Skip to main content
Log in

Superacid-catalyzed preparation of ionic polyhedral oligomeric silsesquioxanes and their properties, polymerization, and hybridization

  • Invited Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This paper provides a comprehensive review of recent studies on the superacid-catalyzed preparation of ionic polyhedral oligomeric silsesquioxanes (POSSs) and their properties, polymerization, and hybridization, that have been developed by the author and co-workers so far. Octameric POSSs (T8-POSS) containing ammonium side-chain groups as the main products can be obtained at a high yield within a short reaction time by dissolving amino group-containing organotrialkoxysilanes in an aqueous superacid (e.g., trifluoromethanesulfonic acid) solution, followed by hydrolytic condensation by heating in an open system to evaporate the solvents. When these reactions were performed in a hydrophobic alcohol, such as 1-hexanol, a POSS mixture with a high proportion of decameric POSS (T10-POSS) was obtained. It was found that the proportion of T10-POSS can be increased by properly controlling the reaction conditions (temperature, pressure, and solvent evaporation time) using a Kugelrohr apparatus during POSS preparation in an aqueous superacid solution. Furthermore, a low-crystalline POSS and ionic liquids containing POSS components can be obtained by the superacid-catalyzed hydrolytic condensation of the mixtures of two types of organotrialkoxysilanes containing functional groups, which can be converted into ionic groups. This superacid-catalyzed hydrolytic condensation can be applied to the preparation of carboxyl-functionalized POSSs and an ammonium-functionalized specific cyclotetrasiloxane isomer. An antifogging film with a hard-coating property comprising polyamide obtained by the polycondensation of ammonium- and carboxyl-functionalized POSSs was developed as an ionic POSS application. Furthermore, using an ionic POSS and cyclotetrasiloxane as crosslinking agents, polyacrylamide hydrogels exhibiting extremely flexible and irrefrangible properties can be obtained.

Graphical abstract

Highlights

  • Ionic POSSs can be obtained at a high yield within a short reaction time using superacid catalysts.

  • The POSS size can be controlled by properly selecting the solvent type and reaction conditions.

  • Low-crystalline ionic POSS can be obtained from a mixture of two types of organotrialkoxysilanes.

  • Ionic liquids containing POSS components can be obtained from the mixture of two types of organotrialkoxysilanes.

  • An antifogging film and hydrogel with flexible and irrefrangible properties were developed using ionic POSSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 1
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11

Similar content being viewed by others

References

  1. Baney RH, Itoh M, Sakakibara A, Suzuki T (1995) Silsesquioxanes. Chem Rev 95:1409–1430

    Article  CAS  Google Scholar 

  2. Loy DA, Baugher BM, Baugher CR, Schneider DA, Rahimian K (2000) Substituent effects on the sol–gel chemistry of organotrialkoxysilanes. Chem Mater 12:3624–3632

    Article  CAS  Google Scholar 

  3. Kaneko Y, Coughlin EB, Gunji T, Itoh M, Matsukawa K, Naka K (2012) Silsesquioxanes: recent advancement and novel applications. Int J Polym Sci 453821

  4. Kaneko Y (2018) Ionic silsesquioxanes: preparation, structure control, characterization, and applications. Polymer 144:205–224

    Article  CAS  Google Scholar 

  5. Laine RM, Zhang C, Sellinger A, Viculis L (1998) Polyfunctional cubic silsesquioxanes as building blocks for organic/inorganic hybrids. Appl Organomet Chem 12:715–723

    Article  CAS  Google Scholar 

  6. Choi J, Harcup J, Yee AF, Zhu Q, Laine RM (2001) Organic/inorganic hybrid composites from cubic silsesquioxanes. J Am Chem Soc 123:11420–11430

    Article  CAS  Google Scholar 

  7. Kim KM, Chujo Y (2003) Organic–inorganic hybrid gels having functionalized silsesquioxanes. J Mater Chem 13:1384–1391

    Article  CAS  Google Scholar 

  8. Tanaka K, Adachi S, Chujo Y (2009) Structure-property relationship of octa-substituted POSS in thermal and mechanical reinforcements of conventional polymers. J Polym Sci Part A: Polym Chem 47:5690–5697

    Article  CAS  Google Scholar 

  9. Yu X, Zhong S, Li X, Tu Y, Yang S, Van Horn RM, Ni C, Pochan DJ, Quirk RP, Wesdemiotis C, Zhang WB, Cheng SZD (2010) A giant surfactant of polystyrene-(carboxylic acid-functionalized polyhedral oligomeric silsesquioxane) amphiphile with highly stretched polystyrene tails in micellar assemblies. J Am Chem Soc 132:16741–16744

    Article  CAS  Google Scholar 

  10. Wang F, Lu X, He C (2011) Some recent developments of polyhedral oligomeric silsesquioxane (POSS)-based polymeric materials. J Mater Chem 21:2775–2782

    Article  CAS  Google Scholar 

  11. Kuo SW, Chang FC (2011) POSS related polymer nanocomposites. Prog Polym Sci 36:1649–1696

    Article  CAS  Google Scholar 

  12. Tanaka K, Chujo Y (2012) Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS). J Mater Chem 22:1733–1746

    Article  CAS  Google Scholar 

  13. Sun J, Chen Y, Zhao L, Chen Y, Qi D, Choi KM, Shin DS, Jiang J (2013) Porphyrin-POSS molecular hybrids. Chem Eur J 19:12613–12618

    Article  CAS  Google Scholar 

  14. Alves F, Nischang I (2013) Tailor-made hybrid organic–inorganic porous materials based on polyhedral oligomeric silsesquioxanes (POSS) by the step-growth mechanism of thiol-ene “click” chemistry. Chem Eur J 19:17310–17313

    Article  CAS  Google Scholar 

  15. Guo M, David É, Fréchette M, Demarquette NR (2017) Polyethylene/polyhedral oligomeric silsesquioxanes composites: dielectric, thermal and rheological properties. Polymer 115:60–69

    Article  CAS  Google Scholar 

  16. Li Y, Dong XH, Zou Y, Wang Z, Yue K, Huang M, Liu H, Feng X, Lin Z, Zhang W, Zhang WB, Cheng SZD (2017) Polyhedral oligomeric silsesquioxane meets “click” chemistry: rational design and facile preparation of functional hybrid materials. Polymer 125:303–329

    Article  CAS  Google Scholar 

  17. Zhang W, Camino G, Yang R (2017) Polymer/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: an overview of fire retardance. Prog Polym Sci 67:77–125

    Article  Google Scholar 

  18. Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110:2081–2173

    Article  CAS  Google Scholar 

  19. Feher FJ, Wyndham KD (1998) Amine and ester-substituted silsesquioxanes: synthesis, characterization and use as a core for starburst dendrimers. Chem Commun 323–324

  20. Kaneko Y, Iyi N, Kurashima K, Matsumoto T, Fujita T, Kitamura K (2004) Hexagonal-structured polysiloxane material prepared by sol–gel reaction of aminoalkyltrialkoxysilane without using surfactants. Chem Mater 16:3417–3423

    Article  CAS  Google Scholar 

  21. Kaneko Y, Shoiriki M, Mizumo T (2012) Preparation of cage-like octa(3-aminopropyl)silsesquioxane trifluoromethanesulfonate in higher yield with a shorter reaction time. J Mater Chem 22:14475–14478

    Article  CAS  Google Scholar 

  22. Imai K, Kaneko Y (2017) Preparation of ammonium-functionalized polyhedral oligomeric silsesquioxanes with high proportions of cagelike decamer and their facile separation. Inorg Chem 56:4133–4140

    Article  CAS  Google Scholar 

  23. Matsumoto T, Kaneko Y (2018) Selective and high-yielding preparation of ammonium-functionalized cage-like octasilsesquioxanes using superacid catalyst in dimethyl sulfoxide. Chem lett 47:864–867

    Article  CAS  Google Scholar 

  24. Matsumoto T, Kaneko Y (2019) Effect of reaction temperature and time on the preferential preparation of cage octamer and decamer of ammonium-functionalized POSSs. Bull Chem Soc Jpn 92:1060–1067

    Article  CAS  Google Scholar 

  25. Matsumoto T, Kaneko Y (2020) Correlation between molecular structures and reaction conditions (temperature–pressure–time) in the preparation of secondary, tertiary, and quaternary ammonium-functionalized polyhedral oligomeric silsesquioxanes. J Sol-Gel Sci Technol 95:670–681

    Article  CAS  Google Scholar 

  26. Tokunaga T, Shoiriki M, Mizumo T, Kaneko Y (2014) Preparation of low-crystalline POSS containing two types of alkylammonium groups and its optically transparent film. J Mater Chem C 2:2496–2501

    Article  CAS  Google Scholar 

  27. Welton T (1999) Room-temperature ionic liquids. solvents for synthesis and catalysis. Chem Rev 99:2071–2084

    Article  CAS  Google Scholar 

  28. Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111:3508–3576

    Article  CAS  Google Scholar 

  29. Kaneko Y, Harada A, Kubo T, Ishii T (2017) In: Handy S (ed) Progress and developments in ionic liquids. InTech, London.

  30. Tanaka K, Ishiguro F, Chujo Y (2010) POSS ionic liquid. J Am Chem Soc 132:17649–17651

    Article  CAS  Google Scholar 

  31. Ishii T, Mizumo T, Kaneko Y (2014) Facile preparation of ionic liquid containing silsesquioxane framework. Bull Chem Soc Jpn 87:155–159

    Article  CAS  Google Scholar 

  32. Ishii T, Enoki T, Mizumo T, Ohshita J, Kaneko Y (2015) Preparation of imidazolium-type ionic liquids containing silsesquioxane frameworks and their thermal and ion-conductive properties. RSC Adv 5:15226–15232

    Article  CAS  Google Scholar 

  33. Harada A, Koge S, Ohshita J, Kaneko Y (2016) Preparation of a thermally stable room temperature ionic liquid containing cage-like oligosilsesquioxane with two types of side-chain groups. Bull Chem Soc Jpn 89:1129–1135

    Article  CAS  Google Scholar 

  34. Hasebe R, Kaneko Y (2019) Control of crystalline-amorphous structures of polyhedral oligomeric silsesquioxanes containing two types of ammonium side-chain groups and their properties as protic ionic liquids. Molecules 24:4553

    Article  CAS  Google Scholar 

  35. Maeda D, Ishii T, Kaneko Y (2018) Effect of lengths of substituents in imidazolium groups on the preparation of imidazolium-salt-type ionic liquids containing polyhedral oligomeric silsesquioxane structures. Bull Chem Soc Jpn 91:1112–1119

    Article  CAS  Google Scholar 

  36. Liu J, Kaneko Y (2018) Preparation of polyhedral oligomeric silsesquioxanes containing carboxyl side-chain groups and isolation of a cage-like octamer using clay mineral. Bull Chem Soc Jpn 91:1120–1127

    Article  CAS  Google Scholar 

  37. Toyodome H, Kaneko Y, Shikinaka K, Iyi N (2012) Preparation of carboxylate group-containing rod-like polysilsesquioxane with hexagonally stacked structure by sol–gel reaction of 2-cyanoethyltriethoxysilane. Polymer 53:6021–6026

    Article  CAS  Google Scholar 

  38. Kozuma T, Kaneko Y (2019) Preparation of carboxyl-functionalized polyhedral oligomeric silsesquioxane by a structural transformation reaction from soluble rod-like polysilsesquioxane. J Polym Sci Part A Polym Chem 57:2511–2518

    Article  CAS  Google Scholar 

  39. Yagihashi F, Igarashi M, Nakajima Y, Sato K, Yumoto Y, Matsui C, Shimada S (2016) Unexpected selectivity in cyclotetrasiloxane formation by the hydrolytic condensation reaction of trichloro(phenyl)silane. Eur J Inorg Chem 2882–2886

  40. Kinoshita S, Watase S, Matsukawa K, Kaneko Y (2015) Selective synthesis of cis-trans-cis cyclic tetrasiloxanes and the formation of their two-dimensional layered aggregates. J Am Chem Soc 137:5061–5065

    Article  CAS  Google Scholar 

  41. Gao X, Yan X, Yao X, Xu L, Zhang K, Zhang J, Yang B, Jiang L (2007) The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Adv Mater 19:2213–2217

    Article  CAS  Google Scholar 

  42. Liu K, Yao X, Jiang L (2010) Recent developments in bio-inspired special wettability. Chem Soc Rev 39:3240–3255

    Article  CAS  Google Scholar 

  43. Sun Z, Liao T, Liu K, Jiang L, Kim JH, Dou SX (2014) Fly-eye inspired superhydrophobic anti-fogging inorganic nanostructures. Small 10:3001–3006

    Article  CAS  Google Scholar 

  44. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Light-induced amphiphilic surfaces. Nature 388:431–432

    Article  CAS  Google Scholar 

  45. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1998) Photogeneration of highly amphiphilic TiO2 surfaces. Adv Mater 10:135–138

    Article  Google Scholar 

  46. Sun RD, Nakajima A, Fujishima A, Watanabe T, Hashimoto K (2001) Photoinduced surface wettability conversion of ZnO and TiO2 thin films. J Phys Chem B 105:1984–1990

    Article  CAS  Google Scholar 

  47. Tricoli A, Righettoni M, Pratsinis SE (2009) Anti-fogging nanofibrous SiO2 and nanostructured SiO2-TiO2 films made by rapid flame deposition and in situ annealing. Langmuir 25:12578–12584

    Article  CAS  Google Scholar 

  48. Chemin JB, Bulou S, Baba K, Fontaine C, Sindzingre T, Boscher ND, Choquet P (2018) Transparent anti-fogging and self- cleaning TiO2/SiO2 thin films on polymer substrates using atmospheric plasma. Sci Rep. 8:1–8

    Article  CAS  Google Scholar 

  49. Maeda T, Hamada T, Tsukada S, Katsura D, Okada K, Ohshita J (2021) Antifogging hybrid materials based on amino-functionalized polysilsesquioxanes. ACS Appl Polym Mater 3:2568–2575

    Article  CAS  Google Scholar 

  50. Howarter JA, Youngblood JP (2008) Self-cleaning and next generation anti-fog surfaces and coatings. Macromol Rapid Commun 29:455–466

    Article  CAS  Google Scholar 

  51. Zhao J, Meyer A, Ma L, Ming W (2013) Acrylic coatings with surprising antifogging and frost-resisting properties. Chem Commun 49:11764–11766

    Article  CAS  Google Scholar 

  52. Lee H, Alcaraz ML, Rubner MF, Cohen RE (2013) Zwitter-wettability and antifogging coatings with frost-resisting capabilities. ACS Nano 7:2172–2185

    Article  CAS  Google Scholar 

  53. Zhang T, Fang L, Lin N, Wang J, Wang Y, Wu T, Song P (2019) Highly transparent, healable, and durable anti-fogging coating by combining hydrophilic pectin and tannic acid with poly(ethylene terephthalate). Green Chem 21:5405–5413

    Article  CAS  Google Scholar 

  54. Kozuma T, Mihata A, Kaneko Y (2021) Preparation of soluble POSS-linking polyamide and its application in antifogging films. Materials 14:3178

    Article  CAS  Google Scholar 

  55. Okumura Y, Ito K (2001) The polyrotaxane gel: a topological gel by figure-of-eight cross-link. Adv Mater 13:485–487

    Article  CAS  Google Scholar 

  56. Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14:1120–1124

    Article  CAS  Google Scholar 

  57. Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158

    Article  CAS  Google Scholar 

  58. Sakai T, Matsunaga T, Yamamoto Y, Ito C, Yoshida R, Suzuki S, Sasaki N, Shibayama M, Chung U (2008) Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules 41:5379–5384

    Article  CAS  Google Scholar 

  59. Yanagie M, Kaneko Y (2018) Preparation of irrefrangible polyacrylamide hybrid hydrogels using water-dispersible cyclotetrasiloxane or polyhedral oligomeric silsesquioxane containing polymerizable groups as cross-linkers. Polym Chem 9:2302–2312

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges to the co-workers, whose names are found in references from his papers, for their enthusiastic collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiro Kaneko.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaneko, Y. Superacid-catalyzed preparation of ionic polyhedral oligomeric silsesquioxanes and their properties, polymerization, and hybridization. J Sol-Gel Sci Technol 104, 588–598 (2022). https://doi.org/10.1007/s10971-022-05821-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05821-0

Keywords

Navigation