Skip to main content
Log in

Effects of electrophoretic deposition conditions on the formation of colloidal crystalline/amorphous arrays of SiO2 particles

  • Invited Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The ordering of monodispersed nano- and micro-scale particles has unique properties, such as selective light scattering, which are controlled by the degree of ordering. In structurally colored materials, particle arrays that have long-range-order (colloidal crystalline arrays) can exhibit vivid and illumination-angle-dependent color. In contrast, short-range-ordered arrays (colloidal amorphous arrays) exhibit matte and illumination-angle-independent color. We prepared SiO2 particle arrays with controlled ordering via electrophoretic deposition. Dispersant organic solvents determined the formation of uniform arrays, the applied voltage had minor effects on the ordering, and an additive salt solution significantly changed the structures from colloidal crystalline arrays to colloidal amorphous arrays. Controlling these structures will be important for applications of structurally colored materials as novel colorants, such as color-controllable pigments.

Graphical abstract

Highlights

  • Chemically stable SiO2 particles allowed to investigate the effect of various electrophoretic deposition conditions.

  • Organic solvent dispersants having moderate dielectric constant enabled uniform particle arrays.

  • The applied voltage had minor effects while additive KCl solutions significantly changed array structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gao B, Arya G, Tao AR (2012) Self-orienting nanocubes for the assembly of plasmonic nanojunctions. Nat Nanotechnol 7:433–437. https://doi.org/10.1038/nnano.2012.83

    Article  CAS  Google Scholar 

  2. Murray WA, Barnes WL (2007) Plasmonic materials. Adv Mater 19:3771–3782. https://doi.org/10.1002/adma.200700678

    Article  CAS  Google Scholar 

  3. Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389–458. https://doi.org/10.1021/cr900137k

    Article  CAS  Google Scholar 

  4. Lederer F, Stegeman GI, Christodoulides DN et al. (2008) Discrete solitons in optics. Phys Rep 463:1–126. https://doi.org/10.1016/j.physrep.2008.04.004

    Article  Google Scholar 

  5. Anufriev R, Ramiere A, Maire J, Nomura M (2017) Heat guiding and focusing using ballistic phonon transport in phononic nanostructures. Nat Commun 8:1–8. https://doi.org/10.1038/ncomms15505

    Article  CAS  Google Scholar 

  6. Tang J, Wang HT, Lee DH et al. (2010) Holey silicon as an efficient thermoelectric material. Nano Lett 10:4279–4283. https://doi.org/10.1021/nl102931z

    Article  CAS  Google Scholar 

  7. Kinoshita S, Yoshioka S, Miyazaki J (2008) Physics of structural colors. Rep. Prog Phys 71:076401. https://doi.org/10.1088/0034-4885/71/7/076401

    Article  Google Scholar 

  8. Takeoka Y (2012) Angle-independent structural coloured amorphous arrays. J Mater Chem 22:23299–23309. https://doi.org/10.1039/c2jm33643j

    Article  CAS  Google Scholar 

  9. Fudouzi H, Xia Y (2003) Colloidal crystals with tunable colors and their use as photonic papers. Langmuir 19:9653–9660. https://doi.org/10.1021/la034918q

    Article  CAS  Google Scholar 

  10. Shang G, Maiwald L, Renner H et al. (2018) Photonic glass for high contrast structural color. Sci Rep 8:1–9. https://doi.org/10.1038/s41598-018-26119-8

    Article  CAS  Google Scholar 

  11. Kohri M (2019) Artificial melanin particles: new building blocks for biomimetic structural coloration. Polym J 51:1127–1135. https://doi.org/10.1038/s41428-019-0231-2

    Article  CAS  Google Scholar 

  12. Xia Y, Gates B, Yin Y, Lu Y (2000) Monodispersed colloidal spheres: old materials with new applications. Adv Mater 12:693–713. https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<693::AID-ADMA693>3.0.CO;2-J

    Article  CAS  Google Scholar 

  13. Zhao Y, Xie Z, Gu H et al. (2012) Bio-inspired variable structural color materials. Chem Soc Rev 41:3297–3317. https://doi.org/10.1039/c2cs15267c

    Article  CAS  Google Scholar 

  14. Wang S, Liu G, Wang L (2019) Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting. Chem Rev 119:5192–5247. https://doi.org/10.1021/acs.chemrev.8b00584

    Article  CAS  Google Scholar 

  15. Liu T, Vansaders B, Glotzer SC, Solomon MJ (2020) Effect of defective microstructure and film thickness on the reflective structural color of self-assembled colloidal crystals. ACS Appl Mater Interfaces 12:9842–9850. https://doi.org/10.1021/acsami.9b22913

    Article  CAS  Google Scholar 

  16. Kawamura A, Kohri M, Morimoto G et al. (2016) Full-color biomimetic photonic materials with iridescent and non-iridescent structural colors. Sci Rep 6:1–10. https://doi.org/10.1038/srep33984

    Article  CAS  Google Scholar 

  17. Yi B, Shen H (2017) Facile fabrication of crack-free photonic crystals with enhanced color contrast and low angle dependence. J Mater Chem C 5:8194–8200. https://doi.org/10.1039/c7tc01549f

    Article  CAS  Google Scholar 

  18. Torres L, Margaronis A, Bellato Meinhardt BM et al. (2020) Rapid and tunable method to fabricate angle-independent and transferable structurally colored films. Langmuir 36:1252–1257. https://doi.org/10.1021/acs.langmuir.9b03516

    Article  CAS  Google Scholar 

  19. Fan W, Chen M, Yang S, Wu L (2015) Centrifugation-assisted assembly of colloidal silica into crack-free and transferrable films with tunable crystalline structures. Sci Rep 5:1–10. https://doi.org/10.1038/srep12100

    Article  CAS  Google Scholar 

  20. Ge D, Yang X, Chen Z et al. (2017) Colloidal inks from bumpy colloidal nanoparticles for the assembly of ultrasmooth and uniform structural colors. Nanoscale 9:17357–17363. https://doi.org/10.1039/c7nr06380f

    Article  CAS  Google Scholar 

  21. Takeoka Y, Yoshioka S, Takano A et al. (2013) Production of colored pigments with amorphous arrays of black and white Colloidal particles. Angew Chem Int Ed 52:7261–7265. https://doi.org/10.1002/anie.201301321

    Article  CAS  Google Scholar 

  22. Kohri M, Nannichi Y, Taniguchi T, Kishikawa K (2015) Biomimetic non-iridescent structural color materials from polydopamine black particles that mimic melanin granules. J Mater Chem C 3:720–724. https://doi.org/10.1039/c4tc02383h

    Article  CAS  Google Scholar 

  23. Ferrari B, Moreno R (2010) EPD kinetics: a review. J Eur Ceram Soc 30:1069–1078. https://doi.org/10.1016/j.jeurceramsoc.2009.08.022

    Article  CAS  Google Scholar 

  24. Corni I, Ryan MP, Boccaccini AR (2008) Electrophoretic deposition: from traditional ceramics to nanotechnology. J Eur Ceram Soc 28:1353–1367. https://doi.org/10.1016/j.jeurceramsoc.2007.12.011

    Article  CAS  Google Scholar 

  25. Katagiri K, Tanaka Y, Uemura K et al. (2017) Structural color coating films composed of an amorphous array of colloidal particles via electrophoretic deposition. NPG Asia Mater 9:e355. https://doi.org/10.1038/am.2017.13

    Article  CAS  Google Scholar 

  26. Katagiri K, Uemura K, Uesugi R et al. (2018) Structurally colored coating films with tunable iridescence fabricated: via cathodic electrophoretic deposition of silica particles. RSC Adv 8:10776–10784. https://doi.org/10.1039/c8ra01215f

    Article  CAS  Google Scholar 

  27. Katagiri K, Uemura K, Uesugi R et al. (2020) Robust structurally colored coatings composed of colloidal arrays prepared by the cathodic electrophoretic deposition method with metal cation additives. ACS Appl Mater Interfaces 12:40768–40777. https://doi.org/10.1021/acsami.0c10588

    Article  CAS  Google Scholar 

  28. Ammam M (2012) Electrophoretic deposition under modulated electric fields: a review. RSC Adv 2:7633–7646. https://doi.org/10.1039/c2ra01342h

    Article  CAS  Google Scholar 

  29. Tran GTH, Koike M, Uchikoshi T, Fudouzi H (2020) Fabrication of polystyrene colloidal crystal film by electrophoretic deposition. Adv Powder Technol 31:3085–3092. https://doi.org/10.1016/j.apt.2020.05.029

    Article  CAS  Google Scholar 

  30. Velev OD, Bhatt KH (2006) On-chip micromanipulation and assembly of colloidal particles by electric fields. Soft Matter 2:738–750. https://doi.org/10.1039/b605052b

    Article  CAS  Google Scholar 

  31. Powers RW (1975) The electrophoretic forming of beta‐alumina ceramic. J Electrochem Soc 122:490–500. https://doi.org/10.1149/1.2134246

    Article  CAS  Google Scholar 

  32. Van der Biest OO, Vandeperre LJ (1999) Electrophoretic deposition of materials. Annu Rev Mater Sci 29:327–352. https://doi.org/10.1146/annurev.matsci.29.1.327

    Article  Google Scholar 

  33. The Chemical Society of Japan (1984) Handbook of Chemistry: Pure Chemistry., 3rd ed. Maruzen Publishing Co.,Ltd., Tokyo

  34. Basu RN, Randall CA, Mayo MJ (2001) Fabrication of dense zirconia electrolyte films for tubular solid oxide fuel cells by electrophoretic deposition. J Am Ceram Soc 84:33–40. https://doi.org/10.1111/j.1151-2916.2001.tb00604.x

    Article  CAS  Google Scholar 

  35. Chen F, Liu M (2001) Preparation of yttria-stabilized zirconia (YSZ) films on La0.85Sr0.15MnO3 (LSM) and LSM-YSZ substrates using an electrophoretic deposition (EPD) process. J Eur Ceram Soc 21:127–134. https://doi.org/10.1016/S0955-2219(00)00195-3

    Article  CAS  Google Scholar 

  36. Aurenhammer F (1991) Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput Surv 23:345–405. https://doi.org/10.1145/116873.116880

    Article  Google Scholar 

  37. Nishida T, Sugihara K, Kimura M (2007) Stable marker-particle method for the Voronoi diagram in a flow field. J Comput Appl Math 202:377–391. https://doi.org/10.1016/j.cam.2006.01.035

    Article  Google Scholar 

  38. Huerta A, Naumis GG, Wasan DT et al. (2004) Attraction-driven disorder in a hard-core colloidal monolayer. J Chem Phys 120:1506–1510. https://doi.org/10.1063/1.1632893

    Article  CAS  Google Scholar 

  39. Kawamura A, Kohri M, Yoshioka S et al. (2017) Structural color tuning: mixing melanin-like particles with different diameters to create neutral colors. Langmuir 33:3824–3830. https://doi.org/10.1021/acs.langmuir.7b00707

    Article  CAS  Google Scholar 

  40. Takeoka Y, Yoshioka S, Takano A et al. (2013) Production of colored pigments with amorphous arrays of black and white Colloidal particles. Angew Chem Int Ed 52:7261–7265. https://doi.org/10.1002/anie.201301321

    Article  CAS  Google Scholar 

  41. Scheid D, Lederle C, Vowinkel S et al. (2014) Redox- and mechano-chromic response of metallopolymer-based elastomeric colloidal crystal films. J Mater Chem C 2:2583–2590. https://doi.org/10.1039/c3tc32525c

    Article  CAS  Google Scholar 

  42. Takeoka Y, Honda M, Seki T et al. (2009) Structural colored liquid membrane without angle dependence. ACS Appl Mater Interfaces 1:982–986. https://doi.org/10.1021/am900074v

    Article  CAS  Google Scholar 

  43. Harun-Ur-Rashid M, Bin Imran A, Seki T et al. (2010) Angle-independent structural color in colloidal amorphous arrays. ChemPhysChem 11:579–583. https://doi.org/10.1002/cphc.200900869

    Article  CAS  Google Scholar 

  44. Brown MA, Goel A, Abbas Z (2016) Effect of electrolyte concentration on the stern layer thickness at a charged interface. Angew Chem Int Ed 55:3790–3794. https://doi.org/10.1002/anie.201512025

    Article  CAS  Google Scholar 

  45. Neupane BB, Zhong Y, Wang G (2020) Study on self‐assembly of colloidal particles at high ionic strength with stimulated emission depletion microscopy. Eng Rep 2:1–11. https://doi.org/10.1002/eng2.12233

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by JSPS KAKENHI Grant numbers JP18K19132, JP20H02439 and JP20K15368, MEXT Leading Initiative for Excellent Young Researchers, JSPS Core-to-Core Program, the Cooperative Research Program of Institute for Catalysis, Hokkaido University (Grant numbers 20B1016 and 21A1007), the facilities of the Institute of Materials and Systems for Sustainability, Nagoya University, Iketani Science and Technology Foundation, and the Takahashi Industrial and Economic Research Foundation. We thank Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Tarutani.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarutani, N., Kawaguchi, K., Katagiri, K. et al. Effects of electrophoretic deposition conditions on the formation of colloidal crystalline/amorphous arrays of SiO2 particles. J Sol-Gel Sci Technol 104, 456–463 (2022). https://doi.org/10.1007/s10971-022-05846-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05846-5

Keywords

Navigation