Skip to main content

Nanofluids: properties and applications

Abstract

Nanofluids are liquid suspensions of hard nanometer-sized particles suspended in a base fluid. The suspension of small solid particles in energy transmission fluids enhances their thermal conductivity and provides an inexpensive and creative way to greatly boost their heat transfer (HT) properties. It is possible to add nanofluids to various industrial and technical issues, such as heat exchangers, electrical equipment cooling, and chemical processes. In comparison to traditional fluids utilized for HT, which include water, oil, ethylene glycol, and single nanoparticles (NPs) involving nanofluids, hybrid nanofluids are new forms of fluids that display strong HT efficiency. In terms of cooling, hybrid nanofluids function well where temperature scales are high and have a wide variety of thermal applications. In general, hybrid nanofluids are developed by diffusing two distinct forms of NPs in base fluids, which has emerged as a novel nanotechnology.

Figure graphical abstract highlights the main parameters that influence the effective thermal conductivity of any nanofluid. Nano-fluids are produced by combining one or more nano-particles in a base-fluid. Nano-fluids, especially hybrid nano-fluids, have better thermal conductivities than simple liquids. The results of various articles demonstrated that various parameters such as nano-particles size, their volume fraction, temperature, aspect ratio, base-fluid, nano inclusions, additive, and pH affect nano-fluid thermal conductivity. In this paper, the effect of these parameters is reviewed by considering experimental works performed on thermal conductivity. Since thermal conductivity is measured by researchers experimentally, it is also important for researchers to understand the effect of nano-particles on humans and the environment. Thus, in this article, published articles in this field are reviewed and the effect of nano-particles on human and environment are investigated. The results of these articles indicated that nano-particles can endanger human health and can have irreversible effects on human health. The nano-particles also have a devastating effect on the environment and can affect the water, soil, and animals.

Highlights

  • An overview of nano fluids and their application to cooling and heating.

  • An overview of nano fluids and characteristics of cooling and heating.

  • Review recent progress in nano fluids in pharmaceutical and medical.

  • Review recent progress in nano fluids in mechanical engineering and civil engineering and medical physics.

  • Review recent progress in nano fluids in chemical processes and electrical equipment and thermal conductivity and thermophysical properties of nanofluids and thermal conductivity coefficient and nanoparticle viscosity concentration effect and effect of temperature on viscosity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

References

  1. Coco-Enríquez L, Muñoz-Antón J, Martínez-Val JM (2017) New text comparison between CO2 and other supercritical working fluids (ethane, Xe, CH4 and N2) in line- focusing solar power plants coupled to supercritical Brayton power cycles. Int J Hydrog Energy 42(28):17611–17631

    Article  CAS  Google Scholar 

  2. Memon AG, Memon RA (2017) Thermodynamic analysis of a trigeneration system proposed for residential application. Energy Convers Manag 145:182–203

    CAS  Article  Google Scholar 

  3. Yue C, Han D, Pu W, He W (2016) Parametric analysis of a vehicle power and cooling/heating cogeneration system. Energy 115:800–810

    CAS  Article  Google Scholar 

  4. Uebel K, Rossger P, Prüfert U, Richter A, Meyer B (2016) A new CO conversion quench reactor design. Fuel Process Technol 148:198–208

    CAS  Article  Google Scholar 

  5. Choi SUS, Eastman JA (1995) Enhancing Thermal Conductivity of Fluids with Nanoparticles, Argonne National Lab.

  6. Hashemian M, Jafarmadar S, Nasiri J, Dizaji HS (2017) Enhancement of heat transfer rate with structural modification of double pipe heat exchanger by changing cylindrical form of tubes into conical form. Appl Ther Engineer 118:408–417

    Article  Google Scholar 

  7. Maxwell JC (1891) A Treatise on Electricity and Magnetism. Clarendon Press, Oxford, UK

    Google Scholar 

  8. Choi SUS, Cho YI, Kasza KE (1992) Degradation effects of dilute polymer solutions on turbulent friction and heat transfer behavior. J Non-Newton Fluid Mech 41(3):289–307

    CAS  Article  Google Scholar 

  9. Choi U, France DM, Knodel BD (1992) “Impact of advanced fluids on costs of district cooling systems,” in Argonne National Lab

  10. Choi U, Tran T (1991) “Experimental studies of the effects of non-Newtonian surfactant solutions on the performance of a shell-and-tube heat exchanger,” in Recent Developments in Non-Newtonian Flows and Industrial Applications, The American Society of Mechanical Engineers, New York, NY, USA

  11. Liu K, Choi U, Kasza KE (1988) Measurements of pressure drop and heat transfer in turbulent pipe flows of particulate slurries, Argonne National Lab

  12. Xuan Y, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 21(1):58–64

    CAS  Article  Google Scholar 

  13. Eggers JR, Kabelac S (2016) Nanofluids revisited. Appl Therm Eng 106:1114–1126

    CAS  Article  Google Scholar 

  14. Liu Z-Q, Ma J, Cui Y-H (2008) Carbon nanotube supported platinum catalysts for the ozonation of oxalic acid in aqueous solutions. Carbon 46(6):890–897

    CAS  Article  Google Scholar 

  15. Jiang L, Gao L, Sun J (2003) Production of aqueous colloidal dispersions of carbon nanotubes. J Colloid Interface Sci 260(1):89–94

    CAS  Article  Google Scholar 

  16. Chang H, Wu Y, Chen X, Kao M (2000) Fabrication of Cu based nanofluid with superior dispersion. Natl Taipei Univ Technol J 5:201–208

    Google Scholar 

  17. Sato M, Abe Y, Urita Y, Di Paola R, Cecere A, Savino R (2011) Thermal performance of self-rewetting fluid heat pipe containing dilute solutions of polymer-capped silver nanoparticles synthesized by microwave-polyol process. Int J Transp Phenom 12(3/4):339–345

    CAS  Google Scholar 

  18. Hwang Y, Lee JK, Lee CH et al. (2007) Stability and thermal conductivity characteristics of nanofluids. Thermochim Acta 455(1–2):70–74

    CAS  Article  Google Scholar 

  19. Pantzali MN, Mouza AA, Paras SV (2009) Investigating the efficacy of nanofluids as coolants in plate heat exchangers (PHE). Chem Engineer Sci 64(14):3290–3300

    CAS  Article  Google Scholar 

  20. Chandrasekar M, Suresh S, Bose AC (2010) Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp Ther Fluid Sci 34(2):210–216

    CAS  Article  Google Scholar 

  21. Hwang Y, Lee J-K, Lee J-K et al. (2008) Production and dispersion stability of nanoparticles in nanofluids. Powder Technol 186(2):145–153

    CAS  Article  Google Scholar 

  22. Yu W, Xie H, Chen L, Li Y (2010) Enhancement of thermal conductivity of kerosene-based Fe3O4 nanofluids prepared via phase-transfer method. Colloids Surf A: Physicochemical Eng Asp 355(1–3):109–113

    CAS  Article  Google Scholar 

  23. Kong L, Sun J, Bao Y (2017) Preparation, characterization and tribological mechanism of nanofluids. RSC Advances 7(21):12599–12609

    CAS  Article  Google Scholar 

  24. Li XF, Zhu DS, Wang XJ, Wang N, Gao JW, Li H (2008) Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids. Thermochim Acta 469(1–2):98–103

    CAS  Article  Google Scholar 

  25. Madni I, Hwang C-Y, Park S-D, Choa Y-H, Kim H-T (2010) Mixed surfactant system for stable suspension of multiwalled carbon nanotubes. Colloids Surf A: Physicochemical Eng Asp 358(1–3):101–107

    CAS  Article  Google Scholar 

  26. Dey D, Kumar P, Samantaray S (2017) A review of nanofluid preparation, stability, and thermo-physical properties. Heat Transf. - Asian Res 46(8):1413–1442

    Article  Google Scholar 

  27. Li X, Zhu D, Wang X (2007) Evaluation on dispersion behavior of the aqueous copper nano-suspensions. J Colloid Interface Sci 310(2):456–463

    CAS  Article  Google Scholar 

  28. Kim HJ, Bang IC, Onoe J (2009) Characteristic stability of bare Au-water nanofluids fabricated by pulsed laser ablation in liquids. Opt Lasers Eng 47(5):532–538

    Article  Google Scholar 

  29. Paul G, Sarkar S, Pal T, Das PK, Manna I (2012) Concentration and size dependence of nano-silver dispersed water based nanofluids. J Colloid Interface Sci 371(1):20–27

    CAS  Article  Google Scholar 

  30. Qu J, Wu H-Y, Cheng P (2010) Thermal performance of an oscillating heat pipe with Al2O3-water nanofluids. Int Commun Heat Mass Transf 37(2):111–115

    CAS  Article  Google Scholar 

  31. Anoop KB, Sundararajan T, Das SK (2009) Effect of particle size on the convective heat transfer in nanofluid in the developing region. Int J Heat Mass Transfer 52(9–10):2189–2195

    CAS  Article  Google Scholar 

  32. Rohini Priya K, Suganthi KS, Rajan KS (2012) Transport properties of ultra-low concentration CuO-water nanofluids containing non-spherical nanoparticles. Int J Heat Mass Transf 55(17–18):4734–4743

    CAS  Article  Google Scholar 

  33. Chang MH, Liu HS, Tai CY (2011) Preparation of copper oxide nanoparticles and its application in nanofluid. Powder Technol 207(1–3):378–386

    CAS  Article  Google Scholar 

  34. Liu Z-H, Xiong J-G, Bao R (2007) Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface. Int J Multiph Flow 33(12):1284–1295

    CAS  Article  Google Scholar 

  35. Yang X-F, Liu Z-H (2011) Pool boiling heat transfer of functionalized nanofluid under sub-atmospheric pressures. Int J Ther Sci 50(12):2402–2412

    CAS  Article  Google Scholar 

  36. Qu J, Wu H (2011) Thermal performance comparison of oscillating heat pipes with SiO2/water and Al2O3/water nanofluids. Int J Ther Sci 50(10):1954–1962

    CAS  Article  Google Scholar 

  37. Suganthi KS, Rajan KS (2012) Temperature induced changes in ZnO-water nanofluid: Zeta potential, size distribution and viscosity profiles. Int J Heat Mass Transf 55(25–26):7969–7980

    CAS  Article  Google Scholar 

  38. Duangthongsuk W, Wongwises S (2010) An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime. Int J Heat Mass Transf 53(1–3):334–344

    CAS  Article  Google Scholar 

  39. Hari M, Joseph SA, Mathew S, Nithyaja B, Nampoori VPN, Radhakrishnan P (2013) Thermal diffusivity of nanofluids composed of rod-shaped silver nanoparticles. Int J Ther Sci 64:188–194

    CAS  Article  Google Scholar 

  40. Kole M, Dey TK (2013) Thermal performance of screen mesh wick heat pipes using water-based copper nanofluids. Appl Ther Engineer 50(1):763–770

    CAS  Article  Google Scholar 

  41. Kathiravan R, Kumar R, Gupta A, Chandra R (2010) Preparation and pool boiling characteristics of copper nanofluids over a flat plate heater. Int J Heat Mass Transf 53(9–10):1673–1681

    CAS  Article  Google Scholar 

  42. Yousefi T, Shojaeizadeh E, Veysi F, Zinadini S (2012) An experimental investigation on the effect of pH variation of MWCNT-H2O nanofluid on the efficiency of a flat-plate solar collector. Solar Energy 86(2):771–779

    CAS  Article  Google Scholar 

  43. Garg P, Alvarado JL, Marsh C, Carlson TA, Kessler DA, Annamalai K (2009) An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. Int J Heat Mass Transf 52(21–22):5090–5101

    CAS  Article  Google Scholar 

  44. Ding Y, Alias H, Wen D, Williams RA (2006) Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf 49(1–2):240–250

    CAS  Article  Google Scholar 

  45. Abareshi M, Goharshadi EK, Mojtaba Zebarjad S, Khandan Fadafan H, Youssefi A (2010) Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids. J Magn Magn Mater 322(24):3895–3901

    CAS  Article  Google Scholar 

  46. Phuoc TX, Soong Y, Chyu MK (2007) Synthesis of Ag-deionized water nanofluids using multi-beam laser ablation in liquids. Opt Lasers Eng 45(12):1099–1106

    Article  Google Scholar 

  47. Parametthanuwat T, Rittidech S, Pattiya A (2010) A correlation to predict heat-transfer rates of a two-phase closed thermosyphon (TPCT) using silver nanofluid at normal operating conditions. Int J Heat Mass Transf 53(21–22):4960–4965

    CAS  Article  Google Scholar 

  48. Yousefi T, Veysi F, Shojaeizadeh E, Zinadini S (2012) An experimental investigation on the effect of Al2O3-H2O nanofluid on the efficiency of flat-plate solar collectors. J Renew Energy 39(1):293–298

    CAS  Article  Google Scholar 

  49. Hung Y-H, Teng T-P, Lin B-G (2013) Evaluation of the thermal performance of a heat pipe using alumina nanofluids. Exp Ther Fluid Sci 44:504–511

    CAS  Article  Google Scholar 

  50. Heyhat MM, Kowsary F, Rashidi AM, Momenpour MH, Amrollahi A (2013) Experimental investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanofluids in fully developed flow regime. Exp Ther Fluid Sci 44:483–489

    CAS  Article  Google Scholar 

  51. Tawfik MM (2017) Experimental studies of nanofluid thermal conductivity enhancement and applications: a review. Renew Sustain Energy Rev 75:1239–1253

    CAS  Article  Google Scholar 

  52. Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundamentals 1(3):187–191

    CAS  Article  Google Scholar 

  53. Wasp EJ, Kenny JP, Gandhi RL (1977) Solid–Liquid Flow: Slurry Pipeline Transportation, Pumps, valves, mechanical equipment, economics

  54. Yu W, Choi SUS (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanoparticle Res 5(1-2):167–171

    CAS  Article  Google Scholar 

  55. Xuan Y, Li Q, Hu W (2003) Aggregation structure and thermal conductivity of nanofluids. AIChE J 49(4):1038–1043

    CAS  Article  Google Scholar 

  56. Keblinski P, Eastman JA, Cahill DG (2005) Nanofluids for thermal transport. Mater Today 8(6):36–44

    CAS  Article  Google Scholar 

  57. Vajjha RS, Das DK (2009) Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int J Heat Mass Transf 52(21–22):4675–4682

    CAS  Article  Google Scholar 

  58. Koo J, Kleinstreuer C (2004) A new thermal conductivity model for nanofluids. J Nanopart Res 6(6):577–588

    Article  Google Scholar 

  59. Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf 125(4):567–574

    CAS  Article  Google Scholar 

  60. Xue Q, Xu W-M (2005) A model of thermal conductivity of nanofluids with interfacial shells. Mater Chem Phys 90(2-3):298–301

    CAS  Article  Google Scholar 

  61. Prasher R, Bhattacharya P, Phelan PE (2006) Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids. J Heat Transf 128(6):588–595

    CAS  Article  Google Scholar 

  62. Jang SP, Choi SUS (2004) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84(21):4316–4318

    CAS  Article  Google Scholar 

  63. Suganthi KS, Rajan KS (2017) Metal oxide nanofluids: Review of formulation, thermo-physical properties, mechanisms, and heat transfer performance. Renew Sustain Energy Rev 76:226–255

    CAS  Article  Google Scholar 

  64. Wen D, Lin G, Vafaei S, Zhang K (2009) Review of nanofluids for heat transfer applications. Particuology 7(2):141–150

    CAS  Article  Google Scholar 

  65. Ali N, Teixeira JA, Addali A, Al-Zubi F, Shaban E, Behbehani I (2018) The effect of aluminium nanocoating and water pH value on the wettability behavior of an aluminium surface. Appl Surf Sci 443:24–30

    CAS  Article  Google Scholar 

  66. Kang M, Lee JW, Kang YT (2016) Reduction of liquid pumping power by nanoscale surface coating. Int J Refrig 71:8–17

    CAS  Article  Google Scholar 

  67. Ganesan P, Vanaki SM, Thoo KK, Chin WM (2016) Air-side heat transfer characteristics of hydrophobic and super-hydrophobic fin surfaces in heat exchangers: A review. Int Commun Heat Mass Transf 74:27–35

    Article  Google Scholar 

  68. Yu W, Xie H (2012) A review on nanofluids: preparation, stability mechanisms, and applications, J Nanomater, 2012, Article ID 435873, 17 pages

  69. Mukherjee S (2013) Preparation and stability of nanofluids-a review. IOSR J Mech Civ Eng 9(2):63–69

    Article  Google Scholar 

  70. Mondragon R, Julia JE, Barba A, Jarque JC (2012) Characterization of silica-water nanofluids dispersed with an ultrasound probe: A study of their physical properties and stability. Powder Technol 224:138–146

    CAS  Article  Google Scholar 

  71. Wen D, Ding Y (2005) Formulation of nanofluids for natural convective heat transfer applications. Int J Heat Fluid Flow 26(6):855–864

    CAS  Article  Google Scholar 

  72. Pastoriza-Gallego MJ, Casanova C, Páramo R, Barbés B, Legido JL, Piñeiro MM (2009) A study on stability and thermophysical properties (density and viscosity) of Al2 O3 in water nanofluid. J Appl Phys 106:6. Article ID 064301

    Article  CAS  Google Scholar 

  73. Chen L, Xie H (2010) Properties of carbon nanotube nanofluids stabilized by cationic gemini surfactant. Thermochim Acta 506(1-2):62–66

    CAS  Article  Google Scholar 

  74. Ilyas SU, Pendyala R, Marneni N (2013) Settling characteristics of alumina nanoparticles in ethanol-water mixtures. Appl Mech Mater 372:143–148

    Article  CAS  Google Scholar 

  75. Witharana S, Hodges C, Xu D, Lai X, Ding Y (2012) Aggregation and settling in aqueous polydisperse alumina nanoparticle suspensions. J Nanopart Res 14:article 851

    Article  CAS  Google Scholar 

  76. Oh D-W, Jain A, Eaton JK, Goodson KE, Lee JS (2008) Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3ω method. Int J Heat Fluid Flow 29(5):1456–1461

    CAS  Article  Google Scholar 

  77. Nallusamy S (2015) Thermal conductivity analysis and characterization of copper oxide nanofluids through different techniques. J Nano Res 40:102–112

    Google Scholar 

  78. Razi P, Akhavan-Behabadi MA, Saeedinia M (2011) Pressure drop and thermal characteristics of CuO-base oil nanofluid laminar flow in flattened tubes under constant heat flux. Int Commun Heat Mass Transf 38(7):964–971

    CAS  Article  Google Scholar 

  79. Neouze M-A, Schubert U (2008) Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Monatshefte für Chem 139(3):183–195

    CAS  Article  Google Scholar 

  80. Q500 Sonicator-Qsonica, QSONICA SONICATORS, 2017

  81. “Digital Bench-Top Ultrasonic Cleaners | Soniclean | So Easy - So Fast - So Clean,” Soniclean, 2017

  82. Gupta M, Singh V, Kumar R, Said Z (2017) A review on thermophysical properties of nanofluids and heat transfer applications. Renew Sustain Energy Rev 74:638–670

    CAS  Article  Google Scholar 

  83. Sarafraz MM, Nikkhah V, Nakhjavani M, Arya A (2017) Fouling formation and thermal performance of aqueous carbon nanotube nanofluid in a heat sink with rectangular parallel microchannel. Appl Therm Eng 123:29–39

    CAS  Article  Google Scholar 

  84. Sarafraz MM, Hormozi F (2014) Convective boiling and particulate fouling of stabilized CuO-ethylene glycol nanofluids inside the annular heat exchanger. Int Commun Heat Mass Transf 53:116–123

    CAS  Article  Google Scholar 

  85. Nikkhah V, Sarafraz MM, Hormozi F, Peyghambarzadeh SM (2014) Particulate fouling of CuO-water nanofluid at isothermal diffusive condition inside the conventional heat exchanger-experimental and modeling. Exp Therm Fluid Sci 60:83–95

    Article  CAS  Google Scholar 

  86. Sarafraz MM, Nikkhah V, Madani SA, Jafarian M, Hormozi F (2017) Low-frequency vibration for fouling mitigation and intensification of thermal performance of a plate heat exchanger working with CuO/water nanofluid. Appl Therm Eng 121:388–399

    CAS  Article  Google Scholar 

  87. Teng KH, Amiri A, Kazi SN et al. (2017) Retardation of heat exchanger surfaces mineral fouling by water-based diethylenetriamine pentaacetate-treated CNT nanofluids. Appl Therm Eng 110:495–503

    CAS  Article  Google Scholar 

  88. Kouloulias K, Sergis A, Hardalupas Y (2016) Sedimentation in nanofluids during a natural convection experiment. Int J Heat Mass Transf 101:1193–1203

    CAS  Article  Google Scholar 

  89. Phan HT, Caney N, Marty P, Colasson S, Gavillet J (2009) Surface wettability control by nanocoating: the effects on pool boiling heat transfer and nucleation mechanism. Int J Heat Mass Transf 52(23-24):5459–5471

    CAS  Article  Google Scholar 

  90. Burnett ME, Wang SQ (2011) Current sunscreen controversies: A critical review. Photodermatol Photoimmunol Photomed 27(2):58–67

    CAS  Article  Google Scholar 

  91. Lapotko D (2016) Erratum: Plasmonic nanoparticle-generated photothermal bubbles and their biomedical applications (Nanomedicine (Nanomedicine [Lond.]) (2009) 4:7 (813-845)). Nanomedicine 11(5):566

    CAS  Article  Google Scholar 

  92. Maier-Hauff K, Rothe R, Scholz R (2007) Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neuro-Oncol 81(1):53–60

    CAS  Article  Google Scholar 

  93. Kulkarni DP, Das DK, Vajjha RS (2009) Application of nanofluids in heating buildings and reducing pollution. Appl Energy 86(12):2566–2573

    CAS  Article  Google Scholar 

  94. Vékás L, Bica D, Avdeev MV (2007) Magnetic nanoparticles and concentrated magnetic nanofluids: synthesis, properties and some applications. China Particuology 5(1-2):43–49

    Article  CAS  Google Scholar 

  95. Sharma T, Reddy ALM, Chandra TS, Ramaprabhu S (2008) Development of carbon nanotubes and nanofluids based microbial fuel cell. Int J Hydrog Energy 33(22):6749–6754

    CAS  Article  Google Scholar 

  96. Taylor R, Coulombe S, Otanicar T et al. (2013) Small particles, big impacts: a review of the diverse applications of nanofluids. J Appl Phys 113:1. Article ID 011301

    Article  CAS  Google Scholar 

  97. Scopus-Database, Nanofluids analyze search results from 2015 to 2018, Elsevier, 2018

  98. Taylor R, Coulombe S, Otanicar T, Phelan P, Gunawan A, Lv W, Rosengarten G, Prasher R, Tyagi H (2013) Small particles, big impacts: a review of the diverse applications of nanofluids. J Appl Phys 113:1

    Article  CAS  Google Scholar 

  99. Xuan Y, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 21:58e64

    Article  Google Scholar 

  100. Buongiorno J, Hu L-W, Kim SJ, Hannink R, Truong BAO, Forrest E (2008) Nanofluids for enhanced economics and safety of nuclear reactors: an evaluation of the potential features, issues, and research gaps. Nucl Technol 162:80e91

    Article  Google Scholar 

  101. Beck MP, Yuan Y, Warrier P, Teja AS (2009) The effect of particle size on the thermal conductivity of alumina nanofluids. J Nanoparticle Res 11:1129e1136

    Article  CAS  Google Scholar 

  102. Yang L, Du K (2017) A comprehensive review on heat transfer characteristics of TiO2 nanofluids. Int J Heat Mass Transf 108:11–31

    CAS  Article  Google Scholar 

  103. Azmi WH, Sharif MZ, Yusof TM, Mamat R, Redhwan AAM (2017) Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system – A review. Renew Sustain Energy Rev 69:415–428

    CAS  Article  Google Scholar 

  104. Reddy KS, Kamnapure NR, Srivastava S (2017) Nanofluid and nanocomposite applications in solar energy conversion systems for performance enhancement: A review. Int J Low-Carbon Technol 12(1):1–23

    CAS  Google Scholar 

  105. Jana S, Salehi-Khojin A, Zhong W-H (2007) Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochim Acta 462(1-2):45–55

    CAS  Article  Google Scholar 

  106. Chamsa-ard W, Brundavanam S, Fung CC, Fawcett D, Poinern G (2017) Nanofluid types, their synthesis, properties and incorporation in direct solar thermal collectors: A review. Nanomaterials 7:6. article no. 131

    Article  CAS  Google Scholar 

  107. Akoh H, Tsukasaki Y, Yatsuya S, Tasaki A (1978) Magnetic properties of ferromagnetic ultrafine particles prepared by vacuum evaporation on running oil substrate. J Cryst Growth 45(no. C):495–500

    CAS  Article  Google Scholar 

  108. Wagener M, Murty BS. Günther B (1997) “Preparation of metal nanosuspensions by high-pressure dc-sputtering on running liquids,” in Proceedings of the 1996 MRS Fall Symposium, E. P. George, R. Gotthardt, K. Otsuka, S. Trolier-McKinstry, and M. Wun-Fogle, Eds., 149–154, Materials Research Society, Pittsburgh, PA, USA

  109. Eastman JA, Choi SU, Li S, Thompson LJ, Lee S (1997) “Enhanced thermal conductivity through the development of nanofluids,” in Proceedings of the 1996 MRS Fall Symposium, George EP, Gotthardt R, Otsuka K, Trolier-McKinstry S, and Wun-Fogle M, Eds., 457, 3–11, Materials Research Society, Pittsburgh, PA, USA

  110. Zhu H-T, Lin Y-S, Yin Y-S (2004) A novel one-step chemical method for preparation of copper nanofluids. J Colloid Interface Sci 277(1):100–103

    CAS  Article  Google Scholar 

  111. Tran PX, Soong Y (2007) Preparation of nanofluids using laser ablation in liquid technique, United States, Not published - presentation only

  112. Lo C-H, Tsung T-T, Chen L-C (2005) Shape-controlled synthesis of Cu-based nanofluid using submerged arc nanoparticle synthesis system (SANSS). J Cryst Growth 277(1–4):636–642

    CAS  Article  Google Scholar 

  113. Lo C-H, Tsung T-T, Chen L-C (2006) Ni nano-magnetic fluid prepared by submerged arc nano synthesis system (SANSS). JSME Int J Ser B Fluids Therm Eng 48(4):750–755

    Article  Google Scholar 

  114. Wang X, Xu X (1999) Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transf 13(4):474–480

    CAS  Article  Google Scholar 

  115. Lee S, Choi SU, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121(2):280–289

    CAS  Article  Google Scholar 

  116. Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2 water based nanofluids. Int J Therm Sci 44(4):367–373

    CAS  Article  Google Scholar 

  117. Yu Q, Kim YJ, Ma H (2008) Nanofluids with plasma treated diamond nanoparticles. Appl Phys Lett 92:10. Article ID 103111

    Google Scholar 

  118. Liu MS, Ching-Cheng Lin M, Huang IT, Wang CC (2005) Enhancement of thermal conductivity with carbon nanotube for nanofluids. Int Commun Heat Mass Transf 32(9):1202–1210

    CAS  Article  Google Scholar 

  119. Boncel S, Zniszczoł A, Pawlyta M, Labisz K, Dzido G (2017) Heat transfer nanofluid based on curly ultra-long multi-wall carbon nanotubes, Heat Mass Transf 333–339

  120. Arya A, Sarafraz MM, Shahmiri S, Madani SAH, Nikkhah V, Nakhjavani SM (2017) Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater, Heat Mass Transf, 1–13

  121. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78(6):718–720

    CAS  Article  Google Scholar 

  122. Bushehri MK, Mohebbi A, Rafsanjani HH (2016) Prediction of thermal conductivity and viscosity of nanofluids by molecular dynamics simulation. J Eng Thermophys 25(3):389–400

    Article  Google Scholar 

  123. Hong J, Kim D (2012) Effects of aggregation on the thermal conductivity of alumina/water nanofluids. Thermochim Acta 542:28–32

    CAS  Article  Google Scholar 

  124. Arthur O, Karim MA (2016) An investigation into the thermophysical and rheological properties of nanofluids for solar thermal applications. Renew Sustain Energy Rev 55:739–755

    CAS  Article  Google Scholar 

  125. Setia H, Gupta R, Wanchoo RK (2013) Stability of nanofluids. Mater Sci Forum 757:139–149

    Article  CAS  Google Scholar 

  126. Wu JM, Zhao J (2013) A review of nanofluid heat transfer and critical heat flux enhancement—research gap to engineering application. Prog Nucl Energy 66:13–24

    CAS  Article  Google Scholar 

  127. Ghadimi A, Saidur R, Metselaar HSC (2011) A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf 54(17-18):4051–4068

    CAS  Article  Google Scholar 

  128. Chang H, Jwo CS, Fan PS, Pai SH (2007) Process optimization and material properties for nanofluid manufacturing. Int J Adv Manuf Technol 34(3-4):300–306

    Article  Google Scholar 

  129. Wang X-J, Zhu D-S, Yang S (2009) Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids. Chem Phys Lett 470(1-3):107–111

    CAS  Article  Google Scholar 

  130. Wei X, Wang L (2010) Synthesis and thermal conductivity of microfluidic copper nanofluids. Particuology 8(3):262–271

    CAS  Article  Google Scholar 

  131. Wei X, Zhu H, Kong T, Wang L (2009) Synthesis and thermal conductivity of Cu2O nanofluids. Int J Heat Mass Transf 52(19-20):4371–4374

    CAS  Article  Google Scholar 

  132. Ilyas SU, Pendyala R, Marneni N (2014) Preparation, sedimentation, and agglomeration of nanofluids. Chem Eng Technol 37(12):2011–2021

    CAS  Article  Google Scholar 

  133. Xian-Ju W, Xin-Fang L (2009) Influence of pH on Nanofluids’ Viscosity and Thermal Conductivity. Chin Phys Lett 26(5):056601

    Article  Google Scholar 

  134. Chen L, Xie H, Li Y, Yu W (2008) Nanofluids containing carbon nanotubes treated by mechanochemical reaction. Thermochim Acta 477(1-2):21–24

    CAS  Article  Google Scholar 

  135. Mingzheng Z, Guodong X, Jian L, Lei C, Lijun Z (2012) Analysis of factors influencing thermal conductivity and viscosity in different kinds of surfactant solutions. Exp Therm Fluid Sci 36:22–29

    Article  CAS  Google Scholar 

  136. Timofeeva EV, Moravek MR, Singh D (2011) Improving the heat transfer efficiency of synthetic oil with silica nanoparticles. J Colloid Interface Sci 364(1):71–79

    CAS  Article  Google Scholar 

  137. Byrne MD, Hart RA, da Silva AK (2012) Experimental thermal-hydraulic evaluation of CuO nanofluids in microchannels at various concentrations with and without suspension enhancers. Int J Heat Mass Transf 55(9-10):2684–2691

    CAS  Article  Google Scholar 

  138. Kayhani MH, Soltanzadeh H, Heyhat MM, Nazari M, Kowsary F (2012) Experimental study of convective heat transfer and pressure drop of TiO2/water nanofluid. Int Commun Heat Mass Transf 39(3):456–462

    CAS  Article  Google Scholar 

  139. Han H, Zhang Y, Wang N et al. (2016) Functionalization mediates heat transport in graphene nanoflakes. Nat Commun 7:Article ID 11281

    Article  CAS  Google Scholar 

  140. Mahbubul IM, Elcioglu EB, Saidur R, Amalina MA (2017) Optimization of ultrasonication period for better dispersion and stability of TiO2–water nanofluid. Ultrason Sonochem 37:360–367

    CAS  Article  Google Scholar 

  141. Chung SJ, Leonard JP, Nettleship I et al. (2009) Characterization of ZnO nanoparticle suspension in water: effectiveness of ultrasonic dispersion. Powder Technol 194(1-2):75–80

    CAS  Article  Google Scholar 

  142. Petzold G, Rojas-Reyna R, Mende M, Schwarz S (2009) Application relevant characterization of aqueous silica nanodispersions. J Disper Sci Technol 30(8):1216–1222

    CAS  Article  Google Scholar 

  143. Kole M, Dey TK (2012) Effect of prolonged ultrasonication on the thermal conductivity of ZnO-ethylene glycol nanofluids. Thermochim Acta 535:58–65

    CAS  Article  Google Scholar 

  144. Peng X-F, Yu X-L, Xia L-F, Zhong X (2007) Influence factors on suspension stability of nanofluids. Zhejiang Daxue Xuebao (Gongxue Ban)/J Zhejiang Univ (Eng Sci) 41(4):577–580

    CAS  Google Scholar 

  145. Choudhary R, Khurana D, Kumar A, Subudhi S (2017) Stability analysis of Al2O3/water nanofluids, J Exp Nanosci, 1–12

  146. Azizian R, Doroodchi E, Moghtaderi B (2016) Influence of controlled aggregation on thermal conductivity of nanofluids. J Heat Transf 138(2):Article ID 021301

    Article  CAS  Google Scholar 

  147. Askari S, Koolivand H, Pourkhalil M, Lotfi R, Rashidi A (2017) Investigation of Fe3O4/Graphene nanohybrid heat transfer properties: Experimental approach. Int Commun Heat Mass Transf 87:30–39

    CAS  Article  Google Scholar 

  148. Mohammadi M, Dadvar M, Dabir B (2017) TiO2/SiO2 nanofluids as novel inhibitors for the stability of asphaltene particles in crude oil: Mechanistic understanding, screening, modeling, and optimization. J Mol Liq 238:326–340

    CAS  Article  Google Scholar 

  149. Leong KY, Najwa ZA, Ku Ahmad KZ, Ong HC (2017) Investigation on Stability and Optical Properties of Titanium Dioxide and Aluminum Oxide Water-Based Nanofluids. Int J Thermophys 38:5. article no. 77

    Article  CAS  Google Scholar 

  150. Kumar PCM, Muruganandam M (2017) Stability analysis of heat transfer MWCNT with different base fluids. J Appl Fluid Mech 10:51–59

    CAS  Google Scholar 

  151. Menbari A, Alemrajabi AA, Ghayeb Y (2016) Investigation on the stability, viscosity and extinction coefficient of CuO-Al2O3/Water binary mixture nanofluid. Exp Therm Fluid Sci 74:122–129

    CAS  Article  Google Scholar 

  152. Witharana S, Palabiyik I, Musina Z, Ding Y (2013) Stability of glycol nanofluids - The theory and experiment. Powder Technol 239:72–77

    CAS  Article  Google Scholar 

  153. Manjula S, Kumar SM, Raichur AM, Madhu GM, Suresh R, Raj MA (2005) A sedimentation study to optimize the dispersion of alumina nanoparticles in water. Cerâmica 51(318):121–127

    CAS  Article  Google Scholar 

  154. Zhu D, Li X, Wang N, Wang X, Gao J, Li H (2009) Dispersion behavior and thermal conductivity characteristics of Al2O3-H2O nanofluids. Curr Appl Phys 9(1):131–139

    Article  Google Scholar 

  155. Lee D, Kim J-W, Kim BG (2006) A new parameter to control heat transport in nanofluids: Surface charge state of the particle in suspension. J Phys Chem B 110(9):4323–4328

    CAS  Article  Google Scholar 

  156. Chang H, Chen X-Q, Jwo C-S, Chen S-L (2009) Electrostatic and sterical stabilization of CuO nanofluid prepared by vacuum arc spray nanofluid synthesis system (ASNSS). Mater Trans 50(8):2098–2103

    CAS  Article  Google Scholar 

  157. Song YY, Bhadeshia HKDH, Suh D-W (2015) Stability of stainless-steel nanoparticle and water mixtures. Powder Technol 272:34–44

    CAS  Article  Google Scholar 

  158. Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11(2):151–170

    CAS  Article  Google Scholar 

  159. Vajjha RS, Das DK, Mahagaonkar BM (2009) Density measurement of different nanofluids and their comparison with theory. Pet Sci Technol 27(6):612–624

    CAS  Article  Google Scholar 

  160. Behroyan I, Vanaki SM, Ganesan P, Saidur R (2016) A comprehensive comparison of various CFD models for convective heat transfer of Al2O3 nanofluid inside a heated tube. Int Commun Heat Mass Transf 70:27–37

    CAS  Article  Google Scholar 

  161. Vanaki SM, Mohammed HA (2015) Numerical study of nanofluid forced convection flow in channels using different shaped transverse ribs. Int Commun Heat Mass Transf 67:176–188

    CAS  Article  Google Scholar 

  162. Selimefendigil F, Öztop HF, Abu-Hamdeh N (2016) Mixed convection due to rotating cylinder in an internally heated and flexible walled cavity filled with SiO2-water nanofluids: Effect of nanoparticle shape. Int Commun Heat Mass Transf 71:9–19

    CAS  Article  Google Scholar 

  163. Yang Y-T, Tang H-W, Zeng B-Y, Wu C-H (2015) Numerical simulation and optimization of turbulent nanofluids in a three-dimensional rectangular rib-grooved channel. Int Commun Heat Mass Transf 66:71–79

    Article  Google Scholar 

  164. Sun B, Lei W, Yang D (2015) Flow and convective heat transfer characteristics of Fe2O3-water nanofluids inside copper tubes. Int Commun Heat Mass Transf 64:21–28

    CAS  Article  Google Scholar 

  165. Salman BH, Mohammed HA, Kherbeet AS (2014) Numerical and experimental investigation of heat transfer enhancement in a microtube using nanofluids. Int Commun Heat Mass Transf 59:88–100

    CAS  Article  Google Scholar 

  166. Meng X, Li Y (2015) Numerical study of natural convection in a horizontal cylinder filled with water-based alumina nanofluid. Nanoscale Res Lett 10:1

    Article  CAS  Google Scholar 

  167. Mohammadpourfard M, Aminfar H, Karimi M (2016) Numerical investigation of non-uniform transverse magnetic field effects on the swirling flow boiling of magnetic nanofluid in annuli. Int Commun Heat Mass Transf 75:240–252

    CAS  Article  Google Scholar 

  168. Akdag U, Akcay S, Demiral D (2014) Heat transfer enhancement with laminar pulsating nanofluid flow in a wavy channel. Int Commun Heat Mass Transf 59:17–23

    CAS  Article  Google Scholar 

  169. Yacob NA, Ishak A, Pop I, Vajravelu K (2011) Boundary layer flow past a stretching/shrinking surface beneath an external uniform shear flow with a convective surface boundary condition in a nanofluid. Nanoscale Res Lett 6(1):314–320

    Article  CAS  Google Scholar 

  170. Moraveji MK, Ardehali RM (2013) CFD modeling (comparing single and two-phase approaches) on thermal performance of Al2o3/water nanofluid in mini-channel heat sink. Int Commun Heat Mass Transf 44:157–164

    CAS  Article  Google Scholar 

  171. Xu H, Fan T, Pop I (2013) Analysis of mixed convection flow of a nanofluid in a vertical channel with the Buongiorno mathematical model. Int Commun Heat Mass Transf 44:15–22

    Article  CAS  Google Scholar 

  172. Parsazadeh M, Mohammed HA, Fathinia F (2013) Influence of nanofluid on turbulent forced convective flow in a channel with detached rib-arrays. Int Commun Heat Mass Transf 46:97–105

    CAS  Article  Google Scholar 

  173. Sheikholeslami M, Gorji-Bandpay M, Ganji DD (2012) Magnetic field effects on natural convection around a horizontal circular cylinder inside a square enclosure filled with nanofluid. Intnt Commun Heat Mass Transf 39(7):978–986

    CAS  Article  Google Scholar 

  174. Rashad AM, Rashidi MM, Lorenzini G, Ahmed SE, Aly AM (2017) Magnetic field and internal heat generation effects on the free convection in a rectangular cavity filled with a porous medium saturated with Cu–water nanofluid. Int Commun Heat Mass Transf 104:878–889

    CAS  Article  Google Scholar 

  175. Leong KY, Saidur R, Khairulmaini M, Michael Z, Kamyar A (2012) Heat transfer and entropy analysis of three different types of heat exchangers operated with nanofluids. Int Commun Heat Mass Transf 39(6):838–843

    CAS  Article  Google Scholar 

  176. Shahi M, Mahmoudi AH, Talebi F (2010) Numerical simulation of steady natural convection heat transfer in a 3-dimensional single-ended tube subjected to a nanofluid. Int Commun Heat Mass Transf 37(10):1535–1545

    CAS  Article  Google Scholar 

  177. Ghaffari O, Behzadmehr A, Ajam H (2010) Turbulent mixed convection of a nanofluid in a horizontal curved tube using a two-phase approach. Int Commun Heat Mass Transf 37(10):1551–1558

    CAS  Article  Google Scholar 

  178. Manca O, Mesolella P, Nardini S, Ricci D (2011) Numerical study of a confined slot impinging jet with nanofluids. Nanoscale Res Lett 6(1):X1–X16

    Article  CAS  Google Scholar 

  179. Rostamani M, Hosseinizadeh SF, Gorji M, Khodadadi JM (2010) Numerical study of turbulent forced convection flow of nanofluids in a long horizontal duct considering variable properties. Int Commun Heat Mass Transf 37(10):1426–1431

    CAS  Article  Google Scholar 

  180. Öǧüt EB (2009) Natural convection of water-based nanofluids in an inclined enclosure with a heat source. Int J Therm Sci 48(11):2063–2073

    Article  CAS  Google Scholar 

  181. Kumar S, Prasad SK, Banerjee J (2010) Analysis of flow and thermal field in nanofluid using a single phase thermal dispersion model. Appl Math Model Simul Comput Eng Environ Syst 34(3):573–592

    Google Scholar 

  182. Alloui Z, Guiet J, Vasseur P, Reggio M (2012) Natural convection of nanofluids in a shallow rectangular enclosure heated from the side. Can J Chem Eng 90(1):69–78

    CAS  Article  Google Scholar 

  183. Ryzhkov II, Minakov AV (2014) The effect of nanoparticle diffusion and thermophoresis on convective heat transfer of nanofluid in a circular tube. Int Commun Heat Mass Transf 77:956–969

    CAS  Article  Google Scholar 

  184. Minea AA (2014) Uncertainties in modeling thermal conductivity of laminar forced convection heat transfer with water alumina nanofluids. Int Commun Heat Mass Transf 68:78–84

    CAS  Article  Google Scholar 

  185. Sadeghi O, Mohammed HA, Bakhtiari-Nejad M, Wahid MA (2016) Heat transfer and nanofluid flow characteristics through a circular tube fitted with helical tape inserts. Int Commun Heat Mass Transf 71:234–244

    CAS  Article  Google Scholar 

  186. Azimi SS, Kalbasi M (2014) Numerical study of dynamic thermal conductivity of nanofluid in the forced convective heat transfer. Appl Math Model Simul Comput Eng Environ Syst 38(4):1373–1384

    Google Scholar 

  187. Inakov AV, Lobasov AS, Guzei DV, Pryazhnikov MI, Rudyak VY (2015) The experimental and theoretical study of laminar forced convection of nanofluids in the round channel. Appl Therm Eng 88:140–148

    Article  CAS  Google Scholar 

  188. Togun H, Abu-Mulaweh HI, Kazi SN, Badarudin A (2016) Numerical simulation of heat transfer and separation Al2O3/nanofluid flow in concentric annular pipe. Int Commun Heat Mass Transf 71:108–117

    CAS  Article  Google Scholar 

  189. Cianfrini C, Corcione M, Habib E, Quintino A (2014) Buoyancy-induced convection in Al2O3/water nanofluids from an enclosed heater. Eur J Mech B/Fluids 48:123–134

    Article  Google Scholar 

  190. Hemmat Esfe M, Saedodin S, Mahmoodi M (2014) Experimental studies on the convective heat transfer performance and thermophysical properties of MgO-water nanofluid under turbulent flow. Exp Therm Fluid Sci 52:68–78

    CAS  Article  Google Scholar 

  191. Ghodsinezhad H, Sharifpur M, Meyer JP (2016) Experimental investigation on cavity flow natural convection of Al2O3–water nanofluids. Int Commun Heat Mass Transf 76:316–324

    CAS  Article  Google Scholar 

  192. Chen W-C, Cheng W-T (2016) Numerical simulation on forced convective heat transfer of titanium dioxide/water nanofluid in the cooling stave of blast furnace. Int Commun Heat Mass Transf 71:208–215

    CAS  Article  Google Scholar 

  193. Maddah H, Alizadeh M, Ghasemi N, Rafidah Wan Alwi S (2014) Experimental study of Al2O3/water nanofluid turbulent heat transfer enhancement in the horizontal double pipes fitted with modified twisted tapes. Int Commun Heat Mass Transf 78:1042–1054

    CAS  Article  Google Scholar 

  194. Abed AM, Alghoul MA, Sopian K, Mohammed HA, Majdi HS, Al-Shamani AN (2015) Design characteristics of corrugated trapezoidal plate heat exchangers using nanofluids. Chem Eng Process Process Intensif 87:88–103

    CAS  Article  Google Scholar 

  195. Huminic G, Huminic A (2016) Heat transfer and entropy generation analyses of nanofluids in helically coiled tube-in-tube heat exchangers. Int Commun Heat Mass Transf 71:118–125

    CAS  Article  Google Scholar 

  196. Al-Shamani AN, Sopian K, Mohammed HA, Mat S, Ruslan MH, Abed AM (2015) Enhancement heat transfer characteristics in the channel with Trapezoidal rib-groove using nanofluids. Case Stud Therm Eng 5:48–58. article 61

    Article  Google Scholar 

  197. Sommers AD, Yerkes KL (2010) Experimental investigation into the convective heat transfer and system-level effects of Al2O3-propanol nanofluid. J Nanopart Res 12(3):1003–1014

    CAS  Article  Google Scholar 

  198. Angayarkanni SA, Philip J (2014) Effect of nanoparticles aggregation on thermal and electrical conductivities of nanofluids. J Nanofluids 3(1):17–25

    CAS  Article  Google Scholar 

  199. Ilyas SU, Pendyala R, Marneni N (2016) “Stability and Agglomeration of Alumina Nanoparticles in Ethanol-Water Mixtures,” in Proceedings of the 4th International Conference on Process Engineering and Advanced Materials, ICPEAM 2016, Bustam MA, Keong LK, Man Z, Hassankiadeh AA, and Fong YY, Eds., 290–297, August 2016

  200. Lemes MA, Rabelo D, De Oliveira AE (2017) A novel method to evaluate nanofluid stability using multivariate image analysis. Anal Methods 9(39):5826–5833

    CAS  Article  Google Scholar 

  201. Singh AK, Raykar VS (2008) Microwave synthesis of silver nanofluids with polyvinylpyrrolidone (PVP) and their transport properties. Colloid Polym Sci 286(14-15):1667–1673

    CAS  Article  Google Scholar 

  202. Li D, Kaner RB (2005) Processable stabilizer-free polyaniline nanofiber aqueous colloids. Chem Commun 26:3286–3288

    Article  CAS  Google Scholar 

  203. Mehrali M, Sadeghinezhad E, Rosen MA et al. (2015) Heat transfer and entropy generation for laminar forced convection flow of graphene nanoplatelets nanofluids in a horizontal tube. Int Commun Heat Mass Transf 66:23–31

    CAS  Article  Google Scholar 

  204. Souza DG, Bellaver B, Raupp GS, Souza DO, Quincozes-Santos A (2015) Astrocytes from adult Wistar rats aged in vitro show changes in glial functions. Neurochem Int 90:93–97

    CAS  Article  Google Scholar 

  205. Martínez VA, Vasco DA, García–Herrera CM (2018) Transient measurement of the thermal conductivity as a tool for the evaluation of the stability of nanofluids subjected to a pressure treatment. Int Commun Heat Mass Transf 91:234–238

    Article  CAS  Google Scholar 

  206. Karthikeyan NR, Philip J, Raj B (2008) Effect of clustering on the thermal conductivity of nanofluids. Mater Chem Phys 109(1):50–55

    CAS  Article  Google Scholar 

  207. Das PK, Islam N, Santra AK, Ganguly R (2017) Experimental investigation of thermophysical properties of Al2O3–water nanofluid: Role of surfactants. J Mol Liq 237:304–312

    CAS  Article  Google Scholar 

  208. Kim H-S, Yilmaz F, Dharmaiah P, Lee D-J, Lee T-H, Hong S-J (2017) Characterization of Cu and Ni Nano-Fluids Synthesized by Pulsed Wire Evaporation Method. Arch Metall Mater 62(2):999–1004

    CAS  Article  Google Scholar 

  209. Rubalya Valantina S, Arockia Jayalatha K, Phebee Angeline D, Uma S, Ashvanth B (2018) Synthesis and characterisation of electro-rheological property of novel eco-friendly rice bran oil and nanofluid. J Mol Liq 256:256–266

    CAS  Article  Google Scholar 

  210. Wu D, Zhu H, Wang L, Liu L (2009) Critical issues in nanofluids preparation, characterization and thermal conductivity. Curr Mol Pharmacol 5(1):103–112

    CAS  Google Scholar 

  211. Tiara AM, Chakraborty S, Sarkar I, Ashok A, Pal SK, Chakraborty S (2017) Heat transfer enhancement using surfactant based alumina nanofluid jet from a hot steel plate. Exp Therm Fluid Sci 89:295–303

    CAS  Article  Google Scholar 

  212. Ho CJ, Liu WK, Chang YS, Lin CC (2010) Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study. Int J Therm Sci 49(8):1345–1353

    CAS  Article  Google Scholar 

  213. Devendiran DK, Amirtham VA (2016) A review on preparation, characterization, properties and applications of nanofluids. Renew Sustain Energy Rev 60:21–40

    CAS  Article  Google Scholar 

  214. Sharifpur M, Yousefi S, Meyer JP (2016) A new model for density of nanofluids including nanolayer. Int Commun Heat Mass Transf 78:168–174

    CAS  Article  Google Scholar 

  215. Xuan Y, Roetzel W (2000) Conceptions for heat transfer correlation of nanofluids. Int Commun Heat Mass Transf 43(19):3701–3707

    CAS  Article  Google Scholar 

  216. Zhou S-Q, Ni R (2008) Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Appl Phys Lett 92:9. Article ID 093123

    Google Scholar 

  217. Teng TP, Hung YH (2014) Estimation and experimental study of the density and specific heat for alumina nanofluid. J Exp Nanosci 9(7):707–718

    CAS  Article  Google Scholar 

  218. Kulkarni DP, Vajjha RS, Das DK, Oliva D (2008) Application of aluminum oxide nanofluids in diesel electric generator as jacket water coolant. Appl Therm Eng 28(14-15):1774–1781

    CAS  Article  Google Scholar 

  219. Sekhar YR, Sharma KV (2015) Study of viscosity and specific heat capacity characteristics of water-based Al2O3nanofluids at low particle concentrations. J Exp Nanosci 10(2):86–102. View at: Publisher Site | Google Scholar

    CAS  Article  Google Scholar 

  220. Ghazvini M, Akhavan-Behabadi MA, Rasouli E, Raisee M (2012) Heat transfer properties of nanodiamond-engine oil nanofluid in laminar flow. Heat Transf Eng 33(6):525–532. View at: Publisher Site | Google Scholar

    CAS  Article  Google Scholar 

  221. Vajjha RS, Das DK (2012) A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties, heat transfer and pumping power. Int J Heat Mass Transfe 55(15-16):4063–4078

    CAS  Article  Google Scholar 

  222. Zhou L-P, Wang B-X, Peng X-F, Du X-Z, Yang Y-P (2010) On the specific heat capacity of CuO nanofluid. Adv Mech Eng 2:Article ID 172085

    Article  CAS  Google Scholar 

  223. Shin D, Banerjee D (2011) Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications. Int Commun Heat Mass Transf 54(5-6):1064–1070

    CAS  Article  Google Scholar 

  224. Shin D, Banerjee D (2014) Specific heat of nanofluids synthesized by dispersing alumina nanoparticles in alkali salt eutectic. Int Commun Heat Mass Transf 74:210–214

    CAS  Article  Google Scholar 

  225. Fakoor Pakdaman M, Akhavan-Behabadi MA, Razi P (2012) An experimental investigation on thermo-physical properties and overall performance of MWCNT/heat transfer oil nanofluid flow inside vertical helically coiled tubes. Exp Ther Fluid Sci 40:103–111

    CAS  Article  Google Scholar 

  226. Volz S, Ordonez-Miranda J, Shchepetov A et al. (2016) Nanophononics: State of the art and perspectives. Eur Phys J B 89:1. article no. 15

    CAS  Article  Google Scholar 

  227. Han H, Feng L, Xiong S et al. (2016) Effects of phonon interference through long range interatomic bonds on thermal interface conductance. Low Temp Phys 42(8):711–716

    CAS  Article  Google Scholar 

  228. Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2001) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int Commun Heat Mass Transf 45(4):855–863

    Article  Google Scholar 

  229. Koo J, Kleinstreuer C (2005) Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids. Int Commun Heat Mass Transf 32(9):1111–1118

    CAS  Article  Google Scholar 

  230. Buongiorno J (2006) Convective transport in nanofluids. J Heat Transf 128(3):240–250

    Article  Google Scholar 

  231. Nan C-W, Birringer R, Clarke DR, Gleiter H (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81(10):6692–6699

    CAS  Article  Google Scholar 

  232. Bruggeman DAG (1935) Dielectric constant and conductivity of mixtures of isotropic materials. Annalen der Physik 24:636–679

    CAS  Article  Google Scholar 

  233. Kumar DH, Patel HE, Kumar VRR, Sundararajan T, Pradeep T, Das SK (2004) Model for heat conduction in nanofluids. Phys Rev Lett 93(14):1–144301

    Article  CAS  Google Scholar 

  234. Leong KC, Yang C, Murshed SMS (2006) A model for the thermal conductivity of nanofluids - The effect of interfacial layer. J Nanopart Res 8(2):245–254

    CAS  Article  Google Scholar 

  235. Xie H, Fujii M, Zhang X (2005) Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int J Heat Mass Transf 48(14):2926–2932

    CAS  Article  Google Scholar 

  236. Yamada E, Ota T (1980) Effective thermal conductivity of dispersed materials. Wärme- und Stoffübertragung 13(1-2):27–37

    CAS  Article  Google Scholar 

  237. Hasselman DPH, Johnson LF (1987) Effective thermal conductivity of composites with interfacial thermal barrier resistance. J Composite Mater 21(6):508–515

    Article  Google Scholar 

  238. Wang B-X, Zhou L-P, Peng X-F (2003) A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int Commun Heat Mass Transf 46(14):2665–2672

    CAS  Article  Google Scholar 

  239. Davis RH (1986) The effective thermal conductivity of a composite material with spherical inclusions. Int J Thermophys 7(3):609–620

    CAS  Article  Google Scholar 

  240. Xu J, Yu B, Zou M, Xu P (2006) A new model for heat conduction of nanofluids based on fractal distributions of nanoparticles. J Phys D: Appl Phys 39(20):4486–4490. article no. 028

    CAS  Article  Google Scholar 

  241. Evans W, Fish J, Keblinski P (2006) Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl Phys Lett 88:9. Article ID 093116

    Google Scholar 

  242. Vladkov M, Barrat J-L (2006) Modeling transient absorption and thermal conductivity in a simple nanofluid. Nano Lett 6(6):1224–1229

    CAS  Article  Google Scholar 

  243. Shima PD, Philip J, Raj B (2009) Role of microconvection induced by Brownian motion of nanoparticles in the enhanced thermal conductivity of stable nanofluids. Appl Phys Lett 94:22. Article ID 223101

    Google Scholar 

  244. Murshed SMS, Leong KC, Yang C (2009) A combined model for the effective thermal conductivity of nanofluids. Appl Therm Eng 29(11-12):2477–2483

    CAS  Article  Google Scholar 

  245. Chon CH, Kihm KD, Lee SP, Choi SUS (2005) Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett 87:1–3. Article ID 153107

    Article  CAS  Google Scholar 

  246. Patel HE, Sundararajan T, Pradeep T, Dasgupta A, Dasgupta N, Das SK (2005) A micro-convection model for thermal conductivity of nanofluids. Pramana—J Phys 65(5):863–869

    CAS  Article  Google Scholar 

  247. Maïga SEB, Nguyen CT, Galanis N, Roy G (2004) Heat transfer behaviours of nanofluids in a uniformly heated tube. Superlattices and Microstructures 35(3–6):543–557

    Article  CAS  Google Scholar 

  248. Timofeeva EV, Gavrilov AN, McCloskey JM et al. (2007) Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory. Phys Rev E: Stat Nonlinear Soft Matter Phys 76:6. Article ID 061203

    Article  CAS  Google Scholar 

  249. Azmi WH, Sharma KV, Mamat R, Alias ABS, Izwan Misnon I (2012) “Correlations for thermal conductivity and viscosity of water based nanofluids. IOP Conf Ser Mater Sci Eng 36:1

    Google Scholar 

  250. Li CH, Peterson GP (2006) Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J Appl Phys 99:8. Article ID 084314

    Google Scholar 

  251. Corcione M (2011) Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manag 52(1):789–793

    CAS  Article  Google Scholar 

  252. Xie H, Wang J, Xi T, Liu Y (2002) Thermal conductivity of suspensions containing nanosized SiC particles. Int J Thermophys 23(2):571–580

    CAS  Article  Google Scholar 

  253. Assael MJ, Metaxa IN, Arvanitidis J, Christofilos D, Lioutas C (2005) Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the presence of two different dispersants. Int J Thermophys 26(3):647–664

    CAS  Article  Google Scholar 

  254. Teng T-P, Hung Y-H, Teng T-C, Mo H-E, Hsu H-G (2010) The effect of alumina/water nanofluid particle size on thermal conductivity. Appl Therm Eng 30(14-15):2213–2218

    CAS  Article  Google Scholar 

  255. Choi TY, Maneshian MH, Kang B, Chang WS, Han CS, Poulikakos D (2009) Measurement of the thermal conductivity of a water-based single-wall carbon nanotube colloidal suspension with a modified 3- ω method. Nanotechnology 20:31. Article ID 315706

    Google Scholar 

  256. Paul G, Chopkar M, Manna I, Das PK (2010) Techniques for measuring the thermal conductivity of nanofluids: a review. Renew Sustain Energy Rev 14(7):1913–1924

    CAS  Article  Google Scholar 

  257. Czarnetzki W, Roetzel W (1995) Temperature oscillation techniques for simultaneous measurement of thermal diffusivity and conductivity. Int J Thermophys 16(2):413–422

    CAS  Article  Google Scholar 

  258. Jiang W, Ding G, Peng H (2009) Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants. Int J Therm Sci 48(6):1108–1115

    CAS  Article  Google Scholar 

  259. Murshed SMS, Leong KC, Yang C, “Thermal conductivity of nanoparticle suspensions (nanofluids),” in Proceedings of the 2006 IEEE Conference on Emerging Technologies - Nanoelectronics, pp. 155–158, Singapore, Singapore, January 2006.

  260. Ju YS, Kim J, Hung M-T (2008) Experimental study of heat conduction in aqueous suspensions of aluminum oxide nanoparticles. J Heat Transf 130:9. Article ID 092403

    Google Scholar 

  261. Behnajady MA, Eskandarloo H, Modirshahla N, Shokri M (2011) Investigation of the effect of sol-gel synthesis variables on structural and photocatalytic properties of TiO2 nanoparticles. Desalination 278:10–17

    CAS  Article  Google Scholar 

  262. Warzoha RJ, Fleischer AS (2014) Determining the thermal conductivity of liquids using the transient hot disk method. Part I: Establishing transient thermal-fluid constraints. Int J Heat Mass Transf 71:779–789

    Article  Google Scholar 

  263. Agresti F, Barison S, Battiston S et al. (2013) “Influence of molecular weight of PVP on aggregation and thermal diffusivity of silver-based nanofluids,” in Nanotechnology 2013: Electronics, Devices, Fabrication, MEMS, Fluidics and Computational - 2013 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2013:366–369

  264. Agresti F, Ferrario A, Boldrini S et al. (2015) Temperature controlled photoacoustic device for thermal diffusivity measurements of liquids and nanofluids. Thermochim Acta 619:48–52

    CAS  Article  Google Scholar 

  265. Astrath NGC, Medina AN, Bento AC et al. (2008) Time resolved thermal lens measurements of the thermo-optical properties of Nd2O3-doped low silica calcium aluminosilicate glasses down to 4.3 K. J Non-Crystalline Solids 354(2-9):574–579

    CAS  Article  Google Scholar 

  266. Jiménez Pérez JL, Gutierrez Fuentes R, Sanchez Ramirez JF, Cruz-Orea A (2008) Study of gold nanoparticles effect on thermal diffusivity of nanofluids based on various solvents by using thermal lens spectroscopy. Eur Phys J Spec Top 153(1):159–161

    Article  Google Scholar 

  267. Rodriguez LG, Iza P, Paz JL (2016) Study of dependence between thermal diffusivity and sample concentration measured by means of frequency-resolved thermal lens experiment. J Nonlinear Optical Phys Mater 25:02. Article ID 1650022

    Article  CAS  Google Scholar 

  268. Joseph SA, Hari M, Mathew S et al. (2010) Thermal diffusivity of rhodamine 6G incorporated in silver nanofluid measured using mode-matched thermal lens technique. Opt Commun 283(2):313–317

    CAS  Article  Google Scholar 

  269. Baesso ML, Pereira JRD, Bento AC, Palangana AJ, Mansanares AM, Evangelista LR (1998) Thermal lens spectrometry to study complex fluids. Braz J Phys 28(4):359–368

    CAS  Article  Google Scholar 

  270. Murshed SMS, Leong KC, Yang C (2006) Determination of the effective thermal diffusivity of nanofluids by the double hot-wire technique. J Phys D: Appl Phys 39(24):5316–5322

    CAS  Article  Google Scholar 

  271. Zhang X, Gu H, Fujii M (2007) Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp Therm Fluid Sci 31(6):593–599

    CAS  Article  Google Scholar 

  272. Einstein A (1956) Investigation on the Theory of the Brownian Movement, Dover, New York, NY, USA

  273. Einstein A (1906) Eine neue Bestimmung der Moleküldimensionen. Ann der Phys 324(2):289–306

    Article  Google Scholar 

  274. Rudyak VY, Minakov AV (2018) Thermophysical properties of nanofluids. Eur Phys J E 41:1

    CAS  Article  Google Scholar 

  275. Ilyas SU, Pendyala R, Shuib AS, Marneni N (2014) A review on the viscous and thermal transport properties of nanofluids. Adv Mater Res 917:18–27

    Article  CAS  Google Scholar 

  276. Hemmati-Sarapardeh A, Varamesh A, Husein MM, Karan K (2018) On the evaluation of the viscosity of nanofluid systems: Modeling and data assessment. Renew Sustain Energy Rev 81:313–329

    CAS  Article  Google Scholar 

  277. Rudyak VY, Belkin AA, Egorov VV (2009) On the effective viscosity of nanosuspensions. Tech Phys 54(8):1102–1109

    CAS  Article  Google Scholar 

  278. Namburu PK, Kulkarni DP, Dandekar A, Das DK (2007) Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids. IET Micro Nano Lett 2(3):67–71

    CAS  Article  Google Scholar 

  279. Vasiliev LL, Grakovich LP, Rabetskii MI, Vasiliev Jr (2013) Heat transfer enhancement in heat pipes and thermosyphons using nanotechnologies (nanofluids, nanocoatings, and nanocomposites) as an hp envelope. Heat Pipe Sci Technol Int J 4(4):251–275

    Article  Google Scholar 

  280. Ali HM, Babar H, Shah TR, Sajid MU, Qasim MA, Javed S (2018) Preparation Techniques of TiO2 Nanofluids and Challenges: a review. Appl Sci 8:587. https://doi.org/10.3390/app8040587

    CAS  Article  Google Scholar 

  281. Zhang YX, Li GH, Jin YX, Zhang Y, Zhang J, Zhang LD (2002) Hydrothermal synthesis and photoluminescence of TiO2 nanowires. Chem Phys Lett 365:300–304

    CAS  Article  Google Scholar 

  282. Attar AS, Ghamsari MS, Hajiesmaeilbaigi F, Mirdamadi S, Katagiri K, Koumoto K (2009) Sol-gel template synthesis and characterization of aligned anatase-TiO2 nanorod arrays with different diameter. Mater Chem Phys 113(2-3):856–860

    CAS  Article  Google Scholar 

  283. Wu JJ, Yu CC (2004) Aligned TiO2 nanorods and nanowalls. J Phys Chem B 108(11):3377–3379

    CAS  Article  Google Scholar 

  284. Feng XJ, Zhai J, Jiang L (2005) The fabrication and switchable superhydrophobicity of TiO2 nanorod films. Angew Chem Int Ed 44(32):5115–5118

    CAS  Article  Google Scholar 

  285. Hamilton RL, Crosser OK (1962) Termal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundamentals 1(3):187–191

    CAS  Article  Google Scholar 

  286. Wasp EJ, Kenny JP, Gandhi RL. (1977) Solid–liquid flow: slurry pipeline transportation, pumps, valves, mechanical equipment, economics

  287. Yu W, Choi SUS (2003) Te role of interfacial layers in the enhanced thermal conductivity of nanofuids: A renovated Maxwell model. J Nanopart Res 5(1-2):167–171

    CAS  Article  Google Scholar 

  288. Xuan Y, Li Q, Hu W (2003) Aggregation structure and thermal conductivity of nanofuids. AIChE J 49(4):1038–1043

    CAS  Article  Google Scholar 

  289. Einstein A (1906) Eine neue Bestimmung der Moleküldimensionen. Ann der Phys 324(2):289–306

    Article  Google Scholar 

  290. Brinkman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20(4):571

    CAS  Article  Google Scholar 

  291. Batchelor GK (1977) The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 83(1):97–117

    Article  Google Scholar 

  292. Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11(2):151–170

    CAS  Article  Google Scholar 

  293. Utomo AT, Poth H, Robbins PT, Pacek AW (2012) Experimental and theoretical studies of thermal conductivity, viscosity and heat transfer coefficient of titania and alumina nanofluids. Int J Heat Mass Transf 55(25-26):7772–7781

    CAS  Article  Google Scholar 

  294. Eggers JR, Kabelac S (2016) Nanofluids revisited. Appl Therm Eng 106:1114–1126

    CAS  Article  Google Scholar 

  295. Rui NI et al. (2011) An experimental investigation of turbulent thermal convection in water-based alumina nanofluid. Phys Fluids 23:022005. https://doi.org/10.1063/1.3553281

    CAS  Article  Google Scholar 

  296. Lai W, Wong W (2021) Property-tuneable microgels fabricated by using flow-focusing microfluidic geometry for bioactive agent delivery. Pharmaceutics 13(6):787. https://doi.org/10.3390/pharmaceutics13060787

    CAS  Article  Google Scholar 

  297. Xie J, Hao W, Wang F (2022) Parametric study on interfacial crack propagation in solid oxide fuel cell based on electrode material. Int J Hydrogen Energy 47(12):7975–7989. https://doi.org/10.1016/j.ijhydene.2021.12.153

    CAS  Article  Google Scholar 

  298. Salimi M, Pirouzfar V, Kianfar E (2017) Enhanced gas transport properties in silica nanoparticle filler-polystyrene nanocomposite membranes. Colloid Polym Sci 295:215–226. https://doi.org/10.1007/s00396-016-3998-0

    CAS  Article  Google Scholar 

  299. Kianfar E (2018) Synthesis and characterization of AlPO4/ZSM-5 catalyst for methanol conversion to dimethyl ether. Russ J Appl Chem 91:1711–1720. https://doi.org/10.1134/S1070427218100208

    CAS  Article  Google Scholar 

  300. Kianfar E (2019) Ethylene to propylene conversion over Ni-W/ZSM-5 catalyst. Russ J Appl Chem 92:1094–1101. https://doi.org/10.1134/S1070427219080068

    CAS  Article  Google Scholar 

  301. Kianfar E, Salimi M, Kianfar F, kianfar M, Razavikia SAH (2019) CO2/N2 separation using polyvinyl chloride iso-phthalic acid/aluminium nitrate nanocomposite membrane. Macromol. Res. 27:83–89. https://doi.org/10.1007/s13233-019-7009-4

    CAS  Article  Google Scholar 

  302. Kianfar E (2019) Ethylene to propylene over Zeolite ZSM-5: improved catalyst performance by treatment with CuO. Russ J Appl Chem 92:933–939. https://doi.org/10.1134/S1070427219070085

    CAS  Article  Google Scholar 

  303. Kianfar E, Shirshahi M, Kianfar F, Kianfar F (2018) Simultaneous prediction of the density, viscosity and electrical conductivity of pyridinium-based hydrophobic ionic liquids using artificial neural network. Silicon 10:2617–2625. https://doi.org/10.1007/s12633-018-9798-z

    CAS  Article  Google Scholar 

  304. Salimi M, Pirouzfar V, Kianfar E (2017) Novel nanocomposite membranes prepared with PVC/ABS and silica nanoparticles for C2H6/CH4 separation. Polym Sci Ser A 59:566–574. https://doi.org/10.1134/S0965545X17040071

    CAS  Article  Google Scholar 

  305. Kianfar F, Kianfar E (2019) Synthesis of isophthalic acid/aluminum nitrate thin film nanocomposite membrane for hard water softening. J Inorg Organomet Polym 29:2176–2185. https://doi.org/10.1007/s10904-019-01177-1

    CAS  Article  Google Scholar 

  306. Kianfar E, Azimikia R, Faghih SM (2020) Simple and strong dative attachment of α-diimine nickel (ii) catalysts on supports for ethylene polymerization with controlled morphology. Catal Lett 150:2322–2330. https://doi.org/10.1007/s10562-020-03116-z

    CAS  Article  Google Scholar 

  307. Kianfar E (2019) Nanozeolites: synthesized, properties, applications. J Sol-Gel Sci Technol 91:415–429. https://doi.org/10.1007/s10971-019-05012-4

    CAS  Article  Google Scholar 

  308. Liu H, Kianfar E (2021) Investigation the synthesis of Nano-SAPO-34 catalyst prepared by different templates for MTO process. Catal Lett 151:787–802. https://doi.org/10.1007/s10562-020-03333-6

    CAS  Article  Google Scholar 

  309. Kianfar E, Salimi M, Hajimirzaee S, Koohestani B (2018) Methanol to gasoline conversion over CuO/ZSM-5 catalyst synthesized using sonochemistry method. Int J Chem Reactor Eng 17

  310. Kianfar E, Salimi M, Pirouzfar V, Koohestani B (2018) Synthesis of modified catalyst and stabilization of CuO/NH4-ZSM-5 for conversion of methanol to gasoline. Int J Appl Ceram Technol 15:734–741. https://doi.org/10.1111/ijac.12830

    CAS  Article  Google Scholar 

  311. Kianfar E, Salimi M, Pirouzfar V, Koohestani B (2018) Synthesis and Modification of Zeolite ZSM-5 Catalyst with Solutions of Calcium Carbonate (CaCO3) and Sodium Carbonate (Na2CO3) for Methanol to Gasoline Conversion. Int J Chem Reactor Eng 16(7):20170229. https://doi.org/10.1515/ijcre-2017-0229

    CAS  Article  Google Scholar 

  312. kianfar E (2019) Comparison and assessment of Zeolite Catalysts performance Dimethyl ether and light olefins production through methanol: A review. Rev Inorganic Chem 39:157–177

    CAS  Article  Google Scholar 

  313. Kianfar E, Salimi M (2020) A review on the production of light olefins from hydrocarbons cracking and methanol conversion: In book: Advances in Chemistry Research, Volume 59: Edition: James C. Taylor Chapter: 1: Publisher: Nova Science Publishers, Inc., NY, USA

  314. Kianfar E, Razavi A (2020) Zeolite catalyst based selective for the process MTG: A review: In book: Zeolites: Advances in Research and Applications, Edition: Annett Mahler Chapter: 8: Publisher: Nova Science Publishers, Inc., NY, USA

  315. Kianfar E (2020) Zeolites: properties, applications, modification and selectivity: In book: Zeolites: Advances in Research and Applications, Edition: Annett Mahler Chapter: 1: Publisher: Nova Science Publishers, Inc., NY, USA

  316. Kianfar E, Hajimirzaee S, Musavian SS, Mehr AS Zeolite-based Catalysts for Methanol to Gasoline process: a review. Microchem J 104822 (2020)

  317. Kianfar E, Baghernejad M, Rahimdashti Y (2015) Study synthesis of vanadium oxide nanotubes with two template hexadecylamin and hexylamine. Biol Forum. 7:1671–1685

    Google Scholar 

  318. Kianfar E. Synthesizing of vanadium oxide nanotubes using hydrothermal and ultrasonic method. Publisher: Lambert Academic Publishing. 1-80(2020). ISBN: 978-613-9-81541-8.

  319. Kianfar E, Pirouzfar V, Sakhaeinia H (2017) An experimental study on absorption/stripping CO2 using Mono-ethanol amine hollow fiber membrane contactor. J Taiwan Inst Chem Eng 80:954–962

    CAS  Article  Google Scholar 

  320. Kianfar E, Viet C (2021) Polymeric membranes on base of PolyMethyl methacrylate for air separation: a review. J Mater Res Technol ume 10:1437–1461

    Article  CAS  Google Scholar 

  321. Nmousavian SS, Faravar P, Zarei Z, Zimikia R, Monjezi MG, Kianfar E (2020) Modeling and simulation absorption of CO2 using hollow fiber membranes (HFM) with mono-ethanol amine with computational fluid dynamics. J Environ Chem Eng 8(4):103946

    Article  CAS  Google Scholar 

  322. Yang Z, Zhang L, Zhou Y, Wang H, Wen L, Kianfar E (2020) Investigation of effective parameters on SAPO-34 Nano catalyst the methanol-to-olefin conversion process: A review. Rev Inorganic Chem 40(3):91–105. https://doi.org/10.1515/revic-2020-0003

    CAS  Article  Google Scholar 

  323. Gao C, Liao J, Lu J, Ma J, Kianfar E (2020) The effect of nanoparticles on gas permeability with polyimide membranes and network hybrid membranes: a review, Reviews in Inorganic Chemistry. https://doi.org/10.1515/revic-2020-0007.

  324. Kianfar E, Salimi M, Koohestani B (2020) Zeolite CATALYST: a review on the production of light Olefins. Publisher: Lambert Academic Publishing. 1–116. ISBN:978-620-3-04259-7.

  325. Kianfar E (2020) Investigation on catalysts of “Methanol to light Olefins”. Publisher: Lambert Academic Publishing. 1–168. ISBN: 978-620-3-19402-9.

  326. Kianfar E (2020) Application of nanotechnology in enhanced recovery oil and gas importance & applications of nanotechnology, MedDocs Publishers.5, Chapter 3, 16–21

  327. Kianfar E (2020) Catalytic properties of nanomaterials and factors affecting it importance & applications of nanotechnology, MedDocs Publishers.5, Chapter 4, 22–25

  328. Kianfar E (2020) Introducing the application of nanotechnology in Lithium-Ion battery importance & applications of nanotechnology, MedDocs Publishers. 4, Chapter 4, pp. 1–7

  329. Kianfar E, Mazaheri H (2020) Synthesis of nanocomposite (CAU-10-H) thin-film nanocomposite (TFN) membrane for removal of color from the water. Fine Chem Eng 1:83–91

    Article  Google Scholar 

  330. Kianfar E (2020) Simultaneous prediction of the density and viscosity of the ternary system water-ethanol-ethylene glycol using support vector machine. Fine Chem Eng 1:69–74

    Article  Google Scholar 

  331. Kianfar E, Salimi M, Koohestani B (2020) Methanol to gasoline conversion over CuO/ZSM-5 catalyst synthesized and influence of water on conversion. Fine Chem Eng 1:75–82

    Article  Google Scholar 

  332. Kianfar E (2020) An experimental study PVDF and PSF hollow fiber membranes for chemical absorption carbon dioxide. Fine Chem Eng 1:92–103

    Article  Google Scholar 

  333. Kianfar E, Mafi S (2020) Ionic liquids: properties, application, and synthesis. Fine Chem Eng 2:22–31

    Article  Google Scholar 

  334. Faghih SM, Kianfar E (2018) Modeling of fluid bed reactor of ethylene dichloride production in Abadan Petrochemical based on three-phase hydrodynamic model. Int J Chem React Eng 16:1–14

    Google Scholar 

  335. Kianfar E; Mazaheri H (2020) Methanol to gasoline: A Sustainable Transport Fuel, In book: Advances in Chemistry Research. Volume 66, Edition: james C.taylorChapter: 4Publisher: Nova Science Publishers, Inc., NY, USA

  336. Kianfar, “A (2020) Comparison and Assessment on Performance of Zeolite Catalyst Based Selective for the Process Methanol to Gasoline: A Review, “in Advances in Chemistry Research, 63, Chapter 2 (NewYork: Nova Science Publishers, Inc.)

  337. Kianfar E, Hajimirzaee S, Faghih SM et al. (2020) Polyvinyl chloride + nanoparticles titanium oxide Membrane for Separation of O2/N2. Advances in Nanotechnology. Nova Science Publishers, Inc, NY, USA

    Google Scholar 

  338. Kianfar E (2020) Synthesis of characterization Nanoparticles isophthalic acid/aluminum nitrate (CAU-10-H) using method hydrothermal. Advances in Chemistry Research. Nova Science Publishers, Inc, NY, USA

    Google Scholar 

  339. Kianfar E (2020) CO2 Capture with Ionic Liquids: A Review. Advances in Chemistry Research. Publisher: Nova Science Publishers, Inc, NY, USA, Volume 67

    Google Scholar 

  340. Kianfar E (2020) Enhanced Light Olefins Production via Methanol Dehydration over Promoted SAPO-34. Advances in Chemistry Research. Nova Science Publishers, Inc, NY, USA, Volume 63, Chapter: 4

    Google Scholar 

  341. Kianfar E (2020) Gas hydrate: applications, structure, formation, separation processes, Thermodynamics. Advances in Chemistry Research. Publisher: Nova Science Publishers, Inc, NY, USA, Volume 62, Edition: James C. Taylor. Chapter: 8

    Google Scholar 

  342. Kianfar M, Kianfar F, Kianfar E (2016) The effect of nano-composites on the mechanic and morphological characteristics of NBR/PA6 blends. Am J Oil Chem Technol 4(1):29–44

    Google Scholar 

  343. Kianfar E (2016) The effect of nano-composites on the mechanic and morphological characteristics of NBR/PA6 blends. Am J Oil Chem Technol 4(1):27–42

    Google Scholar 

  344. Kianfar F, Moghadam SRM, Kianfar E (2015) Energy optimization of Ilam gas refinery unit 100 by using HYSYS refinery software. Indian J Sci Technol 8(S9):431–436

    Google Scholar 

  345. Kianfar E (2015) Production and identification of vanadium oxide nanotubes. Indian J Sci Technol 8(S9):455–464

    Article  Google Scholar 

  346. Kianfar F, Moghadam SRM, Kianfar E (2015) Synthesis of spiro pyran by using silica-bonded N-propyldiethylenetriamine as recyclable basic catalyst. Indian J Sci Technol 8(11):68669

    Article  Google Scholar 

  347. Hajimirzaee S, Mehr AS, Kianfar E (2020) Modified ZSM-5 Zeolite for conversion of LPG to aromatics, polycyclic aromatic compounds, https://doi.org/10.1080/10406638.2020.1833048

  348. Kianfar E (2021) Investigation of the effect of crystallization temperature and time in synthesis of SAPO-34 catalyst for the production of light olefins. Pet Chem 61:527–537. https://doi.org/10.1134/S0965544121050030

    CAS  Article  Google Scholar 

  349. Huang X, Zhu Y, Kianfar E (2021) Nano Biosensors: properties, applications and Electrochemical Techniques. J Mater Res Technol 12:1649–1672. https://doi.org/10.1016/j.jmrt.2021.03.048

    CAS  Article  Google Scholar 

  350. Kianfar E (2021) Protein nanoparticles in drug delivery: animal protein, plant proteins and protein cages, albumin nanoparticles. J Nanobiotechnol 19:159. https://doi.org/10.1186/s12951-021-00896-3

    CAS  Article  Google Scholar 

  351. Kianfar, E (2020) Magnetic nanoparticles in targeted drug delivery: A review. J Superconductivity Novel Magnetism. https://doi.org/10.1007/s10948-021-05932-9.

  352. Syah, R, Zahar, M and Kianfar, E Nanoreactors: properties, applications and characterization, Int J Chem Reactor Eng, vol., no., (2021), 000010151520210069. https://doi.org/10.1515/ijcre-2021-0069

  353. Majdi HS, Latipov ZA, Borisov V et al. (2021) Nano and battery anode: a review. Nanoscale Res Lett 16:177. https://doi.org/10.1186/s11671-021-03631-x

    Article  Google Scholar 

  354. Bokov D, Jalil AT, Chupradit S, Suksatan W, Ansari MJ, Shewael IH, Valiev GH, Kianfar E (2021) Nanomaterial by sol-gel method: synthesis and application. Adv Mater Sci Eng 21:2021. https://doi.org/10.1155/2021/5102014. Article ID 5102014

    CAS  Article  Google Scholar 

  355. Ansari, MJ, Kadhim, MM, Hussein, BA et al. (2022) Synthesis and stability of magnetic nanoparticles. BioNanoSci. https://doi.org/10.1007/s12668-022-00947-5.

  356. Chupradit S, Kavitha M, Suksatan W, Ansari MJ, Al Mashhadani ZI, Kadhim MM, Mustafa YF, Shafik SS, Kianfar E (2022) Morphological control: properties and applications of metal nanostructures. Adv Mater Sci Eng 15:2022. https://doi.org/10.1155/2022/1971891. Article ID 1971891

    Article  Google Scholar 

  357. Aldeen ODAS, Mahmoud MZ, Sh. Majdi H, Mutlak DA, Uktamov KF, Kianfar E (2022) Investigation of effective parameters Ce and Zr in the synthesis of H-ZSM-5 and SAPO-34 on the production of light olefins from Naphtha. Adv Mater Sci Eng 2022:22 pages. https://doi.org/10.1155/2022/6165180. Article ID 6165180

    CAS  Article  Google Scholar 

  358. Suryatna A, Raya I, Thangavelu L, Alhachami FR, Kadhim MM, Altimari US, Mahmoud ZH, Mustafa YF, Kianfar E (2022) A review of high-energy density lithium-air battery technology: investigating the effect of oxides and nanocatalysts. J Chem 2022:32 pages. https://doi.org/10.1155/2022/2762647. Article ID 2762647

    CAS  Article  Google Scholar 

  359. Abdelbasset, WK, Jasim, SA, Bokov, DO et al. (2022) Comparison and evaluation of the performance of graphene-based biosensors. Carbon Lett. https://doi.org/10.1007/s42823-022-00338-6

  360. Jasim SA, Kadhim MM, KN V et al. (2022) Molecular junctions: introduction and physical foundations, nanoelectrical conductivity and electronic structure and charge transfer in organic molecular junctions. Braz J Phys 52:31. https://doi.org/10.1007/s13538-021-01033-z

    CAS  Article  Google Scholar 

  361. Rikani AS (2021) Numerical analysis of free heat transfer properties of flat panel solar collectors with different geometries. J Res Sci Eng Technol 9(01):95–116

    Google Scholar 

  362. Bakhshkandi R, Ghoranneviss M (2019) Investigating the synthesis and growth of titanium dioxide nanoparticles on a cobalt catalyst. J Res Sci Eng Technol 7(4):1–3

    Article  Google Scholar 

  363. Eldo C, Riya K, Mohamed Anees S, Rajiniganth E (2019) Treatment of textile plant effluent by using a heat exchanger. Int J Commun Comput Technol 7 Suppl 1:27–29. https://doi.org/10.31838/ijccts/07.SP01.06

    Article  Google Scholar 

  364. Desai HB, Kumar A, Tanna AR (2021) Structural and magnetic properties of mgfe2o4 ferrite nanoparticles synthesis through auto combustion technique. Eur Chem Bull 10(3):186–190

    CAS  Google Scholar 

  365. Nair KGS, Velmurugan R, Sukumaran SK (2020) Influence of polylactic acid and polycaprolactone on dissolution characteristics of ansamycin-loaded polymeric nanoparticles: An unsatisfied attempt for drug release profile. J Pharm Negat Results 11(1):23–29. https://doi.org/10.4103/jpnr.JPNR_26_19

    CAS  Article  Google Scholar 

  366. Talavari, A, Ghanavati, B, Azimi, A, & Sayyahi, S (2021). PVDF/ MWCNT hollow fiber mixed matrix membranes for gas absorption by Al2O3 nanofluid. Progr Chem Biochem Res 4(2), 177–190. https://doi.org/10.22034/pcbr.2021.270178.1177.

  367. Saghiri S, Ebrahimi M, Bozorgmehr MR (1999) Electrochemical amplified sensor with mgo nanoparticle and ionic liquid: a powerful strategy for methyldopa analysis. Chem Methodol 5(3):234–239. https://doi.org/10.22034/chemm.2021.128530

    CAS  Article  Google Scholar 

  368. Haji Abdolvahab R, Zamani Meymian MR, Soudmand N (2020) Characterization of ZnO, Cu and Mo composite thin films in different annealing temperatures. Chem Methodologies 4(Issue 3):276–284. https://doi.org/10.33945/sami/chemm.2020.3.5

    CAS  Article  Google Scholar 

  369. Dehno Khalaji A (2019) Cobalt oxide nanoparticles by solid-state thermal decomposition: Synthesis and characterization. Eurasian Chem Commun. 1(1):75–78. https://doi.org/10.33945/sami/ecc.2019.1.10

    Article  Google Scholar 

  370. Emrani A, Davoodnia A, Tavakoli-Hoseini N (2011) Alumina supported ammonium dihydrogenphosphate (NH 4 H 2 PO 4/Al 2 O 3): preparation, characterization and its application as catalyst in the synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles. Bull Korean Chem Soc 32(7):2385–2390. https://doi.org/10.5012/bkcs.2011.32.7.2385

    CAS  Article  Google Scholar 

  371. Qaderi J (2020) A brief review on the reaction mechanisms of CO2 hydrogenation into methanol. Int J Innovat Res Sci Stud 3(2):33–40. https://doi.org/10.53894/ijirss.v3i2.31

    Article  Google Scholar 

  372. Zhao T-H, Castillo O, Jahanshahi H, Yusuf A, Alassafi MO, Alsaadi FE, Chu Y-M (2021) A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak. Appl Comput Math 20(1):160–176

    Google Scholar 

  373. Zhao T-H, Wang M-K, Chu Y-M (2022) On the bounds of the perimeter of an ellipse. Acta Math. Sci. 42B(2):491–501. https://doi.org/10.1007/s10473-022-0204-y

    Article  Google Scholar 

  374. Zhao T-H, Wang M-K, Hai G-J, Chu Y-M. Landen inequalities for Gaussian hypergeometric function, Rev. R. Acad. Cienc. Exactas F\’{\i}s. Nat. Ser. A Mat. RACSAM, 2022, 116(1), Paper No. 53, 23. https://doi.org/10.1007/s13398-021-01197-y

  375. Nazeer M, Hussain F, Khan MI, Asad-ur-Rehman, El-Zahar ER, Chu Y-M, Malik MY (2022) Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel. Appl Math Comput 420:15 pages. https://doi.org/10.1016/j.amc.2021.126868. Paper No. 126868

    Article  Google Scholar 

  376. Chu Y-M, Shankaralingappa BM, Gireesha BJ, Alzahrani F, Ijaz Khan M, Khan SU (2022) Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface. Appl Math Comput 419:14 pages. https://doi.org/10.1016/j.amc.2021.126883. Paper No. 126883

    Article  Google Scholar 

  377. Zhao T-H, Ijaz Khan M, Chu Y-M (2021) Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks, Math Methods Appl Sci. https://doi.org/10.1002/mma.7310

  378. Zhao T-H, He Z-Y, Chu Y-M (2021) Sharp bounds for the weighted H\"{o}lder mean of the zero-balanced generalized complete elliptic integrals. Comput Methods Funct Theory 21(3):413–426. https://doi.org/10.1007/s40315-020-00352-7

    Article  Google Scholar 

  379. Zhao T-H, Wang M-K, Chu Y-M (2021) Concavity and bounds involving generalized elliptic integral of the first kind. J Math Inequal 15(2):701–724. https://doi.org/10.7153/jmi-2021-15-50

    Article  Google Scholar 

  380. Zhao T-H, Wang M-K, Chu Y-M (2021) Monotonicity and convexity involving generalized elliptic integral of the first kind. Rev. R. Acad. Cienc. Exactas F\'{\i}s. Nat. Ser. A Mat. RACSAM 115(2):13. https://doi.org/10.1007/s13398-020-00992-3. Paper No. 46

  381. Chu H-H, Zhao T-H, Chu Y-M (2020) Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contraharmonic means. Math Slovaca 70(5):1097–1112. https://doi.org/10.1515/ms-2017-0417

    Article  Google Scholar 

  382. Zhao T-H, He Z-Y, Chu Y-M (2020) On some refinements for inequalities involving zero-balanced hypergeometric function. AIMS Math. 5(6):6479–6495. https://doi.org/10.3934/math.2020418

    Article  Google Scholar 

  383. Zhao T-H, Wang M-K, Chu Y-M (2020) A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math. 5(5):4512–4528. https://doi.org/10.3934/math.2020290

    Article  Google Scholar 

  384. Zhao T-H, Shi L, Chu Y-M (2020) Convexity and concavity of the modified Bessel functions of the first kind with respect to H\"{o}lder means. Rev. R. Acad. Cienc. Exactas F\’{\i}s. Nat. Ser. A Mat. RACSAM 114(2):14. https://doi.org/10.1007/s13398-020-00825-3. Paper No. 96

  385. Zhao T-H, Zhou B-C, Wang M-K, Chu Y-M (2019) On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019:12. https://doi.org/10.1186/s13660-019-1991-0. Paper No. 42

  386. Zhao T-H, Wang M-K, Zhang W, Chu Y-M (2018) Quadratic transformation inequalities for Gaussian hypergeometric function. J. Inequal. Appl. 2018(251):15. https://doi.org/10.1186/s13660-018-1848-y

  387. Chu Y-M, Zhao T-H (2016) Concavity of the error function with respect to H\"{o}lder means. Math Inequal Appl 19(2):589–595. https://doi.org/10.7153/mia-19-43

    Article  Google Scholar 

  388. Zhao T-H, Shen Z-H, Chu Y-M (2021) Sharp power mean bounds for the lemniscate type means. Rev. R. Acad. Cienc. Exactas F\'{\i}s. Nat. Ser. A Mat. RACSAM 115(4):16 pages. https://doi.org/10.1007/s13398-021-01117-0. [17] Paper No. 175

  389. Wang M-K, Hong M-Y, Xu Y-F, Shen Z-H, Chu Y-M (2020) Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J Math Inequal 14(1):1–21. https://doi.org/10.7153/jmi-2020-14-01

    Article  Google Scholar 

  390. Xu H-Z, Qian W-M, Chu Y-M (2022) Sharp bounds for the lemniscatic mean by the one-parameter geometric and quadratic means. Rev. R. Acad. Cienc. Exactas F\'{\i}s. Nat. Ser. A Mat. RACSAM 116(1):15. https://doi.org/10.1007/s13398-021-01162-9. Paper No. 21

  391. Karthikeyan K, Karthikeyan P, Baskonus HM, Venkatachalam K, Chu Y-M (2021) Almost sectorial operators on $\Psi$-Hilfer derivative fractional impulsive integro-differential equations, Math Methods Appl Sci. https://doi.org/10.1002/mma.7954

  392. Chu Y-M, Nazir U, Sohail M, Selim MM, Lee J-R (2021) Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach. Fractal Fract. 5(3):17. https://doi.org/10.3390/fractalfract5030119. Article 119

    Article  Google Scholar 

  393. Rashid S, Sultana S, Karaca Y, Khalid A, Chu Y-M (2022) Some further extensions considering discrete proportional fractional operators. Fractals 30(1):12. https://doi.org/10.1142/S0218348X22400266. Article ID 2240026

    Article  Google Scholar 

  394. Zhao T-H, Qian W-M, Chu Y-M (2021) Sharp power mean bounds for the tangent and hyperbolic sine means. J Math Inequal 15(4):1459–1472. https://doi.org/10.7153/jmi-2021-15-100

    Article  Google Scholar 

  395. Zhao T-H, Qian W-M, Chu Y-M (2021) On approximating the arc lemniscate functions, Indian J Pure Appl Math. https://doi.org/10.1007/s13226-021-00016-9.

  396. Narges Hajiseyedazizi S, Samei ME, Alzabut J, Chu Y-M (2021) On multi-step methods for singular fractional $q$-integro-differential equations. Open Math 19(1):1378–1405. https://doi.org/10.1515/math-2021-0093

    Article  Google Scholar 

  397. Jin F, Qian Z-S, Chu Y-M, ur Rahman M (2022) On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative. J Appl Anal Comput 12(2):790–806. https://doi.org/10.11948/20210357

    Article  Google Scholar 

  398. Rashid S, Abouelmagd EI, Khalid A, Farooq FB, Chu Y-M (2022) Some recent developments on dynamical $\hbar$-discrete fractional type inequalities in the frame of nonsingular and nonlocal kernels. Fractals 30(2):15. https://doi.org/10.1142/S0218348X22401107. Article ID 2240110

  399. Wang F-Z, Khan MN, Ahmad I, Ahmad H, Abu-Zinadah H, Chu Y-M (2022) Numerical solution of traveling waves in chemical kinetics: time-fractional fishers equations. Fractals 30(2):11. https://doi.org/10.1142/S0218348X22400515. Article ID 2240051

    Article  Google Scholar 

  400. Sarafraz MM, Hormozi F, Peyghambarzadeh SM (2015) Role of nanofluid fouling on thermal performance of a thermosyphon: Are nanofluids reliable working fluid? Appl Therm Eng 82:212–224

    CAS  Article  Google Scholar 

  401. Zhao T-H, Bhayo BA, Chu Y-M 2021) Inequalities for generalized Gr\"{o}tzsch ring function, Comput. Methods Funct. Theory. https://doi.org/10.1007/s40315-021-00415-3

  402. Rashid S, Abouelmagd EI, Sultana S, Chu Y-M (2022) New developments in weighted $n$-fold type inequalities via discrete generalized \^{h}-proportional fractional operators. Fractals 30(2):15. https://doi.org/10.1142/S0218348X22400564. Article ID 2240056

    Article  Google Scholar 

  403. Chu Y-M, Bashir S, Ramzan M, Malik MY (2022) Model-based comparative study of magnetohydrodynamics unsteady hybrid nanofluid flow between two infinite parallel plates with particle shape effects. Math Methods Appl Sci. https://doi.org/10.1002/mma.8234

  404. Qian W-M, Chu H-H, Wang M-K, Chu Y-M (2022) Sharp inequalities for the Toader mean of order $-1$ in terms of other bivariate means. J Math Inequal. J Math Inequal 16(1):127–141. https://doi.org/10.7153/jmi-2022-16-10

    Article  Google Scholar 

  405. Zhao T-H, Chu H-H, Chu Y-M (2022) Optimal Lehmer mean bounds for the $n$th power-type Toader mean of $n=-1, 1, 3$. J Math Inequal 16(1):157–168. https://doi.org/10.7153/jmi-2022-16-12

    Article  Google Scholar 

  406. Zhao T-H, Wang M-K, Dai Y-Q, Chu Y-M (2022) On the generalized power-type Toader mean. J Math Inequal 16(1):247–264. https://doi.org/10.7153/jmi-2022-16-18

    Article  Google Scholar 

  407. Iqbal SA, Hafez MG, Chu Y-M, Park C (2022) Dynamical Analysis of nonautonomous RLC circuit with the absence and presence of Atangana-Baleanu fractional derivative. J Appl Anal Comput 12(2):770–789. https://doi.org/10.11948/20210324

    Article  Google Scholar 

  408. Sharma AK, Tiwari AK, Dixit AR (2016) Rheological behaviour of nanofluids: a review. Renew Sustain Energy Rev 53:779–791

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Kianfar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Smaisim, G.F., mohammed, D.B., Abdulhadi, A.M. et al. Nanofluids: properties and applications. J Sol-Gel Sci Technol (2022). https://doi.org/10.1007/s10971-022-05859-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10971-022-05859-0

Keywords

  • Nanofluids
  • Nanoparticles
  • Heat transfer
  • Thermal conductivity
  • Hybrid nanofluids