-stuffed garnet-type Li7La3Zr2O12 ceramic electrolytes for advanced all-solid-state Li batteries. Energy Environ Sci 12(10):2957–2975

    CAS  Article  Google Scholar 

  25. Wang C et al. (2020) Garnet-type solid-state electrolytes: Materials, interfaces, and batteries. Chem Rev 120(10):4257–4300

    CAS  Article  Google Scholar 

  26. Subramanian K et al. (2021) A brief review of recent advances in garnet structured solid electrolyte based lithium metal batteries. J Energy Storage 33:102157

    Article  Google Scholar 

  27. Rosero-Navarro NC, Tadanaga K (2019) Sintering Additives for Garnet-Type Electrolytes. In: Murugan R, Weppner W Eds Solid Electrolytes for Advanced Applications: Garnets and Competitors. Springer International Publishing, Cham, p 111–128

    Chapter  Google Scholar 

  28. Ohta S et al. (2014) Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery. J Power Sources 265(0):40–44

    CAS  Article  Google Scholar 

  29. Janani N et al. (2015) Optimization of lithium content and sintering aid for maximized Li+ conductivity and density in Ta-Doped Li7La3Zr2O12. J Am Ceram Soc 98(7):2039–2046

    CAS  Article  Google Scholar 

  30. Rosero-Navarro NC et al. (2017) Optimization of Al2O3 and Li3BO3 content as sintering additives of Li7−x La2.95Ca0.05ZrTaO12 at low temperature. J Electron Mater 46(1):497–501

    CAS  Article  Google Scholar 

  31. Jonson RA, McGinn PJ (2018) Tape casting and sintering of Li7La3Zr1.75Nb0.25Al0.1O12 with Li3BO3 additions. Solid State Ion 323:49–55

    CAS  Article  Google Scholar 

  32. Xie H et al. (2019) Consolidating the grain boundary of the garnet electrolyte LLZTO with Li3BO3 for high-performance LiNi0.8Co0.1Mn0.1O2/LiFePO4 hybrid solid batteries. J Mater Chem A 7(36):20633–20639

    CAS  Article  Google Scholar 

  33. Han J, Kim JC (2020) A solid-state route to stabilize cubic Li7La3Zr2O12 at low temperature for all-solid-state-battery applications. Chem Commun 56(96):15197–15200

    CAS  Article  Google Scholar 

  34. Rosero-Navarro NC, Tadanaga K (2016) Sol–Gel Processing of Solid Electrolytes for Li-ion Batteries. In: Klein L, Aparicio M, Jitianu A Eds Handbook of Sol-Gel Science and Technology. Springer International Publishing, Cham, p 1–18

    Google Scholar 

  35. Rosero-Navarro NC et al. (2021) Synthesis of highly Li-ion conductive garnet-type solid ceramic electrolytes by solution-process-derived sintering additives. J Eur Ceram Soc 41(13):6767–6771

    CAS  Article  Google Scholar 

  36. Hongahally Basappa R et al. (2017) Grain boundary modification to suppress lithium penetration through garnet-type solid electrolyte. J Power Sources 363:145–152

    CAS  Article  Google Scholar 

  37. Xu B et al. (2017) Li3PO4-added garnet-type Li6.5La3Zr1.5Ta0.5O12 for Li-dendrite suppression. J Power Sources 354:68–73

    CAS  Article  Google Scholar 

  38. Zheng C et al. (2021) Grain boundary modification in garnet electrolyte to suppress lithium dendrite growth. Chem Eng J 411:128508

    CAS  Article  Google Scholar 

  39. Liu Q et al. (2018) Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries. J Power Sources 389:120–134

    CAS  Article  Google Scholar 

  40. Ramakumar S et al. (2017) Lithium garnets: Synthesis, structure, Li+ conductivity, Li+ dynamics and applications. Prog Mater Sci 88:325–411

    CAS  Article  Google Scholar 

  41. Bucci G et al. (2017) Modeling of internal mechanical failure of all-solidstate batteries during electrochemical cycling, and implications for battery design. J Mater Chem A 5(36):19422–19430

    CAS  Article  Google Scholar 

  42. Cheng L et al. (2014) The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. Phys Chem Chem Phys 16(34):18294–18300

    CAS  Article  Google Scholar 

  43. Sharafi A et al. (2017) Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state Electrolyte Li7La3Zr2O12. Chem Mater 29(18):7961–7968

    CAS  Article  Google Scholar 

  44. Li Y et al. (2018) Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries. J Am Chem Soc 140(20):6448–6455

    CAS  Article  Google Scholar 

  45. Basappa RH, Ito T, Yamada H (2017) Contact between Garnet-type solid electrolyte and lithium metal anode: Influence on charge transfer resistance and short circuit prevention. J Electrochem Soc 164(4):A666–A671

    CAS  Article  Google Scholar 

  46. Ohta S, Kobayashi T, Asaoka T (2011) High lithium ionic conductivity in the garnet-type oxide Li7−X La3(Zr2−X, NbX)O12 (X=0–2). J Power Sources 196(6):3342–3345

    CAS  Article  Google Scholar 

  47. Ohta S et al. (2012) Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte. J Power Sources 202(0):332–335

    CAS  Article  Google Scholar 

  48. Kato T et al. (2014) In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery. J Power Sources 260:292–298

    CAS  Article  Google Scholar 

  49. Matsuyama T et al. (2016) Fabrication of all-solid-state lithium secondary batteries with amorphous TiS4 positive electrodes and Li7La3Zr2O12 solid electrolytes. Solid State Ion 285:122–125

    CAS  Article  Google Scholar 

  50. Kotobuki M et al. (2010) Compatibility of Li7La3Zr2O12 solid electrolyte to all-solid-state battery using Li metal anode. J Electrochem Soc 157(10):A1076–A1079

    CAS  Article  Google Scholar 

  51. Ohta S et al. (2013) All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing. J Power Sources 238(0):53–56

    CAS  Article  Google Scholar 

  52. Liu T et al. (2016) Achieving high capacity in bulk-type solid-state lithium ion battery based on Li6.75La3Zr1.75Ta0.25O12 electrolyte: Interfacial resistance. J Power Sources 324:349–357

    CAS  Article  Google Scholar 

  53. Han F et al. (2018) Interphase engineering enabled all-ceramic lithium battery. Joule 2(3):497–508

    CAS  Article  Google Scholar 

  54. Alexander GV et al. (2018) Electrochemical performance of a garnet solid electrolyte based lithium metal battery with interface modification. J Mater Chem A 6(42):21018–21028

    CAS  Article  Google Scholar 

  55. Jin Y, McGinn PJ (2013) Bulk solid state rechargeable lithium ion battery fabrication with Al-doped Li7La3Zr2O12 electrolyte and Cu0.1V2O5 cathode. Electrochim Acta 89:407–412

    CAS  Article  Google Scholar 

  56. Rosero-Navarro NC et al. (2020) Significant reduction in the interfacial resistance of garnet-type solid electrolyte and lithium metal by a thick amorphous lithium silicate layer. ACS Appl Energy Mater 3(6):5533–5541

    CAS  Article  Google Scholar 

  57. Han X et al. (2016) Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater 16:572

    Article  CAS  Google Scholar 

  58. Rosero-Navarro NC et al. (2020) Organic–inorganic hybrid materials for interface design in all-solid-state batteries with a garnet-type solid electrolyte. ACS Appl Energy Mater 3(11):11260–11268

    CAS  Article  Google Scholar 

  59. Xue Z, He D, Xie X (2015) Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J Mater Chem A 3(38):19218–19253

    CAS  Article  Google Scholar 

  60. Vélez JF, Aparicio M, Mosa J (2016) Covalent silica-PEO-LiTFSI hybrid solid electrolytes via sol-gel for Li-ion battery applications. Electrochim Acta 213:831–841

    Article  CAS  Google Scholar 

  61. Zhang J et al. (2016) Solid polymer electrolyte membranes based on organic/inorganic nanocomposites with star-shaped structure for high performance lithium ion battery. J Membr Sci 509:138–148

    CAS  Article  Google Scholar 

  62. Boaretto N et al. (2017) Optimization of the transport and mechanical properties of polysiloxane/polyether hybrid polymer electrolytes. Electrochim Acta 241:477–486

    CAS  Article  Google Scholar 

  63. Nakano S et al. (2018) Effect of chain architectures of star-shaped Poly(ethylene glycol) macromonomers on enhancement of thermal, mechanical, and electrochemical performance of polymer electrolyte membranes. Chem Lett 47(4):587–590

    CAS  Article  Google Scholar 

  64. Zhang J et al. (2018) A star-shaped solid composite electrolyte containing multifunctional moieties with enhanced electrochemical properties for all solid-state lithium batteries. J Membr Sci 552:107–114

    CAS  Article  Google Scholar 

  65. Schnell J et al. (2018) All-solid-state lithium-ion and lithium metal batteries–paving the way to large-scale production. J Power Sources 382:160–175

    CAS  Article  Google Scholar 

  66. Han F et al. (2019) High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat Energy 4(3):187–196

    CAS  Article  Google Scholar 

  67. Cheng EJ, Sharafi A, Sakamoto J (2017) Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim Acta 223:85–91

    CAS  Article  Google Scholar 

  68. Krauskopf T et al. (2019) Lithium-metal growth kinetics on LLZO Garnet-type solid electrolytes. Joule 3(8):2030–2049

    CAS  Article  Google Scholar 

  69. Kim S et al. (2020) The role of interlayer chemistry in Li-metal growth through a Garnet-type solid electrolyte. Adv Energy Mater 10(12):1903993

    CAS  Article  Google Scholar 

  70. Luo W et al. (2016) Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J Am Chem Soc 138(37):12258–12262

    CAS  Article  Google Scholar 

  71. Luo W et al. (2017) Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer. Adv Mater 29(22):1606042

    Article  CAS  Google Scholar 

  72. Wang C et al. (2017) Conformal, Nanoscale ZnO –surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano Lett 17(1):565–571

    CAS  Article  Google Scholar 

  73. Fu K et al. (2017) Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci Adv 3(4):e1601659

    Article  CAS  Google Scholar 

  74. Fu K et al. (2017) Transient behavior of the metal interface in lithium metal–garnet batteries. Angew Chem Int Ed 56(47):14942–14947

    CAS  Article  Google Scholar 

  75. Alexander GV et al. (2018) Electrodes-electrolyte interfacial engineering for realizing room temperature lithium metal battery based on garnet structured solid fast Li+ conductors. J Power Sources 396:764–773

    CAS  Article  Google Scholar 

  76. He M et al. (2018) Formation of self-limited, stable and conductive interfaces between garnet electrolytes and lithium anodes for reversible lithium cycling in solid-state batteries. J Mater Chem A 6(24):11463–11470

    CAS  Article  Google Scholar 

  77. Lu Y et al. (2018) An in situ element permeation constructed high endurance Li–LLZO interface at high current densities. J Mater Chem A 6(39):18853–18858

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges the financial support: Nippon Sheet Glass Foundation FY2021, KAKENHI 17K17559 by Japan Society for Promotion of Science and SOUSEI Program and Young FS Project 2017 by Hokkaido University. The author thanks to her major collaborators in this topic, Prof. Kiyoharu Tadanaga and Prof. Akira Miura of Hokkaido University. Dr. Randy Jalem and Prof. Yoshitaka Tateyama of National Institute for Materials Science are recognized for their collaboration in computational calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataly Carolina Rosero-Navarro.

Ethics declarations

Conflict of interests

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rosero-Navarro, N.C. Application of sol-gel processes to materials and interfaces in oxide-based all-solid-state batteries. J Sol-Gel Sci Technol 103, 680–689 (2022). https://doi.org/10.1007/s10971-022-05880-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05880-3

Keywords

  • Sol-gel applications
  • All-solid-state batteries
  • Microstructure control
  • Interfacial materials
  • Electrode composites
  • Buffer layers