Skip to main content
  • Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:

Hydrothermal carbon modified Cu–Fe oxide with enhanced Fe(II)/Fe(III) cycle to activate peroxydisulfate for phenol removal

Abstract

Phenol is a typical organic pollutant in wastewater, which will cause considerable damage and threat to the ecosystem and human health. In this work, hydrothermal carbon (HTC) modified copper-iron oxide (CFO) was synthesized using sol-gel method, and employed as heterogeneous catalyst to activate peroxydisulfate (PDS) for degrade phenol. The composition, morphology and specific surface area of the catalyst were determined by XRD, SEM-EDS and BET, and the functional groups and valence states of elements on the catalyst surface were analyzed by FTIR and XPS. The effects of some key parameters including HTC content, initial pH value, and coexisting inorganic anions on the removal efficiency of phenol in the system were investigated. The removal rate of phenol and TOC could be reached 90.17% and 84.43% at: phenol initial concentration 20 mg/L, CFO:HTC mass ratio 30: 1 (CFO–H2), PDS dosage 0.6 g/L, and catalyst dosage 0.31 g/L, under the condition of not adjusting the pH value and avoiding light. In addition, the possible mechanism of PDS activation by CFO–H2 was proposed. The reason for the efficient performance of PDS activation by CFO–H catalyst could be assignable to the synergistic effect of HTC and CFO. HTC and Cu(I) on the surface of catalyst greatly facilitated the conversion from Fe(III) to Fe(II), which was conductive to the generation of active free radicals during the reaction process. This study provides a new idea for the design of heterogeneous catalysts for the efficient treatment of organic pollutants with PDS.

In this study, we introduced hydrothermal carbon (HTC) to modify Cu–Fe oxides and synthesized carbon-metal composites by sol-gel method, which exhibited high performance in activating peroxydisulfate for phenol degradation. For the heterogeneous system, on the one hand, various valence mental ions in composite materials could react with peroxydisulfate to produce hydroxyl radicals and sulfate radicals. On the other hand, HTC, Cu(I) and superoxide radicals could effectively promote the transformation of Fe(III) to Fe(II) and generate more active free radicals during the reaction. As a result, these active radicals had synergistic effect for the degradation of phenol.

Highlights

  • Hydrothermal carbon modified Cu–Fe oxides catalyst (CFO–H) was synthesized by sol-gel method.

  • The CFO–H catalyst was first reported for PDS activation to phenol removal.

  • The effects of control factors in the CFO/PDS and CFO–H/PDS systems were compared.

  • Hydrothermal carbon effectively promoted the transformation of Fe(III) to Fe(II).

  • The mechanism of PDS activation by CFO–H was proposed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. da Silva WL, Hamilton JWJ, Sharma PK, Dunlop PSM, Byrne JA, dos Santos JHZ (2021) Agro and industrial residues: potential raw materials for photocatalyst development. J Photochem Photobio A Chem 411:113184. https://doi.org/10.1016/j.jphotochem.2021.113184

    CAS  Article  Google Scholar 

  2. Muraro PCL, Mortari SR, Vizzotto BS, Chuy G, Dos Santos C, Brum LFW, da Silva WL(2020) Iron oxide nanocatalyst with titanium and silver nanoparticles: synthesis, char- acterization and photocatalytic activity on the degradation of Rhodamine B dye Sci Rep 10:3055–3063. https://doi.org/10.1038/s41598-020-59987-0

    CAS  Article  Google Scholar 

  3. da Silva WL, dos Santos JHZ (2017) Ecotechnological strategies in the development of al-ternative photocatalysts. Curr Opin Green Sustain Chem 6:63–68. https://doi.org/10.1016/j.cogsc.2017.06.001

    Article  Google Scholar 

  4. Moreno YP, Escobar CC, da Silva WL, dos Santos JHZ (2016) Alternative approaches in development of heterogeneous titania-based photocatalyst. In Semiconductor Photocatalysis - Materials, Mechanisms and Applications https://doi.org/10.5772/62891

  5. Wang B, Li Q, Lv Y, Fu H, Liu D, Feng Y, Xie H, Qu H (2021) Insights into the mec-hanism of peroxydisulfate activated by magnetic spinel CuFe2O4/SBC as a heterogeneous catalyst for bisphenol S degradation. Chem Eng J 416:129–162. https://doi.org/10.1016/j.cej.2021.129162

    CAS  Article  Google Scholar 

  6. Kim J, Lee C, Yoon J (2018) Electrochemical peroxodisulfate (PDS) generation on a self-doped TiO2 nanotube array electrode. Ind Eng Chem Res 57:11465–11471. https://doi.org/10.1021/acs.iecr.8b01208

    CAS  Article  Google Scholar 

  7. Zhou T, Han Y, Xiang W, Wang C, Wu X, Mao J, Huang M (2021) Revealing the heterogeneous activation mechanism of peroxydisulfate by CuO: the critical role of surface-binding organic substrates. Sci Total Environ 802:149833. https://doi.org/10.1016/j.scitotenv.2021.149833

    CAS  Article  Google Scholar 

  8. Liu S, Lai C, Li B, Liu X, Zhou X, Zhang C, Qin L, Li L, Zhang M, Yi H, Fu Y, YanH, Chen L (2022) Heteroatom doping in metal-free carbonaceous materials for the enhanc-ement of persulfate activation. Chem Eng J 427:131655. https://doi.org/10.1016/j.cej.2021.131655

    CAS  Article  Google Scholar 

  9. Wacławek S, Lutze HV, Grübel K, Padil VVT, Cerník M, Dionysiou DD (2017) Chemist-ry of persulfates in water and wastewater treatment: a review. Chem Eng J 330:44–62. https://doi.org/10.1016/j.cej.2017.07.132

    CAS  Article  Google Scholar 

  10. Ji Y, Dong C, Kong D, Lu J, Zhou Q (2015) Heat-activated persulfate oxidation of atrazine: Implications for remediation of groundwater contaminated by herbicides. Chem Eng J 263:45–54. https://doi.org/10.1016/j.cej.2014.10.097

    CAS  Article  Google Scholar 

  11. Xu X, Pliego G, Alonso C, Liu S, Nozal L, Rodriguez JJ (2019) Reaction pathways of heat-activated persulfate oxidation of naphthenic acids in the presence and absence of dissolved oxygen in water. Chem Eng J 370:695–705. https://doi.org/10.1016/j.cej.2019.03.213

    CAS  Article  Google Scholar 

  12. Furman OS, Teel AL, Watts RJ (2010) Mechanism of base activation of persulfate. Environ Sci Technol 44:6423–6428. https://doi.org/10.1021/es1013714

    CAS  Article  Google Scholar 

  13. Yang Q, Chen Y, Duan X, Zhou S, Niu Y, Sun H, Zhi L, Wang S (2020) Unzipping carbon nanotubes to nanoribbons for revealing the mechanism of nonradical oxidation by carbocatalysis. Appl Catal B Environ 276:119146. https://doi.org/10.1016/j.apcatb.2020.119146

    CAS  Article  Google Scholar 

  14. Wang H, Guo W, Liu B, Si Q, Luo H, Zhao Q, Ren N (2020) Sludge-derived biochar as efficient persulfate activators: sulfurization-induced electronic structure modulation and dis-parate nonradical mechanisms. Appl Catal B Environ 279:119361. https://doi.org/10.1016/j.apcatb.2020.119361

    CAS  Article  Google Scholar 

  15. Liu S, Lai C, Li B, Zhang C, Zhang M, Huang D, Qin L, Yi H, Liu X, Huang F, Zhou X, Chen L (2020) Role of radical and non-radical pathway in activating persulfate for de-gradation of p-nitrophenol by sulfur-doped ordered mesoporous carbon. Chem Eng J 384:123304. https://doi.org/10.1016/j.cej.2019.123304

    CAS  Article  Google Scholar 

  16. Ma X, Ye C, Deng J, Cai A, Ling X, Li J, Li X (2021) Elucidating the role of Fe(IV) and radical species for CBZ degradation in FeS2/PS system. Sep Purif Technol 274:118982. https://doi.org/10.1016/j.seppur.2021.118982

    CAS  Article  Google Scholar 

  17. Tang S, Zhao M, Yuan D, Li X, Zhang X, Wang Z, Jiao T, Wang K (2021) MnFe2O4 nanoparticles promoted electrochemical oxidation coupling with persulfate activation for tetracycline degradation. Sep Purif Technol 255:117690. https://doi.org/10.1016/j.seppur.2020.117690

    CAS  Article  Google Scholar 

  18. Huang Q, Chen C, Zhao X, Bu X, Liao X, Fan H, Gao W, Hu H, Zhang Y, Huang Z (2021) Malachite green degradation by persulfate activation with CuFe2O4@biochar compo-site: Efficiency, stability and mechanism. J Environ Chem Eng 9:105800. https://doi.org/10.1016/j.jece.2021.105800

    CAS  Article  Google Scholar 

  19. Lyu J, Ge M, Hu Z, Guo C (2020) One-pot synthesis of magnetic CuO/Fe2O3/CuFe2O4 n-anocomposite to activate persulfate for levofloxacin removal: Investigation of efficiency, m-echanism and degradation route. Chem Eng J 389:124456. https://doi.org/10.1016/j.cej.2020.124456

    CAS  Article  Google Scholar 

  20. Karimipourfard D, Eslamloueyan R, Mehranbod N (2020) Heterogeneous degradation of stabilized landfill leachate using persulfate activation by CuFe2O4 nanocatalyst: an experimental investigation. J Environ Chem Eng 8:103426. https://doi.org/10.1016/j.jece.2019.103426

    CAS  Article  Google Scholar 

  21. Huang Y, Li X, Zhang C, Dai M, Zhang Z, Xi Y, Quan B, Lu S, Liu Y (2021) Degrading arsanilic acid and adsorbing the released inorganic arsenic simultaneously in aqueous media with CuFe2O4 activating peroxymonosulfate system: factors, performance, and mechanism. Chem Eng J 424:128537. https://doi.org/10.1016/j.cej.2021.128537

    CAS  Article  Google Scholar 

  22. Ding R, Li W, He C, Wang Y, Liu X, Zhou G, Mu Y (2021) Oxygen vacancy on hollow sphere CuFe2O4 as an efficient Fenton-like catalysis for organic pollutant degradation over a wide pH range. Appl Catal B Environ 291:120069. https://doi.org/10.1016/j.apcatb.2021.120069

    CAS  Article  Google Scholar 

  23. Cui L, Li Z, Li Q, Chen M, Jing W, Gu X (2021) Cu/CuFe2O4 integrated graphite felt asa stable bifunctional cathode for high-performance heterogeneous electro-Fenton oxidation. Chem Eng J 420:127666. https://doi.org/10.1016/j.cej.2020.127666

    CAS  Article  Google Scholar 

  24. Li Z, Guo C, Lyu J, Hu Z, Ge M (2019) Tetracycline degradation by persulfate activated with magnetic Cu/CuFe2O4 composite: efficiency, stability, mechanism and degradation pathway. J Hazard Mater 373:85–96. https://doi.org/10.1016/j.jhazmat.2019.03.075

    CAS  Article  Google Scholar 

  25. Zhou P, Zhang J, Zhang Y, Zhang G, Li W, Wei C, Liang J, Liu Y, Shu S (2018) Degradation of 2,4-dichlorophenol by activating persulfate and peroxomonosulfate using micron or nanoscale zero-valent copper. J Hazard Mater 344:1209–1219. https://doi.org/10.1016/j.jhazmat.2017.11.023

    CAS  Article  Google Scholar 

  26. Zhao Z, Ge G, Li W, Guo X, Wang G (2016) Modulating the microstructure and surface chemistry of carbocatalysts for oxidative and direct dehydrogenation: A review. Chin J Catal 37:644–670. https://doi.org/10.1016/S1872-2067(15)61065-8

    CAS  Article  Google Scholar 

  27. Wang F, Li G, Zhou Q, Zheng J, Yang C, Wang Q (2017) One-step hydrothermal synthesis of sandwich-type NiCo2S4@reduced graphene oxide composite as active electrode material for supercapacitors. Appl Surf Sci 425:180–187. https://doi.org/10.1016/j.apsusc.2017.07.016

    CAS  Article  Google Scholar 

  28. Nakhate Akhil V, Yadav Ganapati D (2018) Cu2O nanoparticles supported hydrothermal c-arbon microspheres as catalyst for propargylamine synthesis. Mol Catal 451:209–219. https://doi.org/10.1016/j.mcat.2018.01.013

    CAS  Article  Google Scholar 

  29. Qin Y, Zhang L, An T (2017) Hydrothermal Carbon-Mediated Fenton-Like Reaction Mechanism in the Degradation of Alachlor: Direct Electron Transfer from Hydrothermal Carbon to Fe(III). ACS Appl Mater Interfaces 9:17116–17125. https://doi.org/10.1021/acsami.7b03310

    CAS  Article  Google Scholar 

  30. Zhu Y, Xie Q, Zhu R, Lv Y, Xi Y, Zhu J, Fan J (2022) Hydrothermal carbons/ferrihydr-ite heterogeneous Fenton catalysts with low H2O2 consumption and the effect of graphitiz-ation degrees. Chemosphere 287:131933. https://doi.org/10.1016/j.chemosphere.2021.131933

    CAS  Article  Google Scholar 

  31. Muraro PCL, Pinheiro L, Chuy G, Vizzotto BS, Pavoski G, Espinosa DCR, Rech VC, da Silva WL (2022) Silver nanoparticles from residual biomass: biosynthesis, characterization and antimicrobial activity. J Biotechnol 343:47–51. https://doi.org/10.1016/j.jbiotec.2021.11.003

    CAS  Article  Google Scholar 

  32. Oviedo LR, Muraro PCL, Pavoski G, Espinosa DCR, Ruiz YPM, Galembeck A, Rhoden CRB, da Silva WL (2022) Synthesis and characterization of nanozeolite from (agro)industrial waste for application in heterogeneous photocatalysis. Environ Sci Pollut Res Int 29:3794–3807. https://doi.org/10.1007/s11356-021-15815-0

    CAS  Article  Google Scholar 

  33. da Silva WL, Lansarin MA, Dos Santos JH, Silveira F (2016) Photocatalytic degradation of rhodamine B, paracetamol and diclofenac sodium by supported titania-based catalysts from petrochemical residue: effect of doping with magnesium. Water Sci Technol 74:2370–2383. https://doi.org/10.2166/wst.2016.362

    CAS  Article  Google Scholar 

  34. Wang ZJ, Zhang XY, Zhang HX, Zhu GX, Gao YJ, Cheng QF, Cheng XW (2019) Synthesis of magnetic nickel ferrite/carbon sphere composite for levofloxacin elimination by activation of persulfate. Sep Purif Technol 215:528–539. https://doi.org/10.1016/j.seppur.2019.01.063

    CAS  Article  Google Scholar 

  35. Hariganesh S, Vadivel S, paul B, Kumaravel M, Balasubramanian N, Rajendran S, Sankar Dhar S (2021) Metal organic framework derived magnetically recoverable CuFe2O4 porous cubes for efficient photocatalytic application. Inorg Chem Commun 125:108405. https://doi.org/10.1016/j.inoche.2020.108405

    CAS  Article  Google Scholar 

  36. Qi SP, Liu GN, Chen JX, Lou YB, Zhao YX (2021) Surface, coordination layer to enh-ance the stability of plasmonic Cu nanoparticles. J Phys Chem C 125(50):27624–27630. https://doi.org/10.1021/acs.jpcc.1c09263

    CAS  Article  Google Scholar 

  37. Liu CC, He Y, Wei L, Zhang YH, Zhao YX, Hong JP, Chen SF, Wang LI, Li JL (2018) Hydrothermal carbon-coated TiO2 as support for Co-based catalyst in Fischer−Tropsch synthesis. ACS Catal 8:1591–1600. https://doi.org/10.1021/acscatal.7b03887

    CAS  Article  Google Scholar 

  38. Duan X, Sun H, Kang J, Wang Y, Indrawirawan S, Wang S (2015) Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons. ACS Catal 5:4629–4636. https://doi.org/10.1021/acscatal.5b00774

    CAS  Article  Google Scholar 

  39. Stoia M, Muntean C, Militaru B (2017) MnFe2O4 nanoparticles as new catalyst for oxid-ative degradation of phenol by peroxydisulfate. J Environ Sci 53:269–277. https://doi.org/10.1016/j.jes.2015.10.035

    CAS  Article  Google Scholar 

  40. Zhao WK, Zhang SL, Ding J, Deng ZY, Guo LN, Zhong Q (2016) Enhanced catalytic ozonation for NOx removal with CuFe2O4 nanoparticles and mechanism analysis. J Mol Catal A Chem 424:153–161. https://doi.org/10.1016/j.molcata.2016.08.007

    CAS  Article  Google Scholar 

  41. Li J, Yan J, Yao G, Zhang Y, Li X, Lai B (2019) Improving the degradation of atrazine in the three-dimensional (3D) electrochemical process using CuFe2O4 as both particle elect-rode and catalyst for persulfate activation. Chem Eng J 361:1317–1332. https://doi.org/10.1016/j.cej.2018.12.144

    CAS  Article  Google Scholar 

  42. Zhao X, Tan Y, Wu F, Niu H, Tang Z, Cai Y, Giesy JP (2016) Cu/Cu2O/CuO loaded on the carbon layer derived from novel precursors with amazing catalytic performance. Sci Total Environ 571:380–387. https://doi.org/10.1016/j.scitotenv.2016.05.151

    CAS  Article  Google Scholar 

  43. Li J, Ren Y, Ji F, Lai B (2017) Heterogeneous catalytic oxidation for the degradation of p-nitrophenol in aqueous solution by persulfate activated with CuFe2O4 magnetic nanoparticles. Chem Eng J 324:63–73. https://doi.org/10.1016/j.cej.2017.04.104

    CAS  Article  Google Scholar 

  44. Wang XW, Yang MY, Yan HX, Qi SH (2017) The characterization and preparation of core–shell structure particles of carbon-sphere@NiFe2O4@PPy as microwave absorbing materials in X band. J Mater Sci: Mater Electron 28:14988–14995. https://doi.org/10.1007/s10854-017-7372-x

    CAS  Article  Google Scholar 

  45. Durairaj K, Senthilkumar P, Velmurugan P, Dhamodaran K, Kadirvelu K, Kumaran S (2019) Sol-gel mediated synthesis of silica nanoparticle from Bambusa vulgaris leaves and its environmental applications: kinetics and isotherms studies. J Sol-Gel Sci Technol 90:653–664. https://doi.org/10.1007/s10971-019-04922-7

    CAS  Article  Google Scholar 

  46. Kalaimurugan D, Durairaj K, Kumar AJ, Senthilkumar P, Venkatesan S (2020) Novel preparation of fungal conidiophores biomass as adsorbent for removal of phosphorus from aqueous solution. Environ Sci Pollut Res 27:20757–20769. https://doi.org/10.1007/s11356-020-08307-0

    CAS  Article  Google Scholar 

  47. Chen Z, Wang L, Xu H, Wen Q (2020) Efficient heterogeneous activation of peroxymono-sulfate by modified CuFe2O4 for degradation of tetrabromobisphenol A. Chem Eng J 389:124345. https://doi.org/10.1016/j.cej.2020.124345

    CAS  Article  Google Scholar 

  48. Wang Y, Zhao X, Cao D, Wang Y, Zhu Y (2017) Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C3N4 hybrid. Appl Catal B Environ 211:79–88. https://doi.org/10.1016/j.apcatb.2017.03.079

    CAS  Article  Google Scholar 

  49. Liang C, Su HW (2009) Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Ind Eng Chem Res 48:5558–5562. https://doi.org/10.1021/ie9002848

    CAS  Article  Google Scholar 

  50. Oh W, Dong Z, Ronn G, Lim T (2017) Surface-active bismuth ferrite as superior peroxymonosulfate activator for aqueous sulfamethoxazole removal: Performance, mechanism and quantification of sulfate radical. J Hazard Mater 325:71–81. https://doi.org/10.1016/j.jhazmat.2016.11.056

    CAS  Article  Google Scholar 

  51. Cai C, Liu J, Zhang Z, Zheng Y, Zhang H (2016) Visible light enhanced heterogeneous photo-degradation of Orange II by zinc ferrite (ZnFe2O4) catalyst with the assistance of persulfate. Sep Purif Technol 165:42–52. https://doi.org/10.1016/j.seppur.2016.03.026

    CAS  Article  Google Scholar 

  52. Wang Q, Wang B, Ma Y, Xing S (2018) Enhanced superoxide radical production for oflo-xacinremoval via persulfate activation with Cu-Fe oxide. Chem Eng J 354:473–480. https://doi.org/10.1016/j.cej.2018.08.055

    CAS  Article  Google Scholar 

  53. Sun H, Yang X, Zhao L, Xu T, Lian J (2016) One-pot hydrothermal synthesis of octahedral CoFe/CoFe2O4 submicron composite as heterogeneous catalysts with enhanced peroxymonosulfate activity. J Mater Chem A 4:9455–9465. https://doi.org/10.1039/c6ta02126c

    CAS  Article  Google Scholar 

  54. Li W, Yang S, Wang W, Liu Q, He J, Li B, Cai Z, Chen N, Fang H, Sun S (2020) Simultaneous removal of Cr(VI) and acid orange 7 from water in pyrite-persulfate system. Environ Res 189:109876. https://doi.org/10.1016/j.envres.2020.109876

    CAS  Article  Google Scholar 

  55. Yuan Y, Tao H, Fan J, Ma L (2015) Degradation of p-chloroaniline by persulfate activated with ferrous sulfide ore particles. Chem Eng J 268:38–46. https://doi.org/10.1016/j.cej.2014.12.092

    CAS  Article  Google Scholar 

Download references

Funding

This work was financially supported by the Youth National Natural Science Foundation of China (No. 21808151 and No. 21978187).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfang Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fan, M., Liu, J., Wang, Y. et al. Hydrothermal carbon modified Cu–Fe oxide with enhanced Fe(II)/Fe(III) cycle to activate peroxydisulfate for phenol removal. J Sol-Gel Sci Technol (2022). https://doi.org/10.1007/s10971-022-05841-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10971-022-05841-w

Keywords

  • Peroxydisulfate activation
  • Cu–Fe oxide
  • HTC modification
  • Sol-gel synthesis
  • Phenol degradation