Coco-Enríquez L, Muñoz-Antón J, Martínez-Val JM (2017) New text comparison between CO2 and other supercritical working fluids (ethane, Xe, CH4 and N2) in line- focusing solar power plants coupled to supercritical Brayton power cycles. Int J Hydrog Energy 42(28):17611–17631
Article
CAS
Google Scholar
Memon AG, Memon RA (2017) Thermodynamic analysis of a trigeneration system proposed for residential application. Energy Convers Manag 145:182–203
CAS
Article
Google Scholar
Yue C, Han D, Pu W, He W (2016) Parametric analysis of a vehicle power and cooling/heating cogeneration system. Energy 115:800–810
CAS
Article
Google Scholar
Uebel K, Rossger P, Prüfert U, Richter A, Meyer B (2016) A new CO conversion quench reactor design. Fuel Process Technol 148:198–208
CAS
Article
Google Scholar
Choi SUS, Eastman JA (1995) Enhancing Thermal Conductivity of Fluids with Nanoparticles, Argonne National Lab.
Hashemian M, Jafarmadar S, Nasiri J, Dizaji HS (2017) Enhancement of heat transfer rate with structural modification of double pipe heat exchanger by changing cylindrical form of tubes into conical form. Appl Ther Engineer 118:408–417
Article
Google Scholar
Maxwell JC (1891) A Treatise on Electricity and Magnetism. Clarendon Press, Oxford, UK
Google Scholar
Choi SUS, Cho YI, Kasza KE (1992) Degradation effects of dilute polymer solutions on turbulent friction and heat transfer behavior. J Non-Newton Fluid Mech 41(3):289–307
CAS
Article
Google Scholar
Choi U, France DM, Knodel BD (1992) “Impact of advanced fluids on costs of district cooling systems,” in Argonne National Lab
Choi U, Tran T (1991) “Experimental studies of the effects of non-Newtonian surfactant solutions on the performance of a shell-and-tube heat exchanger,” in Recent Developments in Non-Newtonian Flows and Industrial Applications, The American Society of Mechanical Engineers, New York, NY, USA
Liu K, Choi U, Kasza KE (1988) Measurements of pressure drop and heat transfer in turbulent pipe flows of particulate slurries, Argonne National Lab
Xuan Y, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 21(1):58–64
CAS
Article
Google Scholar
Eggers JR, Kabelac S (2016) Nanofluids revisited. Appl Therm Eng 106:1114–1126
CAS
Article
Google Scholar
Liu Z-Q, Ma J, Cui Y-H (2008) Carbon nanotube supported platinum catalysts for the ozonation of oxalic acid in aqueous solutions. Carbon 46(6):890–897
CAS
Article
Google Scholar
Jiang L, Gao L, Sun J (2003) Production of aqueous colloidal dispersions of carbon nanotubes. J Colloid Interface Sci 260(1):89–94
CAS
Article
Google Scholar
Chang H, Wu Y, Chen X, Kao M (2000) Fabrication of Cu based nanofluid with superior dispersion. Natl Taipei Univ Technol J 5:201–208
Google Scholar
Sato M, Abe Y, Urita Y, Di Paola R, Cecere A, Savino R (2011) Thermal performance of self-rewetting fluid heat pipe containing dilute solutions of polymer-capped silver nanoparticles synthesized by microwave-polyol process. Int J Transp Phenom 12(3/4):339–345
CAS
Google Scholar
Hwang Y, Lee JK, Lee CH et al. (2007) Stability and thermal conductivity characteristics of nanofluids. Thermochim Acta 455(1–2):70–74
CAS
Article
Google Scholar
Pantzali MN, Mouza AA, Paras SV (2009) Investigating the efficacy of nanofluids as coolants in plate heat exchangers (PHE). Chem Engineer Sci 64(14):3290–3300
CAS
Article
Google Scholar
Chandrasekar M, Suresh S, Bose AC (2010) Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp Ther Fluid Sci 34(2):210–216
CAS
Article
Google Scholar
Hwang Y, Lee J-K, Lee J-K et al. (2008) Production and dispersion stability of nanoparticles in nanofluids. Powder Technol 186(2):145–153
CAS
Article
Google Scholar
Yu W, Xie H, Chen L, Li Y (2010) Enhancement of thermal conductivity of kerosene-based Fe3O4 nanofluids prepared via phase-transfer method. Colloids Surf A: Physicochemical Eng Asp 355(1–3):109–113
CAS
Article
Google Scholar
Kong L, Sun J, Bao Y (2017) Preparation, characterization and tribological mechanism of nanofluids. RSC Advances 7(21):12599–12609
CAS
Article
Google Scholar
Li XF, Zhu DS, Wang XJ, Wang N, Gao JW, Li H (2008) Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids. Thermochim Acta 469(1–2):98–103
CAS
Article
Google Scholar
Madni I, Hwang C-Y, Park S-D, Choa Y-H, Kim H-T (2010) Mixed surfactant system for stable suspension of multiwalled carbon nanotubes. Colloids Surf A: Physicochemical Eng Asp 358(1–3):101–107
CAS
Article
Google Scholar
Dey D, Kumar P, Samantaray S (2017) A review of nanofluid preparation, stability, and thermo-physical properties. Heat Transf. - Asian Res 46(8):1413–1442
Article
Google Scholar
Li X, Zhu D, Wang X (2007) Evaluation on dispersion behavior of the aqueous copper nano-suspensions. J Colloid Interface Sci 310(2):456–463
CAS
Article
Google Scholar
Kim HJ, Bang IC, Onoe J (2009) Characteristic stability of bare Au-water nanofluids fabricated by pulsed laser ablation in liquids. Opt Lasers Eng 47(5):532–538
Article
Google Scholar
Paul G, Sarkar S, Pal T, Das PK, Manna I (2012) Concentration and size dependence of nano-silver dispersed water based nanofluids. J Colloid Interface Sci 371(1):20–27
CAS
Article
Google Scholar
Qu J, Wu H-Y, Cheng P (2010) Thermal performance of an oscillating heat pipe with Al2O3-water nanofluids. Int Commun Heat Mass Transf 37(2):111–115
CAS
Article
Google Scholar
Anoop KB, Sundararajan T, Das SK (2009) Effect of particle size on the convective heat transfer in nanofluid in the developing region. Int J Heat Mass Transfer 52(9–10):2189–2195
CAS
Article
Google Scholar
Rohini Priya K, Suganthi KS, Rajan KS (2012) Transport properties of ultra-low concentration CuO-water nanofluids containing non-spherical nanoparticles. Int J Heat Mass Transf 55(17–18):4734–4743
CAS
Article
Google Scholar
Chang MH, Liu HS, Tai CY (2011) Preparation of copper oxide nanoparticles and its application in nanofluid. Powder Technol 207(1–3):378–386
CAS
Article
Google Scholar
Liu Z-H, Xiong J-G, Bao R (2007) Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface. Int J Multiph Flow 33(12):1284–1295
CAS
Article
Google Scholar
Yang X-F, Liu Z-H (2011) Pool boiling heat transfer of functionalized nanofluid under sub-atmospheric pressures. Int J Ther Sci 50(12):2402–2412
CAS
Article
Google Scholar
Qu J, Wu H (2011) Thermal performance comparison of oscillating heat pipes with SiO2/water and Al2O3/water nanofluids. Int J Ther Sci 50(10):1954–1962
CAS
Article
Google Scholar
Suganthi KS, Rajan KS (2012) Temperature induced changes in ZnO-water nanofluid: Zeta potential, size distribution and viscosity profiles. Int J Heat Mass Transf 55(25–26):7969–7980
CAS
Article
Google Scholar
Duangthongsuk W, Wongwises S (2010) An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime. Int J Heat Mass Transf 53(1–3):334–344
CAS
Article
Google Scholar
Hari M, Joseph SA, Mathew S, Nithyaja B, Nampoori VPN, Radhakrishnan P (2013) Thermal diffusivity of nanofluids composed of rod-shaped silver nanoparticles. Int J Ther Sci 64:188–194
CAS
Article
Google Scholar
Kole M, Dey TK (2013) Thermal performance of screen mesh wick heat pipes using water-based copper nanofluids. Appl Ther Engineer 50(1):763–770
CAS
Article
Google Scholar
Kathiravan R, Kumar R, Gupta A, Chandra R (2010) Preparation and pool boiling characteristics of copper nanofluids over a flat plate heater. Int J Heat Mass Transf 53(9–10):1673–1681
CAS
Article
Google Scholar
Yousefi T, Shojaeizadeh E, Veysi F, Zinadini S (2012) An experimental investigation on the effect of pH variation of MWCNT-H2O nanofluid on the efficiency of a flat-plate solar collector. Solar Energy 86(2):771–779
CAS
Article
Google Scholar
Garg P, Alvarado JL, Marsh C, Carlson TA, Kessler DA, Annamalai K (2009) An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. Int J Heat Mass Transf 52(21–22):5090–5101
CAS
Article
Google Scholar
Ding Y, Alias H, Wen D, Williams RA (2006) Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf 49(1–2):240–250
CAS
Article
Google Scholar
Abareshi M, Goharshadi EK, Mojtaba Zebarjad S, Khandan Fadafan H, Youssefi A (2010) Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids. J Magn Magn Mater 322(24):3895–3901
CAS
Article
Google Scholar
Phuoc TX, Soong Y, Chyu MK (2007) Synthesis of Ag-deionized water nanofluids using multi-beam laser ablation in liquids. Opt Lasers Eng 45(12):1099–1106
Article
Google Scholar
Parametthanuwat T, Rittidech S, Pattiya A (2010) A correlation to predict heat-transfer rates of a two-phase closed thermosyphon (TPCT) using silver nanofluid at normal operating conditions. Int J Heat Mass Transf 53(21–22):4960–4965
CAS
Article
Google Scholar
Yousefi T, Veysi F, Shojaeizadeh E, Zinadini S (2012) An experimental investigation on the effect of Al2O3-H2O nanofluid on the efficiency of flat-plate solar collectors. J Renew Energy 39(1):293–298
CAS
Article
Google Scholar
Hung Y-H, Teng T-P, Lin B-G (2013) Evaluation of the thermal performance of a heat pipe using alumina nanofluids. Exp Ther Fluid Sci 44:504–511
CAS
Article
Google Scholar
Heyhat MM, Kowsary F, Rashidi AM, Momenpour MH, Amrollahi A (2013) Experimental investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanofluids in fully developed flow regime. Exp Ther Fluid Sci 44:483–489
CAS
Article
Google Scholar
Tawfik MM (2017) Experimental studies of nanofluid thermal conductivity enhancement and applications: a review. Renew Sustain Energy Rev 75:1239–1253
CAS
Article
Google Scholar
Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundamentals 1(3):187–191
CAS
Article
Google Scholar
Wasp EJ, Kenny JP, Gandhi RL (1977) Solid–Liquid Flow: Slurry Pipeline Transportation, Pumps, valves, mechanical equipment, economics
Yu W, Choi SUS (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanoparticle Res 5(1-2):167–171
CAS
Article
Google Scholar
Xuan Y, Li Q, Hu W (2003) Aggregation structure and thermal conductivity of nanofluids. AIChE J 49(4):1038–1043
CAS
Article
Google Scholar
Keblinski P, Eastman JA, Cahill DG (2005) Nanofluids for thermal transport. Mater Today 8(6):36–44
CAS
Article
Google Scholar
Vajjha RS, Das DK (2009) Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int J Heat Mass Transf 52(21–22):4675–4682
CAS
Article
Google Scholar
Koo J, Kleinstreuer C (2004) A new thermal conductivity model for nanofluids. J Nanopart Res 6(6):577–588
Article
Google Scholar
Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf 125(4):567–574
CAS
Article
Google Scholar
Xue Q, Xu W-M (2005) A model of thermal conductivity of nanofluids with interfacial shells. Mater Chem Phys 90(2-3):298–301
CAS
Article
Google Scholar
Prasher R, Bhattacharya P, Phelan PE (2006) Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids. J Heat Transf 128(6):588–595
CAS
Article
Google Scholar
Jang SP, Choi SUS (2004) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84(21):4316–4318
CAS
Article
Google Scholar
Suganthi KS, Rajan KS (2017) Metal oxide nanofluids: Review of formulation, thermo-physical properties, mechanisms, and heat transfer performance. Renew Sustain Energy Rev 76:226–255
CAS
Article
Google Scholar
Wen D, Lin G, Vafaei S, Zhang K (2009) Review of nanofluids for heat transfer applications. Particuology 7(2):141–150
CAS
Article
Google Scholar
Ali N, Teixeira JA, Addali A, Al-Zubi F, Shaban E, Behbehani I (2018) The effect of aluminium nanocoating and water pH value on the wettability behavior of an aluminium surface. Appl Surf Sci 443:24–30
CAS
Article
Google Scholar
Kang M, Lee JW, Kang YT (2016) Reduction of liquid pumping power by nanoscale surface coating. Int J Refrig 71:8–17
CAS
Article
Google Scholar
Ganesan P, Vanaki SM, Thoo KK, Chin WM (2016) Air-side heat transfer characteristics of hydrophobic and super-hydrophobic fin surfaces in heat exchangers: A review. Int Commun Heat Mass Transf 74:27–35
Article
Google Scholar
Yu W, Xie H (2012) A review on nanofluids: preparation, stability mechanisms, and applications, J Nanomater, 2012, Article ID 435873, 17 pages
Mukherjee S (2013) Preparation and stability of nanofluids-a review. IOSR J Mech Civ Eng 9(2):63–69
Article
Google Scholar
Mondragon R, Julia JE, Barba A, Jarque JC (2012) Characterization of silica-water nanofluids dispersed with an ultrasound probe: A study of their physical properties and stability. Powder Technol 224:138–146
CAS
Article
Google Scholar
Wen D, Ding Y (2005) Formulation of nanofluids for natural convective heat transfer applications. Int J Heat Fluid Flow 26(6):855–864
CAS
Article
Google Scholar
Pastoriza-Gallego MJ, Casanova C, Páramo R, Barbés B, Legido JL, Piñeiro MM (2009) A study on stability and thermophysical properties (density and viscosity) of Al2 O3 in water nanofluid. J Appl Phys 106:6. Article ID 064301
Article
CAS
Google Scholar
Chen L, Xie H (2010) Properties of carbon nanotube nanofluids stabilized by cationic gemini surfactant. Thermochim Acta 506(1-2):62–66
CAS
Article
Google Scholar
Ilyas SU, Pendyala R, Marneni N (2013) Settling characteristics of alumina nanoparticles in ethanol-water mixtures. Appl Mech Mater 372:143–148
Article
CAS
Google Scholar
Witharana S, Hodges C, Xu D, Lai X, Ding Y (2012) Aggregation and settling in aqueous polydisperse alumina nanoparticle suspensions. J Nanopart Res 14:article 851
Article
CAS
Google Scholar
Oh D-W, Jain A, Eaton JK, Goodson KE, Lee JS (2008) Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3ω method. Int J Heat Fluid Flow 29(5):1456–1461
CAS
Article
Google Scholar
Nallusamy S (2015) Thermal conductivity analysis and characterization of copper oxide nanofluids through different techniques. J Nano Res 40:102–112
Google Scholar
Razi P, Akhavan-Behabadi MA, Saeedinia M (2011) Pressure drop and thermal characteristics of CuO-base oil nanofluid laminar flow in flattened tubes under constant heat flux. Int Commun Heat Mass Transf 38(7):964–971
CAS
Article
Google Scholar
Neouze M-A, Schubert U (2008) Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Monatshefte für Chem 139(3):183–195
CAS
Article
Google Scholar
Q500 Sonicator-Qsonica, QSONICA SONICATORS, 2017
“Digital Bench-Top Ultrasonic Cleaners | Soniclean | So Easy - So Fast - So Clean,” Soniclean, 2017
Gupta M, Singh V, Kumar R, Said Z (2017) A review on thermophysical properties of nanofluids and heat transfer applications. Renew Sustain Energy Rev 74:638–670
CAS
Article
Google Scholar
Sarafraz MM, Nikkhah V, Nakhjavani M, Arya A (2017) Fouling formation and thermal performance of aqueous carbon nanotube nanofluid in a heat sink with rectangular parallel microchannel. Appl Therm Eng 123:29–39
CAS
Article
Google Scholar
Sarafraz MM, Hormozi F (2014) Convective boiling and particulate fouling of stabilized CuO-ethylene glycol nanofluids inside the annular heat exchanger. Int Commun Heat Mass Transf 53:116–123
CAS
Article
Google Scholar
Nikkhah V, Sarafraz MM, Hormozi F, Peyghambarzadeh SM (2014) Particulate fouling of CuO-water nanofluid at isothermal diffusive condition inside the conventional heat exchanger-experimental and modeling. Exp Therm Fluid Sci 60:83–95
Article
CAS
Google Scholar
Sarafraz MM, Nikkhah V, Madani SA, Jafarian M, Hormozi F (2017) Low-frequency vibration for fouling mitigation and intensification of thermal performance of a plate heat exchanger working with CuO/water nanofluid. Appl Therm Eng 121:388–399
CAS
Article
Google Scholar
Teng KH, Amiri A, Kazi SN et al. (2017) Retardation of heat exchanger surfaces mineral fouling by water-based diethylenetriamine pentaacetate-treated CNT nanofluids. Appl Therm Eng 110:495–503
CAS
Article
Google Scholar
Kouloulias K, Sergis A, Hardalupas Y (2016) Sedimentation in nanofluids during a natural convection experiment. Int J Heat Mass Transf 101:1193–1203
CAS
Article
Google Scholar
Phan HT, Caney N, Marty P, Colasson S, Gavillet J (2009) Surface wettability control by nanocoating: the effects on pool boiling heat transfer and nucleation mechanism. Int J Heat Mass Transf 52(23-24):5459–5471
CAS
Article
Google Scholar
Burnett ME, Wang SQ (2011) Current sunscreen controversies: A critical review. Photodermatol Photoimmunol Photomed 27(2):58–67
CAS
Article
Google Scholar
Lapotko D (2016) Erratum: Plasmonic nanoparticle-generated photothermal bubbles and their biomedical applications (Nanomedicine (Nanomedicine [Lond.]) (2009) 4:7 (813-845)). Nanomedicine 11(5):566
CAS
Article
Google Scholar
Maier-Hauff K, Rothe R, Scholz R (2007) Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neuro-Oncol 81(1):53–60
CAS
Article
Google Scholar
Kulkarni DP, Das DK, Vajjha RS (2009) Application of nanofluids in heating buildings and reducing pollution. Appl Energy 86(12):2566–2573
CAS
Article
Google Scholar
Vékás L, Bica D, Avdeev MV (2007) Magnetic nanoparticles and concentrated magnetic nanofluids: synthesis, properties and some applications. China Particuology 5(1-2):43–49
Article
CAS
Google Scholar
Sharma T, Reddy ALM, Chandra TS, Ramaprabhu S (2008) Development of carbon nanotubes and nanofluids based microbial fuel cell. Int J Hydrog Energy 33(22):6749–6754
CAS
Article
Google Scholar
Taylor R, Coulombe S, Otanicar T et al. (2013) Small particles, big impacts: a review of the diverse applications of nanofluids. J Appl Phys 113:1. Article ID 011301
Article
CAS
Google Scholar
Scopus-Database, Nanofluids analyze search results from 2015 to 2018, Elsevier, 2018
Taylor R, Coulombe S, Otanicar T, Phelan P, Gunawan A, Lv W, Rosengarten G, Prasher R, Tyagi H (2013) Small particles, big impacts: a review of the diverse applications of nanofluids. J Appl Phys 113:1
Article
CAS
Google Scholar
Xuan Y, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 21:58e64
Article
Google Scholar
Buongiorno J, Hu L-W, Kim SJ, Hannink R, Truong BAO, Forrest E (2008) Nanofluids for enhanced economics and safety of nuclear reactors: an evaluation of the potential features, issues, and research gaps. Nucl Technol 162:80e91
Article
Google Scholar
Beck MP, Yuan Y, Warrier P, Teja AS (2009) The effect of particle size on the thermal conductivity of alumina nanofluids. J Nanoparticle Res 11:1129e1136
Article
CAS
Google Scholar
Yang L, Du K (2017) A comprehensive review on heat transfer characteristics of TiO2 nanofluids. Int J Heat Mass Transf 108:11–31
CAS
Article
Google Scholar
Azmi WH, Sharif MZ, Yusof TM, Mamat R, Redhwan AAM (2017) Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system – A review. Renew Sustain Energy Rev 69:415–428
CAS
Article
Google Scholar
Reddy KS, Kamnapure NR, Srivastava S (2017) Nanofluid and nanocomposite applications in solar energy conversion systems for performance enhancement: A review. Int J Low-Carbon Technol 12(1):1–23
CAS
Google Scholar
Jana S, Salehi-Khojin A, Zhong W-H (2007) Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochim Acta 462(1-2):45–55
CAS
Article
Google Scholar
Chamsa-ard W, Brundavanam S, Fung CC, Fawcett D, Poinern G (2017) Nanofluid types, their synthesis, properties and incorporation in direct solar thermal collectors: A review. Nanomaterials 7:6. article no. 131
Article
CAS
Google Scholar
Akoh H, Tsukasaki Y, Yatsuya S, Tasaki A (1978) Magnetic properties of ferromagnetic ultrafine particles prepared by vacuum evaporation on running oil substrate. J Cryst Growth 45(no. C):495–500
CAS
Article
Google Scholar
Wagener M, Murty BS. Günther B (1997) “Preparation of metal nanosuspensions by high-pressure dc-sputtering on running liquids,” in Proceedings of the 1996 MRS Fall Symposium, E. P. George, R. Gotthardt, K. Otsuka, S. Trolier-McKinstry, and M. Wun-Fogle, Eds., 149–154, Materials Research Society, Pittsburgh, PA, USA
Eastman JA, Choi SU, Li S, Thompson LJ, Lee S (1997) “Enhanced thermal conductivity through the development of nanofluids,” in Proceedings of the 1996 MRS Fall Symposium, George EP, Gotthardt R, Otsuka K, Trolier-McKinstry S, and Wun-Fogle M, Eds., 457, 3–11, Materials Research Society, Pittsburgh, PA, USA
Zhu H-T, Lin Y-S, Yin Y-S (2004) A novel one-step chemical method for preparation of copper nanofluids. J Colloid Interface Sci 277(1):100–103
CAS
Article
Google Scholar
Tran PX, Soong Y (2007) Preparation of nanofluids using laser ablation in liquid technique, United States, Not published - presentation only
Lo C-H, Tsung T-T, Chen L-C (2005) Shape-controlled synthesis of Cu-based nanofluid using submerged arc nanoparticle synthesis system (SANSS). J Cryst Growth 277(1–4):636–642
CAS
Article
Google Scholar
Lo C-H, Tsung T-T, Chen L-C (2006) Ni nano-magnetic fluid prepared by submerged arc nano synthesis system (SANSS). JSME Int J Ser B Fluids Therm Eng 48(4):750–755
Article
Google Scholar
Wang X, Xu X (1999) Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transf 13(4):474–480
CAS
Article
Google Scholar
Lee S, Choi SU, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121(2):280–289
CAS
Article
Google Scholar
Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2 water based nanofluids. Int J Therm Sci 44(4):367–373
CAS
Article
Google Scholar
Yu Q, Kim YJ, Ma H (2008) Nanofluids with plasma treated diamond nanoparticles. Appl Phys Lett 92:10. Article ID 103111
Google Scholar
Liu MS, Ching-Cheng Lin M, Huang IT, Wang CC (2005) Enhancement of thermal conductivity with carbon nanotube for nanofluids. Int Commun Heat Mass Transf 32(9):1202–1210
CAS
Article
Google Scholar
Boncel S, Zniszczoł A, Pawlyta M, Labisz K, Dzido G (2017) Heat transfer nanofluid based on curly ultra-long multi-wall carbon nanotubes, Heat Mass Transf 333–339
Arya A, Sarafraz MM, Shahmiri S, Madani SAH, Nikkhah V, Nakhjavani SM (2017) Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater, Heat Mass Transf, 1–13
Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78(6):718–720
CAS
Article
Google Scholar
Bushehri MK, Mohebbi A, Rafsanjani HH (2016) Prediction of thermal conductivity and viscosity of nanofluids by molecular dynamics simulation. J Eng Thermophys 25(3):389–400
Article
Google Scholar
Hong J, Kim D (2012) Effects of aggregation on the thermal conductivity of alumina/water nanofluids. Thermochim Acta 542:28–32
CAS
Article
Google Scholar
Arthur O, Karim MA (2016) An investigation into the thermophysical and rheological properties of nanofluids for solar thermal applications. Renew Sustain Energy Rev 55:739–755
CAS
Article
Google Scholar
Setia H, Gupta R, Wanchoo RK (2013) Stability of nanofluids. Mater Sci Forum 757:139–149
Article
CAS
Google Scholar
Wu JM, Zhao J (2013) A review of nanofluid heat transfer and critical heat flux enhancement—research gap to engineering application. Prog Nucl Energy 66:13–24
CAS
Article
Google Scholar
Ghadimi A, Saidur R, Metselaar HSC (2011) A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf 54(17-18):4051–4068
CAS
Article
Google Scholar
Chang H, Jwo CS, Fan PS, Pai SH (2007) Process optimization and material properties for nanofluid manufacturing. Int J Adv Manuf Technol 34(3-4):300–306
Article
Google Scholar
Wang X-J, Zhu D-S, Yang S (2009) Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids. Chem Phys Lett 470(1-3):107–111
CAS
Article
Google Scholar
Wei X, Wang L (2010) Synthesis and thermal conductivity of microfluidic copper nanofluids. Particuology 8(3):262–271
CAS
Article
Google Scholar
Wei X, Zhu H, Kong T, Wang L (2009) Synthesis and thermal conductivity of Cu2O nanofluids. Int J Heat Mass Transf 52(19-20):4371–4374
CAS
Article
Google Scholar
Ilyas SU, Pendyala R, Marneni N (2014) Preparation, sedimentation, and agglomeration of nanofluids. Chem Eng Technol 37(12):2011–2021
CAS
Article
Google Scholar
Xian-Ju W, Xin-Fang L (2009) Influence of pH on Nanofluids’ Viscosity and Thermal Conductivity. Chin Phys Lett 26(5):056601
Article
Google Scholar
Chen L, Xie H, Li Y, Yu W (2008) Nanofluids containing carbon nanotubes treated by mechanochemical reaction. Thermochim Acta 477(1-2):21–24
CAS
Article
Google Scholar
Mingzheng Z, Guodong X, Jian L, Lei C, Lijun Z (2012) Analysis of factors influencing thermal conductivity and viscosity in different kinds of surfactant solutions. Exp Therm Fluid Sci 36:22–29
Article
CAS
Google Scholar
Timofeeva EV, Moravek MR, Singh D (2011) Improving the heat transfer efficiency of synthetic oil with silica nanoparticles. J Colloid Interface Sci 364(1):71–79
CAS
Article
Google Scholar
Byrne MD, Hart RA, da Silva AK (2012) Experimental thermal-hydraulic evaluation of CuO nanofluids in microchannels at various concentrations with and without suspension enhancers. Int J Heat Mass Transf 55(9-10):2684–2691
CAS
Article
Google Scholar
Kayhani MH, Soltanzadeh H, Heyhat MM, Nazari M, Kowsary F (2012) Experimental study of convective heat transfer and pressure drop of TiO2/water nanofluid. Int Commun Heat Mass Transf 39(3):456–462
CAS
Article
Google Scholar
Han H, Zhang Y, Wang N et al. (2016) Functionalization mediates heat transport in graphene nanoflakes. Nat Commun 7:Article ID 11281
Article
CAS
Google Scholar
Mahbubul IM, Elcioglu EB, Saidur R, Amalina MA (2017) Optimization of ultrasonication period for better dispersion and stability of TiO2–water nanofluid. Ultrason Sonochem 37:360–367
CAS
Article
Google Scholar
Chung SJ, Leonard JP, Nettleship I et al. (2009) Characterization of ZnO nanoparticle suspension in water: effectiveness of ultrasonic dispersion. Powder Technol 194(1-2):75–80
CAS
Article
Google Scholar
Petzold G, Rojas-Reyna R, Mende M, Schwarz S (2009) Application relevant characterization of aqueous silica nanodispersions. J Disper Sci Technol 30(8):1216–1222
CAS
Article
Google Scholar
Kole M, Dey TK (2012) Effect of prolonged ultrasonication on the thermal conductivity of ZnO-ethylene glycol nanofluids. Thermochim Acta 535:58–65
CAS
Article
Google Scholar
Peng X-F, Yu X-L, Xia L-F, Zhong X (2007) Influence factors on suspension stability of nanofluids. Zhejiang Daxue Xuebao (Gongxue Ban)/J Zhejiang Univ (Eng Sci) 41(4):577–580
CAS
Google Scholar
Choudhary R, Khurana D, Kumar A, Subudhi S (2017) Stability analysis of Al2O3/water nanofluids, J Exp Nanosci, 1–12
Azizian R, Doroodchi E, Moghtaderi B (2016) Influence of controlled aggregation on thermal conductivity of nanofluids. J Heat Transf 138(2):Article ID 021301
Article
CAS
Google Scholar
Askari S, Koolivand H, Pourkhalil M, Lotfi R, Rashidi A (2017) Investigation of Fe3O4/Graphene nanohybrid heat transfer properties: Experimental approach. Int Commun Heat Mass Transf 87:30–39
CAS
Article
Google Scholar
Mohammadi M, Dadvar M, Dabir B (2017) TiO2/SiO2 nanofluids as novel inhibitors for the stability of asphaltene particles in crude oil: Mechanistic understanding, screening, modeling, and optimization. J Mol Liq 238:326–340
CAS
Article
Google Scholar
Leong KY, Najwa ZA, Ku Ahmad KZ, Ong HC (2017) Investigation on Stability and Optical Properties of Titanium Dioxide and Aluminum Oxide Water-Based Nanofluids. Int J Thermophys 38:5. article no. 77
Article
CAS
Google Scholar
Kumar PCM, Muruganandam M (2017) Stability analysis of heat transfer MWCNT with different base fluids. J Appl Fluid Mech 10:51–59
CAS
Google Scholar
Menbari A, Alemrajabi AA, Ghayeb Y (2016) Investigation on the stability, viscosity and extinction coefficient of CuO-Al2O3/Water binary mixture nanofluid. Exp Therm Fluid Sci 74:122–129
CAS
Article
Google Scholar
Witharana S, Palabiyik I, Musina Z, Ding Y (2013) Stability of glycol nanofluids - The theory and experiment. Powder Technol 239:72–77
CAS
Article
Google Scholar
Manjula S, Kumar SM, Raichur AM, Madhu GM, Suresh R, Raj MA (2005) A sedimentation study to optimize the dispersion of alumina nanoparticles in water. Cerâmica 51(318):121–127
CAS
Article
Google Scholar
Zhu D, Li X, Wang N, Wang X, Gao J, Li H (2009) Dispersion behavior and thermal conductivity characteristics of Al2O3-H2O nanofluids. Curr Appl Phys 9(1):131–139
Article
Google Scholar
Lee D, Kim J-W, Kim BG (2006) A new parameter to control heat transport in nanofluids: Surface charge state of the particle in suspension. J Phys Chem B 110(9):4323–4328
CAS
Article
Google Scholar
Chang H, Chen X-Q, Jwo C-S, Chen S-L (2009) Electrostatic and sterical stabilization of CuO nanofluid prepared by vacuum arc spray nanofluid synthesis system (ASNSS). Mater Trans 50(8):2098–2103
CAS
Article
Google Scholar
Song YY, Bhadeshia HKDH, Suh D-W (2015) Stability of stainless-steel nanoparticle and water mixtures. Powder Technol 272:34–44
CAS
Article
Google Scholar
Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11(2):151–170
CAS
Article
Google Scholar
Vajjha RS, Das DK, Mahagaonkar BM (2009) Density measurement of different nanofluids and their comparison with theory. Pet Sci Technol 27(6):612–624
CAS
Article
Google Scholar
Behroyan I, Vanaki SM, Ganesan P, Saidur R (2016) A comprehensive comparison of various CFD models for convective heat transfer of Al2O3 nanofluid inside a heated tube. Int Commun Heat Mass Transf 70:27–37
CAS
Article
Google Scholar
Vanaki SM, Mohammed HA (2015) Numerical study of nanofluid forced convection flow in channels using different shaped transverse ribs. Int Commun Heat Mass Transf 67:176–188
CAS
Article
Google Scholar
Selimefendigil F, Öztop HF, Abu-Hamdeh N (2016) Mixed convection due to rotating cylinder in an internally heated and flexible walled cavity filled with SiO2-water nanofluids: Effect of nanoparticle shape. Int Commun Heat Mass Transf 71:9–19
CAS
Article
Google Scholar
Yang Y-T, Tang H-W, Zeng B-Y, Wu C-H (2015) Numerical simulation and optimization of turbulent nanofluids in a three-dimensional rectangular rib-grooved channel. Int Commun Heat Mass Transf 66:71–79
Article
Google Scholar
Sun B, Lei W, Yang D (2015) Flow and convective heat transfer characteristics of Fe2O3-water nanofluids inside copper tubes. Int Commun Heat Mass Transf 64:21–28
CAS
Article
Google Scholar
Salman BH, Mohammed HA, Kherbeet AS (2014) Numerical and experimental investigation of heat transfer enhancement in a microtube using nanofluids. Int Commun Heat Mass Transf 59:88–100
CAS
Article
Google Scholar
Meng X, Li Y (2015) Numerical study of natural convection in a horizontal cylinder filled with water-based alumina nanofluid. Nanoscale Res Lett 10:1
Article
CAS
Google Scholar
Mohammadpourfard M, Aminfar H, Karimi M (2016) Numerical investigation of non-uniform transverse magnetic field effects on the swirling flow boiling of magnetic nanofluid in annuli. Int Commun Heat Mass Transf 75:240–252
CAS
Article
Google Scholar
Akdag U, Akcay S, Demiral D (2014) Heat transfer enhancement with laminar pulsating nanofluid flow in a wavy channel. Int Commun Heat Mass Transf 59:17–23
CAS
Article
Google Scholar
Yacob NA, Ishak A, Pop I, Vajravelu K (2011) Boundary layer flow past a stretching/shrinking surface beneath an external uniform shear flow with a convective surface boundary condition in a nanofluid. Nanoscale Res Lett 6(1):314–320
Article
CAS
Google Scholar
Moraveji MK, Ardehali RM (2013) CFD modeling (comparing single and two-phase approaches) on thermal performance of Al2o3/water nanofluid in mini-channel heat sink. Int Commun Heat Mass Transf 44:157–164
CAS
Article
Google Scholar
Xu H, Fan T, Pop I (2013) Analysis of mixed convection flow of a nanofluid in a vertical channel with the Buongiorno mathematical model. Int Commun Heat Mass Transf 44:15–22
Article
CAS
Google Scholar
Parsazadeh M, Mohammed HA, Fathinia F (2013) Influence of nanofluid on turbulent forced convective flow in a channel with detached rib-arrays. Int Commun Heat Mass Transf 46:97–105
CAS
Article
Google Scholar
Sheikholeslami M, Gorji-Bandpay M, Ganji DD (2012) Magnetic field effects on natural convection around a horizontal circular cylinder inside a square enclosure filled with nanofluid. Intnt Commun Heat Mass Transf 39(7):978–986
CAS
Article
Google Scholar
Rashad AM, Rashidi MM, Lorenzini G, Ahmed SE, Aly AM (2017) Magnetic field and internal heat generation effects on the free convection in a rectangular cavity filled with a porous medium saturated with Cu–water nanofluid. Int Commun Heat Mass Transf 104:878–889
CAS
Article
Google Scholar
Leong KY, Saidur R, Khairulmaini M, Michael Z, Kamyar A (2012) Heat transfer and entropy analysis of three different types of heat exchangers operated with nanofluids. Int Commun Heat Mass Transf 39(6):838–843
CAS
Article
Google Scholar
Shahi M, Mahmoudi AH, Talebi F (2010) Numerical simulation of steady natural convection heat transfer in a 3-dimensional single-ended tube subjected to a nanofluid. Int Commun Heat Mass Transf 37(10):1535–1545
CAS
Article
Google Scholar
Ghaffari O, Behzadmehr A, Ajam H (2010) Turbulent mixed convection of a nanofluid in a horizontal curved tube using a two-phase approach. Int Commun Heat Mass Transf 37(10):1551–1558
CAS
Article
Google Scholar
Manca O, Mesolella P, Nardini S, Ricci D (2011) Numerical study of a confined slot impinging jet with nanofluids. Nanoscale Res Lett 6(1):X1–X16
Article
CAS
Google Scholar
Rostamani M, Hosseinizadeh SF, Gorji M, Khodadadi JM (2010) Numerical study of turbulent forced convection flow of nanofluids in a long horizontal duct considering variable properties. Int Commun Heat Mass Transf 37(10):1426–1431
CAS
Article
Google Scholar
Öǧüt EB (2009) Natural convection of water-based nanofluids in an inclined enclosure with a heat source. Int J Therm Sci 48(11):2063–2073
Article
CAS
Google Scholar
Kumar S, Prasad SK, Banerjee J (2010) Analysis of flow and thermal field in nanofluid using a single phase thermal dispersion model. Appl Math Model Simul Comput Eng Environ Syst 34(3):573–592
Google Scholar
Alloui Z, Guiet J, Vasseur P, Reggio M (2012) Natural convection of nanofluids in a shallow rectangular enclosure heated from the side. Can J Chem Eng 90(1):69–78
CAS
Article
Google Scholar
Ryzhkov II, Minakov AV (2014) The effect of nanoparticle diffusion and thermophoresis on convective heat transfer of nanofluid in a circular tube. Int Commun Heat Mass Transf 77:956–969
CAS
Article
Google Scholar
Minea AA (2014) Uncertainties in modeling thermal conductivity of laminar forced convection heat transfer with water alumina nanofluids. Int Commun Heat Mass Transf 68:78–84
CAS
Article
Google Scholar
Sadeghi O, Mohammed HA, Bakhtiari-Nejad M, Wahid MA (2016) Heat transfer and nanofluid flow characteristics through a circular tube fitted with helical tape inserts. Int Commun Heat Mass Transf 71:234–244
CAS
Article
Google Scholar
Azimi SS, Kalbasi M (2014) Numerical study of dynamic thermal conductivity of nanofluid in the forced convective heat transfer. Appl Math Model Simul Comput Eng Environ Syst 38(4):1373–1384
Google Scholar
Inakov AV, Lobasov AS, Guzei DV, Pryazhnikov MI, Rudyak VY (2015) The experimental and theoretical study of laminar forced convection of nanofluids in the round channel. Appl Therm Eng 88:140–148
Article
CAS
Google Scholar
Togun H, Abu-Mulaweh HI, Kazi SN, Badarudin A (2016) Numerical simulation of heat transfer and separation Al2O3/nanofluid flow in concentric annular pipe. Int Commun Heat Mass Transf 71:108–117
CAS
Article
Google Scholar
Cianfrini C, Corcione M, Habib E, Quintino A (2014) Buoyancy-induced convection in Al2O3/water nanofluids from an enclosed heater. Eur J Mech B/Fluids 48:123–134
Article
Google Scholar
Hemmat Esfe M, Saedodin S, Mahmoodi M (2014) Experimental studies on the convective heat transfer performance and thermophysical properties of MgO-water nanofluid under turbulent flow. Exp Therm Fluid Sci 52:68–78
CAS
Article
Google Scholar
Ghodsinezhad H, Sharifpur M, Meyer JP (2016) Experimental investigation on cavity flow natural convection of Al2O3–water nanofluids. Int Commun Heat Mass Transf 76:316–324
CAS
Article
Google Scholar
Chen W-C, Cheng W-T (2016) Numerical simulation on forced convective heat transfer of titanium dioxide/water nanofluid in the cooling stave of blast furnace. Int Commun Heat Mass Transf 71:208–215
CAS
Article
Google Scholar
Maddah H, Alizadeh M, Ghasemi N, Rafidah Wan Alwi S (2014) Experimental study of Al2O3/water nanofluid turbulent heat transfer enhancement in the horizontal double pipes fitted with modified twisted tapes. Int Commun Heat Mass Transf 78:1042–1054
CAS
Article
Google Scholar
Abed AM, Alghoul MA, Sopian K, Mohammed HA, Majdi HS, Al-Shamani AN (2015) Design characteristics of corrugated trapezoidal plate heat exchangers using nanofluids. Chem Eng Process Process Intensif 87:88–103
CAS
Article
Google Scholar
Huminic G, Huminic A (2016) Heat transfer and entropy generation analyses of nanofluids in helically coiled tube-in-tube heat exchangers. Int Commun Heat Mass Transf 71:118–125
CAS
Article
Google Scholar
Al-Shamani AN, Sopian K, Mohammed HA, Mat S, Ruslan MH, Abed AM (2015) Enhancement heat transfer characteristics in the channel with Trapezoidal rib-groove using nanofluids. Case Stud Therm Eng 5:48–58. article 61
Article
Google Scholar
Sommers AD, Yerkes KL (2010) Experimental investigation into the convective heat transfer and system-level effects of Al2O3-propanol nanofluid. J Nanopart Res 12(3):1003–1014
CAS
Article
Google Scholar
Angayarkanni SA, Philip J (2014) Effect of nanoparticles aggregation on thermal and electrical conductivities of nanofluids. J Nanofluids 3(1):17–25
CAS
Article
Google Scholar
Ilyas SU, Pendyala R, Marneni N (2016) “Stability and Agglomeration of Alumina Nanoparticles in Ethanol-Water Mixtures,” in Proceedings of the 4th International Conference on Process Engineering and Advanced Materials, ICPEAM 2016, Bustam MA, Keong LK, Man Z, Hassankiadeh AA, and Fong YY, Eds., 290–297, August 2016
Lemes MA, Rabelo D, De Oliveira AE (2017) A novel method to evaluate nanofluid stability using multivariate image analysis. Anal Methods 9(39):5826–5833
CAS
Article
Google Scholar
Singh AK, Raykar VS (2008) Microwave synthesis of silver nanofluids with polyvinylpyrrolidone (PVP) and their transport properties. Colloid Polym Sci 286(14-15):1667–1673
CAS
Article
Google Scholar
Li D, Kaner RB (2005) Processable stabilizer-free polyaniline nanofiber aqueous colloids. Chem Commun 26:3286–3288
Article
CAS
Google Scholar
Mehrali M, Sadeghinezhad E, Rosen MA et al. (2015) Heat transfer and entropy generation for laminar forced convection flow of graphene nanoplatelets nanofluids in a horizontal tube. Int Commun Heat Mass Transf 66:23–31
CAS
Article
Google Scholar
Souza DG, Bellaver B, Raupp GS, Souza DO, Quincozes-Santos A (2015) Astrocytes from adult Wistar rats aged in vitro show changes in glial functions. Neurochem Int 90:93–97
CAS
Article
Google Scholar
Martínez VA, Vasco DA, García–Herrera CM (2018) Transient measurement of the thermal conductivity as a tool for the evaluation of the stability of nanofluids subjected to a pressure treatment. Int Commun Heat Mass Transf 91:234–238
Article
CAS
Google Scholar
Karthikeyan NR, Philip J, Raj B (2008) Effect of clustering on the thermal conductivity of nanofluids. Mater Chem Phys 109(1):50–55
CAS
Article
Google Scholar
Das PK, Islam N, Santra AK, Ganguly R (2017) Experimental investigation of thermophysical properties of Al2O3–water nanofluid: Role of surfactants. J Mol Liq 237:304–312
CAS
Article
Google Scholar
Kim H-S, Yilmaz F, Dharmaiah P, Lee D-J, Lee T-H, Hong S-J (2017) Characterization of Cu and Ni Nano-Fluids Synthesized by Pulsed Wire Evaporation Method. Arch Metall Mater 62(2):999–1004
CAS
Article
Google Scholar
Rubalya Valantina S, Arockia Jayalatha K, Phebee Angeline D, Uma S, Ashvanth B (2018) Synthesis and characterisation of electro-rheological property of novel eco-friendly rice bran oil and nanofluid. J Mol Liq 256:256–266
CAS
Article
Google Scholar
Wu D, Zhu H, Wang L, Liu L (2009) Critical issues in nanofluids preparation, characterization and thermal conductivity. Curr Mol Pharmacol 5(1):103–112
CAS
Google Scholar
Tiara AM, Chakraborty S, Sarkar I, Ashok A, Pal SK, Chakraborty S (2017) Heat transfer enhancement using surfactant based alumina nanofluid jet from a hot steel plate. Exp Therm Fluid Sci 89:295–303
CAS
Article
Google Scholar
Ho CJ, Liu WK, Chang YS, Lin CC (2010) Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study. Int J Therm Sci 49(8):1345–1353
CAS
Article
Google Scholar
Devendiran DK, Amirtham VA (2016) A review on preparation, characterization, properties and applications of nanofluids. Renew Sustain Energy Rev 60:21–40
CAS
Article
Google Scholar
Sharifpur M, Yousefi S, Meyer JP (2016) A new model for density of nanofluids including nanolayer. Int Commun Heat Mass Transf 78:168–174
CAS
Article
Google Scholar
Xuan Y, Roetzel W (2000) Conceptions for heat transfer correlation of nanofluids. Int Commun Heat Mass Transf 43(19):3701–3707
CAS
Article
Google Scholar
Zhou S-Q, Ni R (2008) Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Appl Phys Lett 92:9. Article ID 093123
Google Scholar
Teng TP, Hung YH (2014) Estimation and experimental study of the density and specific heat for alumina nanofluid. J Exp Nanosci 9(7):707–718
CAS
Article
Google Scholar
Kulkarni DP, Vajjha RS, Das DK, Oliva D (2008) Application of aluminum oxide nanofluids in diesel electric generator as jacket water coolant. Appl Therm Eng 28(14-15):1774–1781
CAS
Article
Google Scholar
Sekhar YR, Sharma KV (2015) Study of viscosity and specific heat capacity characteristics of water-based Al2O3nanofluids at low particle concentrations. J Exp Nanosci 10(2):86–102. View at: Publisher Site | Google Scholar
CAS
Article
Google Scholar
Ghazvini M, Akhavan-Behabadi MA, Rasouli E, Raisee M (2012) Heat transfer properties of nanodiamond-engine oil nanofluid in laminar flow. Heat Transf Eng 33(6):525–532. View at: Publisher Site | Google Scholar
CAS
Article
Google Scholar
Vajjha RS, Das DK (2012) A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties, heat transfer and pumping power. Int J Heat Mass Transfe 55(15-16):4063–4078
CAS
Article
Google Scholar
Zhou L-P, Wang B-X, Peng X-F, Du X-Z, Yang Y-P (2010) On the specific heat capacity of CuO nanofluid. Adv Mech Eng 2:Article ID 172085
Article
CAS
Google Scholar
Shin D, Banerjee D (2011) Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications. Int Commun Heat Mass Transf 54(5-6):1064–1070
CAS
Article
Google Scholar
Shin D, Banerjee D (2014) Specific heat of nanofluids synthesized by dispersing alumina nanoparticles in alkali salt eutectic. Int Commun Heat Mass Transf 74:210–214
CAS
Article
Google Scholar
Fakoor Pakdaman M, Akhavan-Behabadi MA, Razi P (2012) An experimental investigation on thermo-physical properties and overall performance of MWCNT/heat transfer oil nanofluid flow inside vertical helically coiled tubes. Exp Ther Fluid Sci 40:103–111
CAS
Article
Google Scholar
Volz S, Ordonez-Miranda J, Shchepetov A et al. (2016) Nanophononics: State of the art and perspectives. Eur Phys J B 89:1. article no. 15
CAS
Article
Google Scholar
Han H, Feng L, Xiong S et al. (2016) Effects of phonon interference through long range interatomic bonds on thermal interface conductance. Low Temp Phys 42(8):711–716
CAS
Article
Google Scholar
Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2001) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int Commun Heat Mass Transf 45(4):855–863
Article
Google Scholar
Koo J, Kleinstreuer C (2005) Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids. Int Commun Heat Mass Transf 32(9):1111–1118
CAS
Article
Google Scholar
Buongiorno J (2006) Convective transport in nanofluids. J Heat Transf 128(3):240–250
Article
Google Scholar
Nan C-W, Birringer R, Clarke DR, Gleiter H (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81(10):6692–6699
CAS
Article
Google Scholar
Bruggeman DAG (1935) Dielectric constant and conductivity of mixtures of isotropic materials. Annalen der Physik 24:636–679
CAS
Article
Google Scholar
Kumar DH, Patel HE, Kumar VRR, Sundararajan T, Pradeep T, Das SK (2004) Model for heat conduction in nanofluids. Phys Rev Lett 93(14):1–144301
Article
CAS
Google Scholar
Leong KC, Yang C, Murshed SMS (2006) A model for the thermal conductivity of nanofluids - The effect of interfacial layer. J Nanopart Res 8(2):245–254
CAS
Article
Google Scholar
Xie H, Fujii M, Zhang X (2005) Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int J Heat Mass Transf 48(14):2926–2932
CAS
Article
Google Scholar
Yamada E, Ota T (1980) Effective thermal conductivity of dispersed materials. Wärme- und Stoffübertragung 13(1-2):27–37
CAS
Article
Google Scholar
Hasselman DPH, Johnson LF (1987) Effective thermal conductivity of composites with interfacial thermal barrier resistance. J Composite Mater 21(6):508–515
Article
Google Scholar
Wang B-X, Zhou L-P, Peng X-F (2003) A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int Commun Heat Mass Transf 46(14):2665–2672
CAS
Article
Google Scholar
Davis RH (1986) The effective thermal conductivity of a composite material with spherical inclusions. Int J Thermophys 7(3):609–620
CAS
Article
Google Scholar
Xu J, Yu B, Zou M, Xu P (2006) A new model for heat conduction of nanofluids based on fractal distributions of nanoparticles. J Phys D: Appl Phys 39(20):4486–4490. article no. 028
CAS
Article
Google Scholar
Evans W, Fish J, Keblinski P (2006) Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl Phys Lett 88:9. Article ID 093116
Google Scholar
Vladkov M, Barrat J-L (2006) Modeling transient absorption and thermal conductivity in a simple nanofluid. Nano Lett 6(6):1224–1229
CAS
Article
Google Scholar
Shima PD, Philip J, Raj B (2009) Role of microconvection induced by Brownian motion of nanoparticles in the enhanced thermal conductivity of stable nanofluids. Appl Phys Lett 94:22. Article ID 223101
Google Scholar
Murshed SMS, Leong KC, Yang C (2009) A combined model for the effective thermal conductivity of nanofluids. Appl Therm Eng 29(11-12):2477–2483
CAS
Article
Google Scholar
Chon CH, Kihm KD, Lee SP, Choi SUS (2005) Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett 87:1–3. Article ID 153107
Article
CAS
Google Scholar
Patel HE, Sundararajan T, Pradeep T, Dasgupta A, Dasgupta N, Das SK (2005) A micro-convection model for thermal conductivity of nanofluids. Pramana—J Phys 65(5):863–869
CAS
Article
Google Scholar
Maïga SEB, Nguyen CT, Galanis N, Roy G (2004) Heat transfer behaviours of nanofluids in a uniformly heated tube. Superlattices and Microstructures 35(3–6):543–557
Article
CAS
Google Scholar
Timofeeva EV, Gavrilov AN, McCloskey JM et al. (2007) Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory. Phys Rev E: Stat Nonlinear Soft Matter Phys 76:6. Article ID 061203
Article
CAS
Google Scholar
Azmi WH, Sharma KV, Mamat R, Alias ABS, Izwan Misnon I (2012) “Correlations for thermal conductivity and viscosity of water based nanofluids. IOP Conf Ser Mater Sci Eng 36:1
Google Scholar
Li CH, Peterson GP (2006) Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J Appl Phys 99:8. Article ID 084314
Google Scholar
Corcione M (2011) Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manag 52(1):789–793
CAS
Article
Google Scholar
Xie H, Wang J, Xi T, Liu Y (2002) Thermal conductivity of suspensions containing nanosized SiC particles. Int J Thermophys 23(2):571–580
CAS
Article
Google Scholar
Assael MJ, Metaxa IN, Arvanitidis J, Christofilos D, Lioutas C (2005) Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the presence of two different dispersants. Int J Thermophys 26(3):647–664
CAS
Article
Google Scholar
Teng T-P, Hung Y-H, Teng T-C, Mo H-E, Hsu H-G (2010) The effect of alumina/water nanofluid particle size on thermal conductivity. Appl Therm Eng 30(14-15):2213–2218
CAS
Article
Google Scholar
Choi TY, Maneshian MH, Kang B, Chang WS, Han CS, Poulikakos D (2009) Measurement of the thermal conductivity of a water-based single-wall carbon nanotube colloidal suspension with a modified 3- ω method. Nanotechnology 20:31. Article ID 315706
Google Scholar
Paul G, Chopkar M, Manna I, Das PK (2010) Techniques for measuring the thermal conductivity of nanofluids: a review. Renew Sustain Energy Rev 14(7):1913–1924
CAS
Article
Google Scholar
Czarnetzki W, Roetzel W (1995) Temperature oscillation techniques for simultaneous measurement of thermal diffusivity and conductivity. Int J Thermophys 16(2):413–422
CAS
Article
Google Scholar
Jiang W, Ding G, Peng H (2009) Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants. Int J Therm Sci 48(6):1108–1115
CAS
Article
Google Scholar
Murshed SMS, Leong KC, Yang C, “Thermal conductivity of nanoparticle suspensions (nanofluids),” in Proceedings of the 2006 IEEE Conference on Emerging Technologies - Nanoelectronics, pp. 155–158, Singapore, Singapore, January 2006.
Ju YS, Kim J, Hung M-T (2008) Experimental study of heat conduction in aqueous suspensions of aluminum oxide nanoparticles. J Heat Transf 130:9. Article ID 092403
Google Scholar
Behnajady MA, Eskandarloo H, Modirshahla N, Shokri M (2011) Investigation of the effect of sol-gel synthesis variables on structural and photocatalytic properties of TiO2 nanoparticles. Desalination 278:10–17
CAS
Article
Google Scholar
Warzoha RJ, Fleischer AS (2014) Determining the thermal conductivity of liquids using the transient hot disk method. Part I: Establishing transient thermal-fluid constraints. Int J Heat Mass Transf 71:779–789
Article
Google Scholar
Agresti F, Barison S, Battiston S et al. (2013) “Influence of molecular weight of PVP on aggregation and thermal diffusivity of silver-based nanofluids,” in Nanotechnology 2013: Electronics, Devices, Fabrication, MEMS, Fluidics and Computational - 2013 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2013:366–369
Agresti F, Ferrario A, Boldrini S et al. (2015) Temperature controlled photoacoustic device for thermal diffusivity measurements of liquids and nanofluids. Thermochim Acta 619:48–52
CAS
Article
Google Scholar
Astrath NGC, Medina AN, Bento AC et al. (2008) Time resolved thermal lens measurements of the thermo-optical properties of Nd2O3-doped low silica calcium aluminosilicate glasses down to 4.3 K. J Non-Crystalline Solids 354(2-9):574–579
CAS
Article
Google Scholar
Jiménez Pérez JL, Gutierrez Fuentes R, Sanchez Ramirez JF, Cruz-Orea A (2008) Study of gold nanoparticles effect on thermal diffusivity of nanofluids based on various solvents by using thermal lens spectroscopy. Eur Phys J Spec Top 153(1):159–161
Article
Google Scholar
Rodriguez LG, Iza P, Paz JL (2016) Study of dependence between thermal diffusivity and sample concentration measured by means of frequency-resolved thermal lens experiment. J Nonlinear Optical Phys Mater 25:02. Article ID 1650022
Article
CAS
Google Scholar
Joseph SA, Hari M, Mathew S et al. (2010) Thermal diffusivity of rhodamine 6G incorporated in silver nanofluid measured using mode-matched thermal lens technique. Opt Commun 283(2):313–317
CAS
Article
Google Scholar
Baesso ML, Pereira JRD, Bento AC, Palangana AJ, Mansanares AM, Evangelista LR (1998) Thermal lens spectrometry to study complex fluids. Braz J Phys 28(4):359–368
CAS
Article
Google Scholar
Murshed SMS, Leong KC, Yang C (2006) Determination of the effective thermal diffusivity of nanofluids by the double hot-wire technique. J Phys D: Appl Phys 39(24):5316–5322
CAS
Article
Google Scholar
Zhang X, Gu H, Fujii M (2007) Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp Therm Fluid Sci 31(6):593–599
CAS
Article
Google Scholar
Einstein A (1956) Investigation on the Theory of the Brownian Movement, Dover, New York, NY, USA
Einstein A (1906) Eine neue Bestimmung der Moleküldimensionen. Ann der Phys 324(2):289–306
Article
Google Scholar
Rudyak VY, Minakov AV (2018) Thermophysical properties of nanofluids. Eur Phys J E 41:1
CAS
Article
Google Scholar
Ilyas SU, Pendyala R, Shuib AS, Marneni N (2014) A review on the viscous and thermal transport properties of nanofluids. Adv Mater Res 917:18–27
Article
CAS
Google Scholar
Hemmati-Sarapardeh A, Varamesh A, Husein MM, Karan K (2018) On the evaluation of the viscosity of nanofluid systems: Modeling and data assessment. Renew Sustain Energy Rev 81:313–329
CAS
Article
Google Scholar
Rudyak VY, Belkin AA, Egorov VV (2009) On the effective viscosity of nanosuspensions. Tech Phys 54(8):1102–1109
CAS
Article
Google Scholar
Namburu PK, Kulkarni DP, Dandekar A, Das DK (2007) Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids. IET Micro Nano Lett 2(3):67–71
CAS
Article
Google Scholar
Vasiliev LL, Grakovich LP, Rabetskii MI, Vasiliev Jr (2013) Heat transfer enhancement in heat pipes and thermosyphons using nanotechnologies (nanofluids, nanocoatings, and nanocomposites) as an hp envelope. Heat Pipe Sci Technol Int J 4(4):251–275
Article
Google Scholar
Ali HM, Babar H, Shah TR, Sajid MU, Qasim MA, Javed S (2018) Preparation Techniques of TiO2 Nanofluids and Challenges: a review. Appl Sci 8:587. https://doi.org/10.3390/app8040587
CAS
Article
Google Scholar
Zhang YX, Li GH, Jin YX, Zhang Y, Zhang J, Zhang LD (2002) Hydrothermal synthesis and photoluminescence of TiO2 nanowires. Chem Phys Lett 365:300–304
CAS
Article
Google Scholar
Attar AS, Ghamsari MS, Hajiesmaeilbaigi F, Mirdamadi S, Katagiri K, Koumoto K (2009) Sol-gel template synthesis and characterization of aligned anatase-TiO2 nanorod arrays with different diameter. Mater Chem Phys 113(2-3):856–860
CAS
Article
Google Scholar
Wu JJ, Yu CC (2004) Aligned TiO2 nanorods and nanowalls. J Phys Chem B 108(11):3377–3379
CAS
Article
Google Scholar
Feng XJ, Zhai J, Jiang L (2005) The fabrication and switchable superhydrophobicity of TiO2 nanorod films. Angew Chem Int Ed 44(32):5115–5118
CAS
Article
Google Scholar
Hamilton RL, Crosser OK (1962) Termal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundamentals 1(3):187–191
CAS
Article
Google Scholar
Wasp EJ, Kenny JP, Gandhi RL. (1977) Solid–liquid flow: slurry pipeline transportation, pumps, valves, mechanical equipment, economics
Yu W, Choi SUS (2003) Te role of interfacial layers in the enhanced thermal conductivity of nanofuids: A renovated Maxwell model. J Nanopart Res 5(1-2):167–171
CAS
Article
Google Scholar
Xuan Y, Li Q, Hu W (2003) Aggregation structure and thermal conductivity of nanofuids. AIChE J 49(4):1038–1043
CAS
Article
Google Scholar
Einstein A (1906) Eine neue Bestimmung der Moleküldimensionen. Ann der Phys 324(2):289–306
Article
Google Scholar
Brinkman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20(4):571
CAS
Article
Google Scholar
Batchelor GK (1977) The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 83(1):97–117
Article
Google Scholar
Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11(2):151–170
CAS
Article
Google Scholar
Utomo AT, Poth H, Robbins PT, Pacek AW (2012) Experimental and theoretical studies of thermal conductivity, viscosity and heat transfer coefficient of titania and alumina nanofluids. Int J Heat Mass Transf 55(25-26):7772–7781
CAS
Article
Google Scholar
Eggers JR, Kabelac S (2016) Nanofluids revisited. Appl Therm Eng 106:1114–1126
CAS
Article
Google Scholar
Rui NI et al. (2011) An experimental investigation of turbulent thermal convection in water-based alumina nanofluid. Phys Fluids 23:022005. https://doi.org/10.1063/1.3553281
CAS
Article
Google Scholar
Lai W, Wong W (2021) Property-tuneable microgels fabricated by using flow-focusing microfluidic geometry for bioactive agent delivery. Pharmaceutics 13(6):787. https://doi.org/10.3390/pharmaceutics13060787
CAS
Article
Google Scholar
Xie J, Hao W, Wang F (2022) Parametric study on interfacial crack propagation in solid oxide fuel cell based on electrode material. Int J Hydrogen Energy 47(12):7975–7989. https://doi.org/10.1016/j.ijhydene.2021.12.153
CAS
Article
Google Scholar
Salimi M, Pirouzfar V, Kianfar E (2017) Enhanced gas transport properties in silica nanoparticle filler-polystyrene nanocomposite membranes. Colloid Polym Sci 295:215–226. https://doi.org/10.1007/s00396-016-3998-0
CAS
Article
Google Scholar
Kianfar E (2018) Synthesis and characterization of AlPO4/ZSM-5 catalyst for methanol conversion to dimethyl ether. Russ J Appl Chem 91:1711–1720. https://doi.org/10.1134/S1070427218100208
CAS
Article
Google Scholar
Kianfar E (2019) Ethylene to propylene conversion over Ni-W/ZSM-5 catalyst. Russ J Appl Chem 92:1094–1101. https://doi.org/10.1134/S1070427219080068
CAS
Article
Google Scholar
Kianfar E, Salimi M, Kianfar F, kianfar M, Razavikia SAH (2019) CO2/N2 separation using polyvinyl chloride iso-phthalic acid/aluminium nitrate nanocomposite membrane. Macromol. Res. 27:83–89. https://doi.org/10.1007/s13233-019-7009-4
CAS
Article
Google Scholar
Kianfar E (2019) Ethylene to propylene over Zeolite ZSM-5: improved catalyst performance by treatment with CuO. Russ J Appl Chem 92:933–939. https://doi.org/10.1134/S1070427219070085
CAS
Article
Google Scholar
Kianfar E, Shirshahi M, Kianfar F, Kianfar F (2018) Simultaneous prediction of the density, viscosity and electrical conductivity of pyridinium-based hydrophobic ionic liquids using artificial neural network. Silicon 10:2617–2625. https://doi.org/10.1007/s12633-018-9798-z
CAS
Article
Google Scholar
Salimi M, Pirouzfar V, Kianfar E (2017) Novel nanocomposite membranes prepared with PVC/ABS and silica nanoparticles for C2H6/CH4 separation. Polym Sci Ser A 59:566–574. https://doi.org/10.1134/S0965545X17040071
CAS
Article
Google Scholar
Kianfar F, Kianfar E (2019) Synthesis of isophthalic acid/aluminum nitrate thin film nanocomposite membrane for hard water softening. J Inorg Organomet Polym 29:2176–2185. https://doi.org/10.1007/s10904-019-01177-1
CAS
Article
Google Scholar
Kianfar E, Azimikia R, Faghih SM (2020) Simple and strong dative attachment of α-diimine nickel (ii) catalysts on supports for ethylene polymerization with controlled morphology. Catal Lett 150:2322–2330. https://doi.org/10.1007/s10562-020-03116-z
CAS
Article
Google Scholar
Kianfar E (2019) Nanozeolites: synthesized, properties, applications. J Sol-Gel Sci Technol 91:415–429. https://doi.org/10.1007/s10971-019-05012-4
CAS
Article
Google Scholar
Liu H, Kianfar E (2021) Investigation the synthesis of Nano-SAPO-34 catalyst prepared by different templates for MTO process. Catal Lett 151:787–802. https://doi.org/10.1007/s10562-020-03333-6
CAS
Article
Google Scholar
Kianfar E, Salimi M, Hajimirzaee S, Koohestani B (2018) Methanol to gasoline conversion over CuO/ZSM-5 catalyst synthesized using sonochemistry method. Int J Chem Reactor Eng 17
Kianfar E, Salimi M, Pirouzfar V, Koohestani B (2018) Synthesis of modified catalyst and stabilization of CuO/NH4-ZSM-5 for conversion of methanol to gasoline. Int J Appl Ceram Technol 15:734–741. https://doi.org/10.1111/ijac.12830
CAS
Article
Google Scholar
Kianfar E, Salimi M, Pirouzfar V, Koohestani B (2018) Synthesis and Modification of Zeolite ZSM-5 Catalyst with Solutions of Calcium Carbonate (CaCO3) and Sodium Carbonate (Na2CO3) for Methanol to Gasoline Conversion. Int J Chem Reactor Eng 16(7):20170229. https://doi.org/10.1515/ijcre-2017-0229
CAS
Article
Google Scholar
kianfar E (2019) Comparison and assessment of Zeolite Catalysts performance Dimethyl ether and light olefins production through methanol: A review. Rev Inorganic Chem 39:157–177
CAS
Article
Google Scholar
Kianfar E, Salimi M (2020) A review on the production of light olefins from hydrocarbons cracking and methanol conversion: In book: Advances in Chemistry Research, Volume 59: Edition: James C. Taylor Chapter: 1: Publisher: Nova Science Publishers, Inc., NY, USA
Kianfar E, Razavi A (2020) Zeolite catalyst based selective for the process MTG: A review: In book: Zeolites: Advances in Research and Applications, Edition: Annett Mahler Chapter: 8: Publisher: Nova Science Publishers, Inc., NY, USA
Kianfar E (2020) Zeolites: properties, applications, modification and selectivity: In book: Zeolites: Advances in Research and Applications, Edition: Annett Mahler Chapter: 1: Publisher: Nova Science Publishers, Inc., NY, USA
Kianfar E, Hajimirzaee S, Musavian SS, Mehr AS Zeolite-based Catalysts for Methanol to Gasoline process: a review. Microchem J 104822 (2020)
Kianfar E, Baghernejad M, Rahimdashti Y (2015) Study synthesis of vanadium oxide nanotubes with two template hexadecylamin and hexylamine. Biol Forum. 7:1671–1685
Google Scholar
Kianfar E. Synthesizing of vanadium oxide nanotubes using hydrothermal and ultrasonic method. Publisher: Lambert Academic Publishing. 1-80(2020). ISBN: 978-613-9-81541-8.
Kianfar E, Pirouzfar V, Sakhaeinia H (2017) An experimental study on absorption/stripping CO2 using Mono-ethanol amine hollow fiber membrane contactor. J Taiwan Inst Chem Eng 80:954–962
CAS
Article
Google Scholar
Kianfar E, Viet C (2021) Polymeric membranes on base of PolyMethyl methacrylate for air separation: a review. J Mater Res Technol ume 10:1437–1461
Article
CAS
Google Scholar
Nmousavian SS, Faravar P, Zarei Z, Zimikia R, Monjezi MG, Kianfar E (2020) Modeling and simulation absorption of CO2 using hollow fiber membranes (HFM) with mono-ethanol amine with computational fluid dynamics. J Environ Chem Eng 8(4):103946
Article
CAS
Google Scholar
Yang Z, Zhang L, Zhou Y, Wang H, Wen L, Kianfar E (2020) Investigation of effective parameters on SAPO-34 Nano catalyst the methanol-to-olefin conversion process: A review. Rev Inorganic Chem 40(3):91–105. https://doi.org/10.1515/revic-2020-0003
CAS
Article
Google Scholar
Gao C, Liao J, Lu J, Ma J, Kianfar E (2020) The effect of nanoparticles on gas permeability with polyimide membranes and network hybrid membranes: a review, Reviews in Inorganic Chemistry. https://doi.org/10.1515/revic-2020-0007.
Kianfar E, Salimi M, Koohestani B (2020) Zeolite CATALYST: a review on the production of light Olefins. Publisher: Lambert Academic Publishing. 1–116. ISBN:978-620-3-04259-7.
Kianfar E (2020) Investigation on catalysts of “Methanol to light Olefins”. Publisher: Lambert Academic Publishing. 1–168. ISBN: 978-620-3-19402-9.
Kianfar E (2020) Application of nanotechnology in enhanced recovery oil and gas importance & applications of nanotechnology, MedDocs Publishers.5, Chapter 3, 16–21
Kianfar E (2020) Catalytic properties of nanomaterials and factors affecting it importance & applications of nanotechnology, MedDocs Publishers.5, Chapter 4, 22–25
Kianfar E (2020) Introducing the application of nanotechnology in Lithium-Ion battery importance & applications of nanotechnology, MedDocs Publishers. 4, Chapter 4, pp. 1–7
Kianfar E, Mazaheri H (2020) Synthesis of nanocomposite (CAU-10-H) thin-film nanocomposite (TFN) membrane for removal of color from the water. Fine Chem Eng 1:83–91
Article
Google Scholar
Kianfar E (2020) Simultaneous prediction of the density and viscosity of the ternary system water-ethanol-ethylene glycol using support vector machine. Fine Chem Eng 1:69–74
Article
Google Scholar
Kianfar E, Salimi M, Koohestani B (2020) Methanol to gasoline conversion over CuO/ZSM-5 catalyst synthesized and influence of water on conversion. Fine Chem Eng 1:75–82
Article
Google Scholar
Kianfar E (2020) An experimental study PVDF and PSF hollow fiber membranes for chemical absorption carbon dioxide. Fine Chem Eng 1:92–103
Article
Google Scholar
Kianfar E, Mafi S (2020) Ionic liquids: properties, application, and synthesis. Fine Chem Eng 2:22–31
Article
Google Scholar
Faghih SM, Kianfar E (2018) Modeling of fluid bed reactor of ethylene dichloride production in Abadan Petrochemical based on three-phase hydrodynamic model. Int J Chem React Eng 16:1–14
Google Scholar
Kianfar E; Mazaheri H (2020) Methanol to gasoline: A Sustainable Transport Fuel, In book: Advances in Chemistry Research. Volume 66, Edition: james C.taylorChapter: 4Publisher: Nova Science Publishers, Inc., NY, USA
Kianfar, “A (2020) Comparison and Assessment on Performance of Zeolite Catalyst Based Selective for the Process Methanol to Gasoline: A Review, “in Advances in Chemistry Research, 63, Chapter 2 (NewYork: Nova Science Publishers, Inc.)
Kianfar E, Hajimirzaee S, Faghih SM et al. (2020) Polyvinyl chloride + nanoparticles titanium oxide Membrane for Separation of O2/N2. Advances in Nanotechnology. Nova Science Publishers, Inc, NY, USA
Google Scholar
Kianfar E (2020) Synthesis of characterization Nanoparticles isophthalic acid/aluminum nitrate (CAU-10-H) using method hydrothermal. Advances in Chemistry Research. Nova Science Publishers, Inc, NY, USA
Google Scholar
Kianfar E (2020) CO2 Capture with Ionic Liquids: A Review. Advances in Chemistry Research. Publisher: Nova Science Publishers, Inc, NY, USA, Volume 67
Google Scholar
Kianfar E (2020) Enhanced Light Olefins Production via Methanol Dehydration over Promoted SAPO-34. Advances in Chemistry Research. Nova Science Publishers, Inc, NY, USA, Volume 63, Chapter: 4
Google Scholar
Kianfar E (2020) Gas hydrate: applications, structure, formation, separation processes, Thermodynamics. Advances in Chemistry Research. Publisher: Nova Science Publishers, Inc, NY, USA, Volume 62, Edition: James C. Taylor. Chapter: 8
Google Scholar
Kianfar M, Kianfar F, Kianfar E (2016) The effect of nano-composites on the mechanic and morphological characteristics of NBR/PA6 blends. Am J Oil Chem Technol 4(1):29–44
Google Scholar
Kianfar E (2016) The effect of nano-composites on the mechanic and morphological characteristics of NBR/PA6 blends. Am J Oil Chem Technol 4(1):27–42
Google Scholar
Kianfar F, Moghadam SRM, Kianfar E (2015) Energy optimization of Ilam gas refinery unit 100 by using HYSYS refinery software. Indian J Sci Technol 8(S9):431–436
Google Scholar
Kianfar E (2015) Production and identification of vanadium oxide nanotubes. Indian J Sci Technol 8(S9):455–464
Article
Google Scholar
Kianfar F, Moghadam SRM, Kianfar E (2015) Synthesis of spiro pyran by using silica-bonded N-propyldiethylenetriamine as recyclable basic catalyst. Indian J Sci Technol 8(11):68669
Article
Google Scholar
Hajimirzaee S, Mehr AS, Kianfar E (2020) Modified ZSM-5 Zeolite for conversion of LPG to aromatics, polycyclic aromatic compounds, https://doi.org/10.1080/10406638.2020.1833048
Kianfar E (2021) Investigation of the effect of crystallization temperature and time in synthesis of SAPO-34 catalyst for the production of light olefins. Pet Chem 61:527–537. https://doi.org/10.1134/S0965544121050030
CAS
Article
Google Scholar
Huang X, Zhu Y, Kianfar E (2021) Nano Biosensors: properties, applications and Electrochemical Techniques. J Mater Res Technol 12:1649–1672. https://doi.org/10.1016/j.jmrt.2021.03.048
CAS
Article
Google Scholar
Kianfar E (2021) Protein nanoparticles in drug delivery: animal protein, plant proteins and protein cages, albumin nanoparticles. J Nanobiotechnol 19:159. https://doi.org/10.1186/s12951-021-00896-3
CAS
Article
Google Scholar
Kianfar, E (2020) Magnetic nanoparticles in targeted drug delivery: A review. J Superconductivity Novel Magnetism. https://doi.org/10.1007/s10948-021-05932-9.
Syah, R, Zahar, M and Kianfar, E Nanoreactors: properties, applications and characterization, Int J Chem Reactor Eng, vol., no., (2021), 000010151520210069. https://doi.org/10.1515/ijcre-2021-0069
Majdi HS, Latipov ZA, Borisov V et al. (2021) Nano and battery anode: a review. Nanoscale Res Lett 16:177. https://doi.org/10.1186/s11671-021-03631-x
Article
Google Scholar
Bokov D, Jalil AT, Chupradit S, Suksatan W, Ansari MJ, Shewael IH, Valiev GH, Kianfar E (2021) Nanomaterial by sol-gel method: synthesis and application. Adv Mater Sci Eng 21:2021. https://doi.org/10.1155/2021/5102014. Article ID 5102014
CAS
Article
Google Scholar
Ansari, MJ, Kadhim, MM, Hussein, BA et al. (2022) Synthesis and stability of magnetic nanoparticles. BioNanoSci. https://doi.org/10.1007/s12668-022-00947-5.
Chupradit S, Kavitha M, Suksatan W, Ansari MJ, Al Mashhadani ZI, Kadhim MM, Mustafa YF, Shafik SS, Kianfar E (2022) Morphological control: properties and applications of metal nanostructures. Adv Mater Sci Eng 15:2022. https://doi.org/10.1155/2022/1971891. Article ID 1971891
Article
Google Scholar
Aldeen ODAS, Mahmoud MZ, Sh. Majdi H, Mutlak DA, Uktamov KF, Kianfar E (2022) Investigation of effective parameters Ce and Zr in the synthesis of H-ZSM-5 and SAPO-34 on the production of light olefins from Naphtha. Adv Mater Sci Eng 2022:22 pages. https://doi.org/10.1155/2022/6165180. Article ID 6165180
CAS
Article
Google Scholar
Suryatna A, Raya I, Thangavelu L, Alhachami FR, Kadhim MM, Altimari US, Mahmoud ZH, Mustafa YF, Kianfar E (2022) A review of high-energy density lithium-air battery technology: investigating the effect of oxides and nanocatalysts. J Chem 2022:32 pages. https://doi.org/10.1155/2022/2762647. Article ID 2762647
CAS
Article
Google Scholar
Abdelbasset, WK, Jasim, SA, Bokov, DO et al. (2022) Comparison and evaluation of the performance of graphene-based biosensors. Carbon Lett. https://doi.org/10.1007/s42823-022-00338-6
Jasim SA, Kadhim MM, KN V et al. (2022) Molecular junctions: introduction and physical foundations, nanoelectrical conductivity and electronic structure and charge transfer in organic molecular junctions. Braz J Phys 52:31. https://doi.org/10.1007/s13538-021-01033-z
CAS
Article
Google Scholar
Rikani AS (2021) Numerical analysis of free heat transfer properties of flat panel solar collectors with different geometries. J Res Sci Eng Technol 9(01):95–116
Google Scholar
Bakhshkandi R, Ghoranneviss M (2019) Investigating the synthesis and growth of titanium dioxide nanoparticles on a cobalt catalyst. J Res Sci Eng Technol 7(4):1–3
Article
Google Scholar
Eldo C, Riya K, Mohamed Anees S, Rajiniganth E (2019) Treatment of textile plant effluent by using a heat exchanger. Int J Commun Comput Technol 7 Suppl 1:27–29. https://doi.org/10.31838/ijccts/07.SP01.06
Article
Google Scholar
Desai HB, Kumar A, Tanna AR (2021) Structural and magnetic properties of mgfe2o4 ferrite nanoparticles synthesis through auto combustion technique. Eur Chem Bull 10(3):186–190
CAS
Google Scholar
Nair KGS, Velmurugan R, Sukumaran SK (2020) Influence of polylactic acid and polycaprolactone on dissolution characteristics of ansamycin-loaded polymeric nanoparticles: An unsatisfied attempt for drug release profile. J Pharm Negat Results 11(1):23–29. https://doi.org/10.4103/jpnr.JPNR_26_19
CAS
Article
Google Scholar
Talavari, A, Ghanavati, B, Azimi, A, & Sayyahi, S (2021). PVDF/ MWCNT hollow fiber mixed matrix membranes for gas absorption by Al2O3 nanofluid. Progr Chem Biochem Res 4(2), 177–190. https://doi.org/10.22034/pcbr.2021.270178.1177.
Saghiri S, Ebrahimi M, Bozorgmehr MR (1999) Electrochemical amplified sensor with mgo nanoparticle and ionic liquid: a powerful strategy for methyldopa analysis. Chem Methodol 5(3):234–239. https://doi.org/10.22034/chemm.2021.128530
CAS
Article
Google Scholar
Haji Abdolvahab R, Zamani Meymian MR, Soudmand N (2020) Characterization of ZnO, Cu and Mo composite thin films in different annealing temperatures. Chem Methodologies 4(Issue 3):276–284. https://doi.org/10.33945/sami/chemm.2020.3.5
CAS
Article
Google Scholar
Dehno Khalaji A (2019) Cobalt oxide nanoparticles by solid-state thermal decomposition: Synthesis and characterization. Eurasian Chem Commun. 1(1):75–78. https://doi.org/10.33945/sami/ecc.2019.1.10
Article
Google Scholar
Emrani A, Davoodnia A, Tavakoli-Hoseini N (2011) Alumina supported ammonium dihydrogenphosphate (NH 4 H 2 PO 4/Al 2 O 3): preparation, characterization and its application as catalyst in the synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles. Bull Korean Chem Soc 32(7):2385–2390. https://doi.org/10.5012/bkcs.2011.32.7.2385
CAS
Article
Google Scholar
Qaderi J (2020) A brief review on the reaction mechanisms of CO2 hydrogenation into methanol. Int J Innovat Res Sci Stud 3(2):33–40. https://doi.org/10.53894/ijirss.v3i2.31
Article
Google Scholar
Zhao T-H, Castillo O, Jahanshahi H, Yusuf A, Alassafi MO, Alsaadi FE, Chu Y-M (2021) A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak. Appl Comput Math 20(1):160–176
Google Scholar
Zhao T-H, Wang M-K, Chu Y-M (2022) On the bounds of the perimeter of an ellipse. Acta Math. Sci. 42B(2):491–501. https://doi.org/10.1007/s10473-022-0204-y
Article
Google Scholar
Zhao T-H, Wang M-K, Hai G-J, Chu Y-M. Landen inequalities for Gaussian hypergeometric function, Rev. R. Acad. Cienc. Exactas F\’{\i}s. Nat. Ser. A Mat. RACSAM, 2022, 116(1), Paper No. 53, 23. https://doi.org/10.1007/s13398-021-01197-y
Nazeer M, Hussain F, Khan MI, Asad-ur-Rehman, El-Zahar ER, Chu Y-M, Malik MY (2022) Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel. Appl Math Comput 420:15 pages. https://doi.org/10.1016/j.amc.2021.126868. Paper No. 126868
Article
Google Scholar
Chu Y-M, Shankaralingappa BM, Gireesha BJ, Alzahrani F, Ijaz Khan M, Khan SU (2022) Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface. Appl Math Comput 419:14 pages. https://doi.org/10.1016/j.amc.2021.126883. Paper No. 126883
Article
Google Scholar
Zhao T-H, Ijaz Khan M, Chu Y-M (2021) Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks, Math Methods Appl Sci. https://doi.org/10.1002/mma.7310
Zhao T-H, He Z-Y, Chu Y-M (2021) Sharp bounds for the weighted H\"{o}lder mean of the zero-balanced generalized complete elliptic integrals. Comput Methods Funct Theory 21(3):413–426. https://doi.org/10.1007/s40315-020-00352-7
Article
Google Scholar
Zhao T-H, Wang M-K, Chu Y-M (2021) Concavity and bounds involving generalized elliptic integral of the first kind. J Math Inequal 15(2):701–724. https://doi.org/10.7153/jmi-2021-15-50
Article
Google Scholar
Zhao T-H, Wang M-K, Chu Y-M (2021) Monotonicity and convexity involving generalized elliptic integral of the first kind. Rev. R. Acad. Cienc. Exactas F\'{\i}s. Nat. Ser. A Mat. RACSAM 115(2):13. https://doi.org/10.1007/s13398-020-00992-3. Paper No. 46
Chu H-H, Zhao T-H, Chu Y-M (2020) Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contraharmonic means. Math Slovaca 70(5):1097–1112. https://doi.org/10.1515/ms-2017-0417
Article
Google Scholar
Zhao T-H, He Z-Y, Chu Y-M (2020) On some refinements for inequalities involving zero-balanced hypergeometric function. AIMS Math. 5(6):6479–6495. https://doi.org/10.3934/math.2020418
Article
Google Scholar
Zhao T-H, Wang M-K, Chu Y-M (2020) A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math. 5(5):4512–4528. https://doi.org/10.3934/math.2020290
Article
Google Scholar
Zhao T-H, Shi L, Chu Y-M (2020) Convexity and concavity of the modified Bessel functions of the first kind with respect to H\"{o}lder means. Rev. R. Acad. Cienc. Exactas F\’{\i}s. Nat. Ser. A Mat. RACSAM 114(2):14. https://doi.org/10.1007/s13398-020-00825-3. Paper No. 96
Zhao T-H, Zhou B-C, Wang M-K, Chu Y-M (2019) On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019:12. https://doi.org/10.1186/s13660-019-1991-0. Paper No. 42
Zhao T-H, Wang M-K, Zhang W, Chu Y-M (2018) Quadratic transformation inequalities for Gaussian hypergeometric function. J. Inequal. Appl. 2018(251):15. https://doi.org/10.1186/s13660-018-1848-y
Chu Y-M, Zhao T-H (2016) Concavity of the error function with respect to H\"{o}lder means. Math Inequal Appl 19(2):589–595. https://doi.org/10.7153/mia-19-43
Article
Google Scholar
Zhao T-H, Shen Z-H, Chu Y-M (2021) Sharp power mean bounds for the lemniscate type means. Rev. R. Acad. Cienc. Exactas F\'{\i}s. Nat. Ser. A Mat. RACSAM 115(4):16 pages. https://doi.org/10.1007/s13398-021-01117-0. [17] Paper No. 175
Wang M-K, Hong M-Y, Xu Y-F, Shen Z-H, Chu Y-M (2020) Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J Math Inequal 14(1):1–21. https://doi.org/10.7153/jmi-2020-14-01
Article
Google Scholar
Xu H-Z, Qian W-M, Chu Y-M (2022) Sharp bounds for the lemniscatic mean by the one-parameter geometric and quadratic means. Rev. R. Acad. Cienc. Exactas F\'{\i}s. Nat. Ser. A Mat. RACSAM 116(1):15. https://doi.org/10.1007/s13398-021-01162-9. Paper No. 21
Karthikeyan K, Karthikeyan P, Baskonus HM, Venkatachalam K, Chu Y-M (2021) Almost sectorial operators on $\Psi$-Hilfer derivative fractional impulsive integro-differential equations, Math Methods Appl Sci. https://doi.org/10.1002/mma.7954
Chu Y-M, Nazir U, Sohail M, Selim MM, Lee J-R (2021) Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach. Fractal Fract. 5(3):17. https://doi.org/10.3390/fractalfract5030119. Article 119
Article
Google Scholar
Rashid S, Sultana S, Karaca Y, Khalid A, Chu Y-M (2022) Some further extensions considering discrete proportional fractional operators. Fractals 30(1):12. https://doi.org/10.1142/S0218348X22400266. Article ID 2240026
Article
Google Scholar
Zhao T-H, Qian W-M, Chu Y-M (2021) Sharp power mean bounds for the tangent and hyperbolic sine means. J Math Inequal 15(4):1459–1472. https://doi.org/10.7153/jmi-2021-15-100
Article
Google Scholar
Zhao T-H, Qian W-M, Chu Y-M (2021) On approximating the arc lemniscate functions, Indian J Pure Appl Math. https://doi.org/10.1007/s13226-021-00016-9.
Narges Hajiseyedazizi S, Samei ME, Alzabut J, Chu Y-M (2021) On multi-step methods for singular fractional $q$-integro-differential equations. Open Math 19(1):1378–1405. https://doi.org/10.1515/math-2021-0093
Article
Google Scholar
Jin F, Qian Z-S, Chu Y-M, ur Rahman M (2022) On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative. J Appl Anal Comput 12(2):790–806. https://doi.org/10.11948/20210357
Article
Google Scholar
Rashid S, Abouelmagd EI, Khalid A, Farooq FB, Chu Y-M (2022) Some recent developments on dynamical $\hbar$-discrete fractional type inequalities in the frame of nonsingular and nonlocal kernels. Fractals 30(2):15. https://doi.org/10.1142/S0218348X22401107. Article ID 2240110
Wang F-Z, Khan MN, Ahmad I, Ahmad H, Abu-Zinadah H, Chu Y-M (2022) Numerical solution of traveling waves in chemical kinetics: time-fractional fishers equations. Fractals 30(2):11. https://doi.org/10.1142/S0218348X22400515. Article ID 2240051
Article
Google Scholar
Sarafraz MM, Hormozi F, Peyghambarzadeh SM (2015) Role of nanofluid fouling on thermal performance of a thermosyphon: Are nanofluids reliable working fluid? Appl Therm Eng 82:212–224
CAS
Article
Google Scholar
Zhao T-H, Bhayo BA, Chu Y-M 2021) Inequalities for generalized Gr\"{o}tzsch ring function, Comput. Methods Funct. Theory. https://doi.org/10.1007/s40315-021-00415-3
Rashid S, Abouelmagd EI, Sultana S, Chu Y-M (2022) New developments in weighted $n$-fold type inequalities via discrete generalized \^{h}-proportional fractional operators. Fractals 30(2):15. https://doi.org/10.1142/S0218348X22400564. Article ID 2240056
Article
Google Scholar
Chu Y-M, Bashir S, Ramzan M, Malik MY (2022) Model-based comparative study of magnetohydrodynamics unsteady hybrid nanofluid flow between two infinite parallel plates with particle shape effects. Math Methods Appl Sci. https://doi.org/10.1002/mma.8234
Qian W-M, Chu H-H, Wang M-K, Chu Y-M (2022) Sharp inequalities for the Toader mean of order $-1$ in terms of other bivariate means. J Math Inequal. J Math Inequal 16(1):127–141. https://doi.org/10.7153/jmi-2022-16-10
Article
Google Scholar
Zhao T-H, Chu H-H, Chu Y-M (2022) Optimal Lehmer mean bounds for the $n$th power-type Toader mean of $n=-1, 1, 3$. J Math Inequal 16(1):157–168. https://doi.org/10.7153/jmi-2022-16-12
Article
Google Scholar
Zhao T-H, Wang M-K, Dai Y-Q, Chu Y-M (2022) On the generalized power-type Toader mean. J Math Inequal 16(1):247–264. https://doi.org/10.7153/jmi-2022-16-18
Article
Google Scholar
Iqbal SA, Hafez MG, Chu Y-M, Park C (2022) Dynamical Analysis of nonautonomous RLC circuit with the absence and presence of Atangana-Baleanu fractional derivative. J Appl Anal Comput 12(2):770–789. https://doi.org/10.11948/20210324
Article
Google Scholar
Sharma AK, Tiwari AK, Dixit AR (2016) Rheological behaviour of nanofluids: a review. Renew Sustain Energy Rev 53:779–791
CAS
Article
Google Scholar