Skip to main content
  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:

Effect of oxidized CdO quantum dots doped TiO2 electron transport layer on performance of mesoporous perovskite solar cells

Abstract

Electron transport layer (ETL) plays a crucial role in electron transport and structure frame in perovskite solar cells (PSCs), and its structure affects the overall performance of PSCs. In this paper, oxidation state quantum dot CdO (CdO-QDs) was firstly proposed and prepared. The mesoporous TiO2 surface was modified by depositing quantum dot CdO to prepare composited ETL. CdO quantum dot/TiO2 mesoporous film (CdO-QDs/TiO2-MF) was prepared by successive ionic layer adsorption and reaction–sintering method as the ETL. The perovskite film was prepared by a two-step method to assemble the PSC, and the effect of quantum dot composited ETL on the photoelectric performance of PSC was investigated. It is found that the depositing of CdO-QDs is beneficial to reduce the surface defects of TiO2-MF and the recombination of electron–hole. The depositing content of CdO-QDs was controlled by the immersion circulation times for the ETL further optimization. After three immersion cycles, the photoelectric conversion efficiency was finally 6.94%, which was about 62.91% higher than that of pristine TiO2.

Graphical abstract

Highlights

  • CdO-QDs/TiO2 heterostructure films were prepared by SILAR-Sintering method to immerse on the surface of TiO2-MF.

  • The effect of quantum dots CdO as interface modifier to composited TiO2 ETL on photoelectric performance of PSCs was investigated.

  • The doping amount of quantum dots CdO in TiO2 mesoporous layer has been optimized.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Feng QJ, Liu S, Liu Y et al. (2015) Influence of Sb doping on the structural, optical and electrical properties of p-ZnO thin films prepared on n-GaN/Al2O3 substrates by a simple CVD method. Mater Sci Semiconductor Process 29(7):188–192

    CAS  Article  Google Scholar 

  2. Kim JH, Kim KP, Kim DH et al. (2015) Electrospun ZnO nanofibers as a photoelectrode in dye-sensitized solar cells. J Nanosci Nanotechnol 15(3):2346–2350

    CAS  Article  Google Scholar 

  3. Hle S, Shalom M, Zaban A (2010) Quantum-dot-sensitized solar cells. Chem Phys Chem 11(11):2290–2304

    Article  Google Scholar 

  4. Kamat PV (2008) Quantum dot solar cells semiconductor nanocrystals as light harvesters. J Phys Chem C 112(48):18737–18753

    CAS  Article  Google Scholar 

  5. Gonz LV, Xu X, Moraser I et al. (2010) Modeling high-efficiency quantum dot sensitized solar cells. Acs Nano 4(10):5783–5790

    Article  Google Scholar 

  6. Vogel R, Pohl K, Weller H (1990) Sensitization of highly porous, polycrystalline TiO2 electrodes by quantum sized CdS. Chem Phys Lett 174(3-4):241–246

    CAS  Article  Google Scholar 

  7. Baker DR, Kamat PV (2009) Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular support architectures. Adv Funct Mater 19(5):805–811

    CAS  Article  Google Scholar 

  8. Sun WT, Yu Y, Pan HY et al. (2008) CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J Am Chem Soc 130(4):1124–1125

    CAS  Article  Google Scholar 

  9. Sun L, Wang Q (2014) PbS quantum dots capped with amorphous ZnS for bulk heterojunction solar cells: the solvent effect. ACS Appl Mater Interfaces 6(16):14239–14246

    CAS  Article  Google Scholar 

  10. Braga A, Giménez S, Concina I et al. (2011) Panchromatic sensitized solar cells based on metal sulfide quantum dots grown directly on nanostructured TiO2 electrodes. J Phys Chem Lett 2(5):454–460

    CAS  Article  Google Scholar 

  11. Sun L, Koh ZY, Wang Q (2013) PbS quantum dots embedded in a ZnS dielectric matrix for bulk heterojunction solar cell applications. Adv Mater 25(33):4598–4604

    CAS  Article  Google Scholar 

  12. Amaya SJ, Plata JJ, Márquez AM et al. (2017) Ag2S quantum dot-sensitized solar cells by first principles: the effect of capping ligands and linkers. J Phys Chem A 121(38):7290–7296

    Article  Google Scholar 

  13. Li W, Pan Z, Zhong X (2015) CuInSe2 and CuInSe2-ZnS based high efficiency ‘green’ quantum dot sensitized solar cells. J Mater Chem A 3(4):1649–1655

    CAS  Article  Google Scholar 

  14. Feng J, Han J, Zhao X (2009) Synthesis of CuInS2 quantum dots on TiO2 porous films by solvothermal method for absorption layer of solar cells. Prog Org Coat 64(2-3):268–273

    CAS  Article  Google Scholar 

  15. Pan Z, Zhang H, Cheng K et al. (2012) Highly efficient inverted type-I CdS/CdSe core/shell structure QD-sensitized solar cells. ACS Nano 6(5):3982–3991

    CAS  Article  Google Scholar 

  16. Chen C, Cheng Y, Jin J et al. (2016) CdS/CdSe quantum dots and ZnPc dye co-sensitized solar cells with Au nanoparticles/graphene oxide as efficient modified layer. J Colloid Interface Sci 480:49–56

    CAS  Article  Google Scholar 

  17. Luo S, Shen H, Zhang Y et al. (2016) Inhibition of charge transfer and recombination processes in CdS/N719 co-sensitized solar cell with high conversion efficiency. Electrochim Acta 191:16–22

    CAS  Article  Google Scholar 

  18. Son MK, Seo H, Kim SK et al. (2014) Improved performance of CdS and dye co-sensitized solar cell using a TiO2 sol-gel solution. Phys Status Solidi 211:1726–1731

    CAS  Article  Google Scholar 

  19. Song X, Yu XL, Xie Y et al. (2010) Improving charge separation of solar cells by the co-sensitization of CdS quantum dots and dye. Semiconductorence Technol 25(9):095014

    Article  Google Scholar 

  20. Yella A, Heiniger LP et al. (2014) Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency. Nano Lett 14(5):2591–2596

    CAS  Article  Google Scholar 

  21. Cao J, Wu B, Chen R et al. (2018) Efficient, hysteresis-free, and stable perovskite solar cells with ZnO as electron-transport layer: effect of surface passivation. Adv Mater 30(11):1705596

    Article  Google Scholar 

  22. Chen J, Seo J-Y, Park N-G (2018) Simultaneous improvement of photovoltaic performance and stability by in situ formation of 2D perovskite at (FAPbI3)0.88(CsPbBr3)0.12/CuSCN interface. Adv Energy Mater 8(12):1702714

    Article  Google Scholar 

  23. Wang K, Zhao W, Liu J et al. (2017) CO2 plasma-treated TiO2 film as an effective electron transport layer for high-performance planar perovskite solar cells. ACS Appl Mater Interfaces 9(39):33989–33996

    CAS  Article  Google Scholar 

  24. Zhu ZL, Ma JA, Wang ZL et al. (2014) Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. J Am Chem Soc 136(10):3760–3763

    CAS  Article  Google Scholar 

  25. Ogomi Y, Kukihara K, Qing S et al. (2014) Control of charge dynamics through a charge-separation interface for all-solid perovskite-sensitized solar cells. Chem Phys Chem 15(6):1062–1069

    CAS  Article  Google Scholar 

  26. Sun WT, Yu A, Pan HY et al. (2009) CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J Am Chem Soc 130(4):1124–1125

    Article  Google Scholar 

  27. Ismail RA, Al-Samarai A, Mohmed SJ et al. (2013) Characteristics of nanostructured CdO/Si heterojunction photodetector synthesized by CBD. Solid-State Electron 82:115–121

    CAS  Article  Google Scholar 

  28. Gurumurugan K, Mangalaraj D, Narayandass SK et al. (2010) Structural, optical, and electrical properties of cadmium oxide films deposited by spray pyrolysis. Phys Status Solidi 143(1):85–91

    Article  Google Scholar 

  29. Bazargan AM, Fateminia SM, Ganji ME et al. (2009) Electrospinning preparation and characterization of cadmium oxide nanofibers. Chem Eng J 155:523–527

    CAS  Article  Google Scholar 

  30. Lai Y, Wang YQ, Zhu YS et al. (2018) Irregular micro-island arrays of CdO/CdS composites derived from electrodeposited Cd for high photoelectrochemical performances. J Electrochem Soc 165(3):H91–H98

    CAS  Article  Google Scholar 

  31. Seshadri A, De Tacconi NR, Chenthamarakshan CR et al. (2006) Cathodic electrodeposition of CdO thin films from oxygenated aqueous solutions. Electrochem Solid-State Lett 9(1):6319–22.

    Article  Google Scholar 

  32. Ismail RA, Samarai AA, Mohmed SJ et al. (2013) Characteristics of nanostructured CdO/Si heterojunction photodetector synthesized by CBD. Solid-State Electron 82:115–121

    CAS  Article  Google Scholar 

  33. Carrera JE, Ghilane J, Randriamahazaka H et al. (2017) Effect of the support nanostructure (nanofibers and nanotubes) on the photoelectrochemical performance of TiO2-CdO@CdS semiconducting architectures. J Electrochem Soc 164:H286

    Article  Google Scholar 

  34. Karunakaran C, Vijayabalan A, Vinayagamoorthy P (2018) CdO-intercalated TiO2 nanosphere-clusters: synthesis and electrical, optical and photocatalytic properties. Silicon 10(6):1–8

    Article  Google Scholar 

  35. Mohamed RM, Zaki ZI (2020) Degradation of Imazapyr herbicide using visible light-active CdO–TiO2 heterojunction photocatalyst. J Environ Chem Eng 9(1):104732

    Article  Google Scholar 

  36. Zhang Y, Cao X, Sun J et al. (2020) Synthesis of pyridyl Schiff base functionalized SBA-15 mesoporous silica for the removal of Cu(II) and Pb(II) from aqueous solution. J Sol-Gel Sci Technol 94(3):1–13.

    Article  Google Scholar 

  37. Lee JW, Seol DJ, Cho AN et al. (2014) High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2Pbl3. Adv Mater 26(29):4991–4998

    CAS  Article  Google Scholar 

  38. Ren Z, Wu J, Wang N et al. (2018) Er-doped TiO2 phase junction as electron transport layer for efficient perovskite solar cells fabricated in air. J Mater Chem A 6:15348–15358

    CAS  Article  Google Scholar 

  39. Niu G, Li W, Meng F et al. (2014) Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J Mater Chem A 2(3):705–710

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We appreciate the financial support of the National Natural Science Foundation of China (21273060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liguo Jin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, J., Su, C. et al. Effect of oxidized CdO quantum dots doped TiO2 electron transport layer on performance of mesoporous perovskite solar cells. J Sol-Gel Sci Technol (2022). https://doi.org/10.1007/s10971-022-05826-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10971-022-05826-9

Keywords

  • Electron transport layer
  • Mesoporous perovskite solar cells
  • CdO quantum dot
  • Oxidation state quantum dot