Skip to main content

Fabrication of boehmite nanofiber aerogels by a phosphate gelation process for optical applications

Abstract

A transparent wet gel was obtained in a few minutes at room temperature by adding an aqueous phosphoric acid solution of appropriate concentration to boehmite nanofiber sol. After room temperature aging and supercritical carbon dioxide drying, low bulk density aerogels with visible light transmittance of over 90% at 10 mm thickness were obtained. These aerogels exhibited high Young’s modulus and visible light transmittance, while having the same bulk density as the samples obtained by a conventional gelation process using a base. The high optical transmittance of the aerogel were hardly lost even at high humidity because the phosphorylation of the skeletal surface reduced the percentage of hydroxyl groups. The three-dimensional imaging inspection of the exterior and interior of the aerogel was carried out. The various developments reported in this paper make aerogels with ultralow bulk density (<0.01 g cm−3) and high visible light transmission even more promising for applications in the physical field.

Graphical abstract

Highlights

  • Transparent gels were obtained by adding phosphoric acid to a boehmite nanofiber sol.

  • Boehmite nanofiber aerogels with phosphate groups on the surface showed moisture resistance.

  • The three-dimensional imaging inspection of the exterior and interior of the aerogel was carried out.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Aegerter MA, Leventis N, Koebel MM (2011) Aerogels Handbook. Springer, New York

  2. Hrubesh LW (1998) Aerogel applications. J Non-Cryst Solids 225:335–342. https://doi.org/10.1016/s0022-3093(98)00135-5

    CAS  Article  Google Scholar 

  3. Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24:3221–3227. https://doi.org/10.1007/bf01139044

    CAS  Article  Google Scholar 

  4. Meador MAB, Malow EJ, Silva R, Wright S, Quade D, Vivod SL, Guo HQ, Guo J, Cakmak M (2012) Mechanically strong, flexible polyimide aerogels cross-linked with aromatic triamine. ACS Appl Mater Interfaces 4:536–544. https://doi.org/10.1021/am2014635

    CAS  Article  Google Scholar 

  5. Merillas B, Martin-de Leon J, Villafane F, Rodriguez-Perez MA (2021) Transparent polyisocyanurate-polyurethane-based aerogels: key aspects on the synthesis and their porous structures. ACS Appl Polym Mater 3:4607–4615. https://doi.org/10.1021/acsapm.1c00712

    CAS  Article  Google Scholar 

  6. Lu X, Nilsson O, Fricke J, Pekala RW (1993) Thermal and electrical conductivity of monolithic carbon aerogels. J Appl Phys 73:581–584. https://doi.org/10.1063/1.353367

    Article  Google Scholar 

  7. Merzbacher CI, Meier SR, Pierce JR, Korwin ML (2001) Carbon aerogels as broadband non-reflective materials. J Non-Cryst Solids 285:210–215. https://doi.org/10.1016/s0022-3093(01)00455-0

    CAS  Article  Google Scholar 

  8. Takeshita S, Yoda S (2017) Translucent, hydrophobic, and mechanically tough aerogels constructed from trimethylsilylated chitosan nanofibers. Nanoscale 9:12311–12315. https://doi.org/10.1039/c7nr04051b

    CAS  Article  Google Scholar 

  9. Kobayashi Y, Saito T, Isogai A (2014) Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators. Angew Chem Int Ed 53:10394–10397. https://doi.org/10.1002/anie.201405123

    CAS  Article  Google Scholar 

  10. Poelz G, Riethmuller R (1982) Preparation of silica aerogel for Cherenkov counters. Nucl Instrum Methods Phys Res 195:491–503. https://doi.org/10.1016/0029-554x(82)90010-6

    CAS  Article  Google Scholar 

  11. Cantin M, Casse M, Koch L, Jouan R, Mestreau P, Roussel D, Bonnin F, Moutel J, Teichner SJ (1974) Silica aerogels used as cherenkov radiators. Nucl Instrum Methods 118:177–182. https://doi.org/10.1016/0029-554x(74)90700-9

    CAS  Article  Google Scholar 

  12. Sumiyoshi T, Adachi I, Enomoto R, Iijima T, Suda R, Yokoyama M, Yokogawa H (1998) Silica aerogels in high energy physics. J Non-Cryst Solids 225:369–374. https://doi.org/10.1016/s0022-3093(98)00057-x

    CAS  Article  Google Scholar 

  13. Hotaling SP (1993) Ultra-low density aerogel optical applications. J Mater Res 8:352–355. https://doi.org/10.1557/jmr.1993.0352

    CAS  Article  Google Scholar 

  14. Plata DL, Briones YJ, Wolfe RL, Carroll MK, Bakrania SD, Mandel SG, Anderson AM (2004) Aerogel-platform optical sensors for oxygen gas. J Non-Cryst Solids 350:326–335. https://doi.org/10.1016/j.jnoncrysol.2004.06.046

    CAS  Article  Google Scholar 

  15. Morris CA, Anderson ML, Stroud RM, Merzbacher CI, Rolison DR (1999) Silica sol as a nanoglue: flexible synthesis of composite aerogels. Science 284:622–624. https://doi.org/10.1126/science.284.5414.622

    CAS  Article  Google Scholar 

  16. Hayase G, Nonomura K, Hasegawa G, Kanamori K, Nakanishi K (2015) Ultralow-density, transparent, superamphiphobic boehmite nanofiber aerogels and their alumina derivatives. Chem Mater 27:3–5. https://doi.org/10.1021/cm503993n

    CAS  Article  Google Scholar 

  17. Tillotson TM, Hrubesh LW (1992) Transparent ultralow-density silica aerogels prepared by a 2-step sol-gel process. J Non-Cryst Solids 145:44–50. https://doi.org/10.1016/s0022-3093(05)80427-2

    CAS  Article  Google Scholar 

  18. Hæreid S, Anderson J, Einarsrud MA, Hua DW, Smith DM (1995) Thermal and temporal aging of TMOS-based aerogel precursors in water. J Non-Cryst Solids 185:221–226

    Article  Google Scholar 

  19. Hayase G (2021) Boehmite nanofiber-polymethylsilsesquioxane composite aerogels: synthesis, analysis, and thermal conductivity control via compression processing. Bull Chem Soc Jpn 94:70–75. https://doi.org/10.1246/bcsj.20200205

    CAS  Article  Google Scholar 

  20. Hayase G, Funatomi T, Kumagai K (2018) Ultralow-bulk-density transparent boehmite nanofiber cryogel monoliths and their optical properties for a volumetric three-dimensional display. ACS Appl Nano Mater 1:26–30. https://doi.org/10.1021/acsanm.7b00097

    CAS  Article  Google Scholar 

  21. Nagai N, Mizukami F (2011) Properties of Boehmite and Al2O3 thin films prepared from boehmite nanofibres. J Mater Chem 21:14884–14889. https://doi.org/10.1039/c1jm11571e

    CAS  Article  Google Scholar 

  22. Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW (2017) ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform 18:529. https://doi.org/10.1186/s12859-017-1934-z

    Article  Google Scholar 

  23. Schmid B, Schindelin J, Cardona A, Longair M, Heisenberg M (2010) A high-level 3D visualization API for Java and ImageJ. BMC Bioinform. 11: https://doi.org/10.1186/1471-2105-11-274

  24. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    CAS  Article  Google Scholar 

  25. Kodaira T, Suzuki Y-h, Nagai N, Matsuda G, Mizukami F (2015) A highly photoreflective and heat-insulating alumina film composed of stacked mesoporous layers in hierarchical structure. Adv Mater 27:5901–5905. https://doi.org/10.1002/adma.201502064

    CAS  Article  Google Scholar 

  26. Watanabe Y, Kasama T, Fukushi K, Ikoma T, Komatsu Y, Tanaka J, Moriyoshi Y, Yamada H (2011) Synthesis of nano-sized boehmites for optimum phosphate sorption. Sep Sci Technol 46:818–824. https://doi.org/10.1080/01496395.2010.535590

    CAS  Article  Google Scholar 

  27. Kiss AB, Keresztury G, Farkas L (1980) Raman and I.R. spectra and structure of Boehmite (γ-AlOOH). Evidence for the recently discarded D^17_2H space group. Spectrochim Acta A 36:653–658. https://doi.org/10.1016/0584-8539(80)80024-9

    Article  Google Scholar 

  28. Mathieu Y, Lebeau B, Valtchev V (2007) Control of the morphology and particle size of boehmite nanoparticles synthesized under hydrothermal conditions. Langmuir 23:9435–9442. https://doi.org/10.1021/la700233q

    CAS  Article  Google Scholar 

  29. Wang P, Beck A, Korner W, Scheller H, Fricke J (1994) Density & refractive-index of silica aerogels after low-temperature and high-temperature supercritical drying and thermal-treatment. J Phys D: Appl Phys 27:414–418. https://doi.org/10.1088/0022-3727/27/2/036

    CAS  Article  Google Scholar 

  30. Buzykaev AR, Danilyuk AF, Ganzhur SF, Kravchenko EA, Onuchin AP (1999) Measurement of optical parameters of aerogel. Nucl Instrum Methods Phys Res, Sect A 433:396–400. https://doi.org/10.1016/s0168-9002(99)00325-3

    CAS  Article  Google Scholar 

  31. Emmerling A, Petricevic R, Beck A, Wang P, Scheller H, Fricke J (1995) Relationship between optical transparency and nanostructural features of silica aerogels. J Non-Cryst Solids 185:240–248. https://doi.org/10.1016/0022-3093(95)00021-6

    CAS  Article  Google Scholar 

  32. Balazs BZ, Geier N, Takacs M, Davim JP (2021) A review on micro-milling: recent advances and future trends. Int J Adv Manuf Technol 112:655–684. https://doi.org/10.1007/s00170-020-06445-w

    Article  Google Scholar 

  33. Sun J, Longtin JP, Norris PM (2001) Ultrafast laser micromachining of silica aerogels. J Non-Cryst Solids 281:39–47. https://doi.org/10.1016/s0022-3093(00)00426-9

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by TIA collaborative research program and MEXT Leading Initiative for Excellent Young Researchers Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gen Hayase.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hayase, G., Yamazaki, K. & Kodaira, T. Fabrication of boehmite nanofiber aerogels by a phosphate gelation process for optical applications. J Sol-Gel Sci Technol (2022). https://doi.org/10.1007/s10971-022-05867-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10971-022-05867-0

Keywords

  • Aerogels
  • Porous materials
  • Nanofibers
  • Optical properties
  • Boehmite