Skip to main content
Log in

Characterization of tellurium dioxide thin films obtained through the Pechini method

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Tellurium dioxide (TeO2) thin films were deposited on silicon substrates through the Pechini method, after which they were heat treated at different temperatures. The heat treatment temperatures were defined from the thermogravimetry-differential scanning calorimetry (TG-DSC) data of the precursor gel. The effects of the heat treatment on the structural properties were investigated through X-ray diffraction (XRD), atomic force microscopy, and Raman spectroscopy. The TG-DSC data showed four different weight loss steps due to the reduction of telluric acid to tellurium, the removal of the excess ethylene glycol, the decomposition of citric acid, and the degradation of polyester. The XRD and Raman data showed the presence of the γ- and α-TeO2 phases in the films treated at 400–500 °C. Lattice parameters of the observed crystalline phases were determined by Rietveld refinement, with which it was possible to evaluate the crystallite size and microstrain using the Williamson-Hall method. The heat treatment temperature directly influenced the crystallite size and the surface roughness of the films, which showed similar behaviors with the temperature.

Graphical abstract

Highlights

  • Good quality TeO2 thin films obtained through the Pechini method.

  • Phase transformation observed by different techniques.

  • Heat treatment temperature versus TeO2 crystalline phases.

  • The coexistence of α- and γ-TeO2 phases increases films´ strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tirupataiah C, Narendrudua T, Suresh S, Rao PS, Vinaya Teja PM, Sambasiva Rao MV, Chinna Ram G, Krishna Rao D (2017) Influence of valence state of copper ions on structural and spectroscopic properties of multi-component PbO-Al2O3-TeO2-GeO2-SiO2 glass ceramic system—a possible material for memory switching devices. Opt Mater 73:7–15. https://doi.org/10.1016/j.optmat.2017.07.040

    Article  CAS  Google Scholar 

  2. Chen H, Liu YH, Zhou YF, Jiang ZH (2005) Spectroscopic properties of Er3+-doped tellurite glass for 1.55 µm optical amplifier. J Alloy Compd 397:286–290. https://doi.org/10.1016/j.jallcom.2004.12.051

    Article  CAS  Google Scholar 

  3. Anashkina EA (2020) Laser sources based on rare-earth ion-doped tellurite glass fibers and microspheres. Fibers 8:30. https://doi.org/10.3390/fib8050030

    Article  CAS  Google Scholar 

  4. Yang K, Xu R, Meng Q, Chen L, Zhao S, Shen Y, Xu S (2008) Er3+/Yb3+ co-doped TeO2–ZnO–ZnF2–La2O3 glass with a high fluorescence intensity ratio for an all-fiber temperature sensor. J Lumin 222:117145. https://doi.org/10.1016/j.jlumin.2020.117145

    Article  CAS  Google Scholar 

  5. Dewan N, Sreenivas K, Gupta V (2008) Comparative study on TeO2 and TeO3 thin film for γ-ray sensor application. Sens Actuators, A 147:115–120. https://doi.org/10.1016/j.sna.2008.04.011

    Article  CAS  Google Scholar 

  6. Arafat MM, Dinan B, Akbar SA, Haseen ASMA (2012) Gas sensor based on one dimensional nanostructured metal-oxides: a review. Sens (Basel) 12:7207–7258. https://doi.org/10.3390/s120607207

    Article  CAS  Google Scholar 

  7. Yousef E, Hotzel M, Russel C (2004) Linear and non-linear refractive indices of tellurite glasses in the system TeO2–WO3–ZnF. J Non-Cryst Solids 342:82–88. https://doi.org/10.1016/j.jnoncrysol.2004.07.003

    Article  CAS  Google Scholar 

  8. Wang JS, Vogel EM, Snitzer E (1994) Tellurite glass: a new candidate for fiber devices. Opt Mater 3:187–203. https://doi.org/10.1016/0925-3467(94)90004-3

    Article  CAS  Google Scholar 

  9. Porter Y, Ok KM, Bhuvanesh NSP, Shuv Halasyamani P (2001) Synthesis and characterization of Te2SeO7: A powder second-harmonic-generation study of TeO2, Te2SeO7, Te2O5, and TeSeO4. Chem Mater 13:1910–1915. https://doi.org/10.1021/cm001414u

    Article  CAS  Google Scholar 

  10. Vrillet G, Lasbrugnas C, Thomas P et al. (2006) Efficient second harmonic generation in γ-TeO2 phase. J Mater Sci 41:305–307. https://doi.org/10.1007/s10853-005-5183-6

    Article  CAS  Google Scholar 

  11. Lecomte A, Bamière F, Coste S, Thomas P, Champarnaud-Mesjard JC (2007) Sol-gel processing of TeO2 thin films from citric acid stabilized tellurium isopropoxide precursor. J Eur Ceram Soc 27:1151–1158. https://doi.org/10.1016/j.jeurceramsoc.2006.05.029

    Article  CAS  Google Scholar 

  12. Hodgson SNB, Weng L (2000) Preparation of tellurite thin films from tellurium isopropoxide precursor by sol-gel processing. J Non-Cryst Solids 276:195–200. https://doi.org/10.1016/S0022-3093(00)00254-4

    Article  CAS  Google Scholar 

  13. Schartner EP, Monro TM (2014) Fiber tip sensor for localised temperature sensing based on Rare Earth-doped glass coatings. Sensors 14:21693–21701. https://doi.org/10.3390/s141121693

    Article  CAS  Google Scholar 

  14. Sudha A, Maity TK, Sharma SL, Gupta AN (2018) An extensive study on the structural evolution and gamma radiation stability of TeO2 thin films. Mater Sci Semicond Process 74:347–351. https://doi.org/10.1016/j.mssp.2017.10.018

    Article  CAS  Google Scholar 

  15. Siciliano T, Di Giulio M, Tepore M, Filippo E, Micocci G, Tepore A (2009) Room temperature NO2 sensing properties of reactively sputtered TeO2 thin films. Sens Actuators B Chem 137:644–648. https://doi.org/10.1016/j.snb.2008.12.004

    Article  CAS  Google Scholar 

  16. Rashkova V, Kitova S, Vitanov T (2007) Electrocatalytic behavior of thin Co–Te–O films in oxygen evolution and reduction reactions. Electrochim Acta 52:3794–3803. https://doi.org/10.1016/j.electacta.2006.10.054

    Article  CAS  Google Scholar 

  17. Munoz-Martin D, Fernandez H, Fernandez-Navarro JM, Gonzalo J, Solis J, Fierro JLG, Domingo C, Garcia-Ramos JV (2008) Nonlinear optical susceptibility of multicomponent tellurite thin-film glasses. J Appl Phys 104:113510–113515. https://doi.org/10.1063/1.3021052

    Article  CAS  Google Scholar 

  18. Weng L, Hodgson SNB, Ma J (1999) Preparation of TeO2-TiO2 thin films by sol-gel process. J Mater Sci Lett 18:2037–2039. https://doi.org/10.1023/A:1006710606049

    Article  CAS  Google Scholar 

  19. Ikeda H, Fujino S, Kajiwara T (2009) Preparation and characterization of BaO-TeO2 thin films obtained from tellurium (VI) alkoxide by a sol-gel method. J Am Ceram Soc 92:2619–2622. https://doi.org/10.1111/j.1551-2916.2009.03280.x

    Article  CAS  Google Scholar 

  20. Kumar A, Yadav N, Bhatt M, Mishra NK, Chaudhary P, Singh R (2015) Sol-gel-derived nanomaterials and its applications: a review. Res J Chem Sci 5:98–105. ISSN 2231-606X

    Google Scholar 

  21. Weng L, Hodgson S, Bao X, Sagoe-Crentsil K (2004) Achieving controllable sol-gel processing of tellurite glasses through the use of Te(VI) precursors. Mater Sci Eng B-Adv 107:89–93. https://doi.org/10.1016/j.mseb.2003.10.016

    Article  CAS  Google Scholar 

  22. Mccusker LB, Von Dreele RB, Cox DE, Louer D, Scardi P (1999) Rietveld refinement guidelines. J Apl Crustallogr 32:36–50. https://doi.org/10.1107/S0021889898009856

    Article  CAS  Google Scholar 

  23. Larson AC, Von Dreele RB (2000) General structure analysis system (GSAS), Los Alamos National Laboratory Report LAUR 86-748

  24. Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213. https://doi.org/10.1107/S0021889801002242

    Article  CAS  Google Scholar 

  25. Inorganic Crystal Structure Database. https://icsd.products.fiz-karlsruhe.de/en (accessed 13 October 2020)

  26. Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Met Mater 1:22–31. https://doi.org/10.1016/0001-6160(53)90006-6

    Article  CAS  Google Scholar 

  27. Rodrigues TS, Zhao M, Hang TH, Gilroy KD, Silva AGM, Camargo PHC, Xia Y (2018) Synthesis of colloidal metal nanocrystals: a comprehensive review on the reductants. Chem Eur J 24:16944–16963. https://doi.org/10.1002/chem.201802194

    Article  CAS  Google Scholar 

  28. Lee H, Hong M, Bae S, Lee H, Park E, Kim K (2003) A novel approach to preparing nano-size Co3O4-coated Ni powder by the Pechini method for MCFC cathodes. J Mater Chem 13:2626–2632.9. https://doi.org/10.1039/b303980c

    Article  CAS  Google Scholar 

  29. Barbooti MM, Al-Sammerrai DA (1986) Thermal decomposition of citric acid. Thermochim Acta 98:119–126. https://doi.org/10.1016/0040-6031(86)87081-2

    Article  CAS  Google Scholar 

  30. Seo YH, Lee HJ, Jeon HI, Oh DH, Nahm KS, Lee YH, Suh EK, Lee HJ (1993) Photoluminescence, Raman scattering, and infrared absorption studies of porous silicon. Appl Phys Lett 62:1812–1814. https://doi.org/10.1063/1.109557

    Article  CAS  Google Scholar 

  31. Ceriotti M, Pietrucci F, Bernasconi M (2006) Ab initio study of the vibrational properties of crystalline TeO2: the α, β, and γ phases. Phys Rev B Condens Matter 73:104304. https://doi.org/10.1103/PhysRevB.73.104304

    Article  CAS  Google Scholar 

  32. Mirgorodsky AP, Merle-Méjean T, Champarnaud JC, Thomas P, Frit B (2000) Dynamics and structure of TeO2 polymorphs: model treatment of paratellurite and tellurite; Raman scattering evidence for new γ- and δ-phases. J Phys Chem Solids 61:501–509. https://doi.org/10.1016/S0022-3697(99)00263-2

    Article  CAS  Google Scholar 

  33. Champarnaud-Mesjard JC, Blanchandin S, Thomas P, Mirgorodsky A, Merle-Méjean T, Frit B (2000) Crystal structure, Raman spectrum and lattice dynamics of a new metastable form of tellurium dioxide: y-TeO2. J Phys Chem Solids 61:1499–1507. https://doi.org/10.1016/S0022-3697(00)00012-3

    Article  CAS  Google Scholar 

  34. Abu Sal B, Moiseyenko V, Dergachov M, Yevchik A, Dovbeshko G (2013) Manifestation of metastable γ-TeO2 phase in the Raman spectrum of crystals grown in synthetic opal pores. Ukr J Phys Opt 14:119–124. https://doi.org/10.3116/16091833/14/3/119/2013

    Article  CAS  Google Scholar 

  35. Dewan N, Sreenivas K, Gupta V (2007) Properties of crystalline gamma-TeO2 thin film. J Cryst Growth 305:237–241. https://doi.org/10.1016/j.jcrysgro.2007.03.054

    Article  CAS  Google Scholar 

  36. Lin Y, Xie J, Li Y, Chavez C, Lee S, Foltyn SR, Crooker SA, Burrell AK, McCleskey TM, Jia QX (2005) Green luminescent zinc oxide films prepared by polymer-assisted deposition with rapid thermal process. Thin Solid Films 492:101–104. https://doi.org/10.1016/j.tsf.2005.06.060

    Article  CAS  Google Scholar 

  37. Fang ZB, Yan ZJ, Tan YS, Liu XQ, Wang YU (2005) Influence of post-annealing treatment on the structure properties of ZnO films. Appl Surf Sci 241:303–308. https://doi.org/10.1016/j.apsusc.2004.07.056

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Finance Code 001), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Finance Code 307869/2015-6), and Fundação de Amparo à Pesquisa do Estado de São (Finance Code 17/13769-1).

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design were proposed by JCSM, MDB, and FBC. Material preparation and data collection were performed by MDB. The analysis were carried out by all authors. The first draft of the manuscript was written by MDB and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Francine Bettio Costa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bataliotti, M.D., Costa, F.B., Minussi, F.B. et al. Characterization of tellurium dioxide thin films obtained through the Pechini method. J Sol-Gel Sci Technol 103, 378–385 (2022). https://doi.org/10.1007/s10971-022-05844-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05844-7

Keywords

Navigation